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Abstract— The problem of estimating the inten-
sity process of a doubly stochastic Poisson process
is analyzed. Using covariance information, a re-
cursive linear minimum mean-square error estimate
is designed. Moreover, an efficient procedure for
the computation of its associated error covariance is
shown. The proposed solution becomes an alternative
approach to the Kalman filter which is applicable un-
der the only structural assumption that the intensity
process to be estimated has a finite-dimensional co-
variance function.
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1 Introduction

This paper is focused on the problem of estimating the
intensity process from observations of doubly stochastic
Poisson processes (DSPP). These processes, introduced
in [1], are Poisson processes whose rate is modulated by
a second stochastic process, known as the intensity pro-
cess. In the recent engineering literature, this problem
has been of great interest since estimates of the inten-
sity process are required in expressions for the counting
and time statistics for DSPP which arise naturally in
many practical situations of such diverse areas as opti-
cal communication systems [2], quantitative financial [3],
network theory [4], among others [5, 6].

Thus, suppose that {N(t), t ≥ t0} is a DSPP with a
stochastic intensity process {λ(t), t ≥ t0} whose mean
E[λ(t)] and covariance function Rλ(t, s) are known. We
consider that the observation interval [t0, tf ) is parti-
tioned into m disjoint intervals according to the times
t0 < t1 < t2 < . . . < tm = tf , and the number of
points occurring in each subinterval is observed. De-
note {N1, N2, . . . , Nm}, with Ni = N(ti)−N(ti−1), these
counting observations.

Observe that, the mean function E [Ni] and the covari-
ance function RN (ti, tj) associated with the observations
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Ni are given by the expressions

E [Ni] =
∫ ti

ti−1

E [λ(σ)] dσ

RN (ti, tj) =
∫ tj

tj−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ + E[Ni]δij

(1)

where δij is the Kronecker delta function.

Moreover, the cross-covariance function between the in-
tensity process λ(t) and the observation Ni, RλN (t, ti), is
of the form

RλN (t, ti) =
∫ ti

ti−1

Rλ(t, σ)dσ (2)

Next, our purpose is to derive a linear estimate λ̂(t) of
the intensity process λ(t) from the set of counting obser-
vations {N1, N2, . . . , Nm}, with t ≥ tm. Specifically, we
seek estimators which are optimal in the sense of mini-
mizing the mean-square error

P (t) = E

[{
λ(t)− λ̂(t)

}2
]

(3)

Under this error criterion it is well known that the best so-
lution, the linear minimum mean-square error (LMMSE)
estimate, can be expressed as a linear functional of the
data of the form [2]

λ̂(t) = E [λ(t)] +
m∑

i=1

h(t, ti) {Ni − E [Ni]} , t ≥ tm (4)

where the impulse-response function h(t, ·), must satisfy
the equation

RλN (t, tj) =
m∑

i=1

h(t, ti)RN (ti, tj) (5)

for t1 ≤ tj ≤ tm and t ≥ tm.

As a consequence, the LMMSE estimation problem is
theoretically determined from the solution of the equation
(5) which only involves the covariance functions (1) and
(2), that is, only requires the knowledge of the first and
second-order moments of the intensity process. However,
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from the practical point of view an efficient algorithm
for its computation is desirable. In this framework, dif-
ferent techniques have been applied to obtain recursive
LMMSE estimation procedures for the intensity process
of an observed DSPP (see, for example, [2] and [7]). In
particular, the most extensively applied algorithm is the
popular Kalman filter which requires that the intensity
process to be estimated satisfies a state-space model. Al-
though this condition is valid for a wide class of processes,
there is a great number of practical situations where no
linear dynamic model for the intensity process of a DSPP
is available.

Therefore, in this paper we propose an alternative
approach which is applicable under less restrictive struc-
tural conditions on the intensity process and leads to an
efficient algorithm for the LMMSE estimator of the in-
tensity process of a DSPP. In fact, we only assume that
the intensity process has a finite-dimensional covariance
function of the form

Rλ(t, s) =
{

a′(t)b(s), s ≤ t
b′(t)a(s), t ≤ s

(6)

where a(·) and b(·) are vector-valued functions of dimen-
sion q.

Note that, this is not a very restrictive hypothesis since
(6) is suitable for expressing general stationary and non-
stationary processes and then, this type of covariance ap-
pears naturally in many general applications [2].

Hence, using covariance information, efficient procedures
for computing the LMMSE estimator (4) and its asso-
ciated minimum mean-square error (3) are developed in
the next section.

2 LMMSE Estimation Algorithm

The main objective now is the design of an efficient al-
gorithm for the LMMSE estimate λ̂(t) for the intensity
process λ(t) of a DSPP N(t), based on the discrete time
counting observations {N1, N2, . . . , Nm}, with t ≥ tm.
For that, we first seek the solution, the optimal impulse-
response function h(t, tj), of the equation (5). In the fol-
lowing theorem, a feasible procedure for its computation
is presented.

Theorem 1 The optimal impulse response funtion
h(t, tj) can be expressed in the form

h(t, tj) = a′(t)g(tj , tm), t1 ≤ tj ≤ tm, t ≥ tm (7)

where the q-dimensional vector-valued function g(tj , ·) is
resursively computed as follows

g(tj , tk) = g(tj , tk−1)− g(tk, tk)γ′(tk)g(tj , tk−1) (8)

for tj < tk, with

g(tk, tk) = {ψ(tk)−Q(tk−1)γ(tk)} ρ(tk)−1 (9)

where γ(tk) =
∫ tk

tk−1
a(σ)dσ, ψ(tk) =

∫ tk

tk−1
b(σ)dσ,

ρ(tk) = {RN (tk, tk)− γ′(tk)Q(tk−1)γ(tk)}, and the q×q-
dimensional matrix Q(tk), k = 1, . . . , m, satisfies the re-
cursive equation

Q(tk) = Q(tk−1) + g(tk, tk) {ψ′(tk)− γ′(tk)Q(tk−1)}
Q(t0) = 0q×q

(10)

with 0q×q the q × q-dimensional matrix whose elements
are all zero.

Proof Substituting (1) and (2) in (5) we have

h(t, tj)E[Nj ] =
∫ tj

tj−1

Rλ(t, σ)dσ

−
m∑

i=1

h(t, ti)
∫ tj

tj−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ

where t1 ≤ tj ≤ tm and t ≥ tm. Now, using the fact that
Rλ(t, s) is a finite-dimensional covariance of the form (6),

h(t, tj)E[Nj ] = a′(t)ψ(tj)

−
m∑

i=1

h(t, ti)
∫ tj

tj−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ

Then, introducing a function g(tj , tk) such that

g(tj , tk)E[Nj ] = ψ(tj)

−
k∑

i=1

g(ti, tk)
∫ tj

tj−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ (11)

for t1 ≤ tj ≤ tk, the equation (7) for the optimal impulse-
response h(t, tj) holds.

On the other hand, from (11) and (6), it follows that, for
tj < tk,

{g(tj , tk)− g(tj , tk−1)}E[Nj ] = −g(tk, tk)γ′(tk)ψ(tj)

−
k−1∑

i=1

{g(ti, tk)− g(ti, tk−1)}
∫ tj

tj−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ

and then, taking (11) into account, the recursive formula
(8) is derived.

Moreover, for j = k, the equation (11) becomes

g(tk, tk)E[Nk]

= ψ(tk)−
k∑

i=1

g(ti, tk)
∫ tk

tk−1

∫ ti

ti−1

Rλ(σ, τ)dσdτ

= ψ(tk)−
k−1∑

i=1

g(ti, tk)ψ′(ti)γ(tk)

− g(tk, tk)
∫ tk

tk−1

∫ tk

tk−1

Rλ(σ, τ)dσdτ

(12)
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where (6) has been applied in the last equality.

Now, taking (1), (8) and (12) into account, we can check
that

g(tk, tk)RN (tk, tk) = ψ(tk)−
k−1∑

i=1

g(ti, tk−1)ψ′(ti)γ(tk)

+ g(tk, tk)γ′(tk)
k−1∑

i=1

g(ti, tk−1)ψ′(ti)γ(tk)

Hence, if we introduce the auxiliary function

Q(tk) =
k∑

i=1

g(ti, tk)ψ′(ti) (13)

the equation (9) is obtained.

Finally, using (8) and (13), we can write

Q(tk)−Q(tk−1)

= g(tk, tk)ψ′(tk)− g(tk, tk)γ′(tk)
k−1∑

i=1

g(ti, tk−1)ψ′(ti)

= g(tk, tk)
{
ψ′(tk)− γ′(tk)Q(tk−1)

}

and thus, it is obvious that Q(tk) obeys the equation (10)
with the initialization at k = 0, Q(t0) = 0q×q and the
theorem is proven.

Next, from Theorem 1, a recursive algorithm for the
LMMSE estimator of the intensity process is provided
in the following result.

Theorem 2 The LMMSE estimate for the inten-
sity process λ(t), λ̂(t), based on the observations
{N1, N2, . . . , Nm}, with t ≥ tm, can be computed through
the equation

λ̂(t) = E [λ(t)] + a′(t)e(tm), t ≥ tm (14)

where the q-dimensional vector e(tk), k = 1, . . . ,m, obeys
the recursive expression

e(tk) = e(tk−1) + g(tk, tk) {Nk − E [Nk]− γ′(tk)e(tk−1)}
e(t0) = 0q

(15)

with 0q the q-dimensional vector whose elements are all
zero and the function g(tk, tk) given by the equation (9).

Proof Substituting (7) in (4) and introducing the auxi-
liary function

e(tk) =
k∑

i=1

g(ti, tk) {Ni − E [Ni]} (16)

the expression (14) for the LMMSE estimate λ̂(t) holds.

Moreover, from (8) and (16), we have

e(tk)− e(tk−1) = g(tk, tk) {Nk − E [Nk]}

− g(tk, tk)γ′(tk)
k−1∑

i=1

g(ti, tk−1) {Ni − E [Ni]}

= g(tk, tk) {Nk − E [Nk]− γ′(tk)e(tk−1)}
and the equation (15) for e(tk) is obtained with the ini-
tialization at k = 0, e(t0) = 0q.

In the next theorem, a recursive procedure for comput-
ing P (t), a measure of the estimation accuracy for the
LMMSE estimate of the intensity process (14) is shown.

Theorem 3 The LMMSE estimation error covariance
P (t) associated with (14) is

P(t) = Rλ(t, t)− a′(t)Q(tm)a(t), t ≥ tm (17)

where Q(tm) satisfies the equation (10).

Proof From (4), the minimum mean-square error (3) can
be written as

P(t) = Rλ(t, t)−
m∑

i=1

h(t, ti)RNλ(ti, t), t ≥ tm (18)

Now, using (2) and Theorem 1 in the above equation, we
get

P (t) = Rλ(t, t)− a′(t)
m∑

i=1

g(ti, tm)
∫ ti

ti−1

Rλ(σ, t)dσ

Then, applying that Rλ(σ, t) = b′(σ)a(t), for t ≥ σ, and
taking (13) into account the equation (17) is verified.

3 Numerical Example

In this section, the behaviour of the proposed LLMSE
estimate (14) is numerically analyzed. For that, the on-off
modulated light estimation problem treated in [2, p. 374]
is considered.

Specifically, a light source is supposed to be turned on
and off by a random telegraph wave. To measure the
random telegraph wave, we use a photodetector which
generates photoelectrons and thermoelectrons with rates
µ(t) and λ0, respectively. The photocount intensity
{µ(t), t ≥ t0} is assumed to alternate between the value 0
or α, switching at the occurrence times of a homogeneous
Poisson process with constant intensity ν, being its first
value at time t0, 0 or α with equal probability. Then,
{µ(t), t ≥ t0} can be written in the form

µ(t) =
α

2

[
1 + z(−1)M(t)

]
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where z is a discrete random variable such that P [z =
−1] = P [z = 1] = 1/2, {M(t), t ≥ t0} is a homogeneous
Poisson process with intensity ν and independent of z.

Moreover, the detector output {N(t), t ≥ t0} is a DSPP
with intensity process {λ(t), t ≥ t0}, with λ(t) = µ(t) +
λ0. Let us note that the mean and covariance functions
for λ(t) are [2, p. 375]

E[λ(t)] =
α

2
+ λ0

Rλ(t, s) =
(α

2

)2

e−2ν|t−s|

Then, we have that Rλ(t, s) is a finite-dimensional co-
variance of the form (6) where a(t) =

(
α
2

)2
e−2νt and

b(t) = e2νt.

On the other hand, we consider that the photodetector
output is observed during a tf = 10 second interval which
is partitioned into m = 100 disjoint intervals according
to the times ti = i/10. Thus, we have the observations
set {N1, . . . , N100}, with Ni = N(ti)−N(ti−1)1.

Next, from the set of counting observation {N1, . . . , Nm},
the filtering estimate for the intensity process λ(t), λ̂(t)
with t = tm, has been computed. For that, we have
performed a programm in MATLAB which simulates all
the above processes for the parameters ν = 2.0, α = 2.0,
and λ0 = 0.1. Then, the LMMSE filtering algorithm
proposed in Theorem 2 has been applied.

In our simulation the intensity process {λ(t), t ≥ t0} has
an initial value of 2, and the transitions between the on
and off states occur at times 2.1455, 4.8967, 5.9694, and
7.2631 seconds.

Figure 1 illustrates the simulated values for the intensity
process in comparison with their filtering estimations.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

τ

Figure 1: Simulated values for λ(t) (solid line) and the
filtering estimate λ̂(t).

4 Conclusions and Future Work

In this paper, a new LMMSE estimation algorithm has
been developed for computing the intensity process of

1Ni represents the points occurred in the observed doubly
stochastic Poisson-process during the interval [ti−1, ti)

a DSPP under the only assumption that the inten-
sity process has a finite-dimensional covariance func-
tion. This hypothesis is valid for general stationary and
non-stationary processes and then, it can be widely ap-
plied. Hence, the proposed methodology is an alternative
approach to the Kalman-Bucy filter for those situations
in which a state-space model is not readily at hand.

In future work our efforts will be directed to developing a
general LMMSE estimation algorithm valid for all types
of estimators (smoothing, filtering and prediction esti-
mates) of any linear or nonlinear operation of the inten-
sity process and extend these results to those situations
where more than one DSPP is observed simultaneously,
that is, to include doubly stochastic multichannel Poisson
processes.
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