
 
 

 

  
Abstract—In the design process of complex systems, the 

designer is solving an optimization problem, which involves 
different disciplines and where all design criteria have to be 
optimized simultaneously. Mathematically this problem can be 
reduced to a vector optimization problem. The solution of this 
problem is not unique and is represented by a Pareto surface in 
the space of the objective functions. Once a Pareto solution is 
obtained, it may be very useful for the decision-maker to be able 
to perform a quick local approximation in the vicinity of this 
Pareto solution in order to explore its sensitivity. In this paper, a 
method for obtaining linear and quadratic local approximations 
of the Pareto surface is derived. The concept of a local quick 
Pareto analyser is proposed. This concept is based on a local 
sensitivity analysis, which provides the relation between 
variations of the different objective functions under constraints. A 
few examples are considered. 
 

Index Terms—Pareto surface approximation, multi-objective 
optimization, sensitivity analysis, trade-off. 
 

I. INTRODUCTION 
 In the process of designing complex systems, contributions 
and interactions of multiple disciplines are taken into account 
to achieve a consistent design. In practice, the design problem 
is made even more complicated because the decision maker 
(DM) has to consider many different and often conflicting 
criteria. In fact, during the optimization process, the DM often 
has to make compromises and look for trade-off solutions 
rather than a global optimum, which usually does not exist. 
 Multi-disciplinary design optimization (MDO) has become a 
field of comprehensive study for the last few decades, 
especially since the computer power has begun to satisfy some 
minimal requirements to tackle this problem. MDO embodies a 
set of methodologies, which provide means of coordinating 
efforts and performing the optimization of a complex system. 
Two fundamental issues associated with the MDO concept are 
the complexity of the problem (large number of variables, 
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constraints and objectives) and the difficulty to explore the 
whole design space. Thus, in practice the DM would benefit 
from the opportunity to obtain additional information about the 
model without running it extensively.  
 Finding a solution to an MDO problem implies solving a 
vector optimization problem under constraints. In general, the 
solution of such a problem is not unique. In this respect, the 
existence of feasible solutions, i.e. solutions that satisfy all 
constraints, but cannot be optimized further without 
compromising at least one of the other criteria leads to the 
Pareto optimal concept [1]. Each Pareto point is a solution of 
the multi-objective optimization problem. The DM often 
selects the final design solution among an available Pareto set 
based on additional requirements that are not taken into account 
in the mathematical formulation of the vector optimization 
problem.  
 In spite of the existence of many numerical methods for 
non-linear vector optimization, there are few methods suitable 
for real-design industrial applications. In many applications, 
each design cycle includes time-consuming and expensive 
computations of each discipline.   
 In preliminary design it is important to get maximum 
information on a possible solution at a reasonably low 
computational cost. Thus, it is very desirable for the DM to be 
able to approximate the Pareto surface in the vicinity of a 
current Pareto solution and to provide its sensitivity 
information [2].  It would also be very useful for the DM to be 
able to carry out a local approximation of other optimal 
solutions relatively quickly without additional full-run 
calculations. Such an approach is based on a local sensitivity 
analysis (SA) providing the relation between variations of 
different objective functions under constraints.  
 Currently, only a few papers are devoted to the SA of Pareto 
solution in MDO [2]-[6].  They are based on the application of 
the gradient projection method (GPM) [7] which was first used 
in [3]. The SA analysis based on a local linear approximation 
geometrically results in finding the hyperplane tangent to the 
Pareto surface at some Pareto point. The quadratic 
approximation is based on an approximate evaluation of the 
local Hessian [2]. Such an approximation is based on the 
assumption of the local availability of some other Pareto 
solutions. The generation of such solutions can be done by the 
method developed in [8], [9]. However, this assumption may 
not be always valid. One of the most difficult problems in the 
SA is related to possible non-smoothness of the Pareto surface 
in the objective space and is addressed in [5], [6].  

The objective of this work is to develop a method for local 
trade-off analysis and approximation of the Pareto surface at a 
differentiable Pareto solution. Linear and quadratic analytical 
local approximations of the Pareto front are obtained. It is 
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shown that the linear approximation of the Pareto surface 
obtained in [3] determines in the objective space a local 
hyperplane tangent to the Pareto surface only under particular 
conditions. The concept of a local quick Pareto analyzer based 
on the local linear and quadratic approximations of the Pareto 
surface is suggested. It enables the DM to analyze the trade-off 
between different objective functions without full 
time-consuming optimization. While improving one objective 
function the DM has an opportunity to determine the trade-offs 
to be made on the others. In addition, it is possible to evaluate 
the gain of one objective function at the expense of another one.  

 

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM 
 An optimization problem is described in terms of a design 
variable vector x = (x1,x2,…,xN)T in the design space X  ⊂ N. 

A function f  ∈ M evaluates the quality of a solution by 
assigning it to an objective vector y = (y1,y2,…,yM)T where each 
objective yi = fi(x),  fi: N→ 1, i=1,…, M in the objective space 

Y  ⊂ M. Thus, X is mapped onto Y by f: X→Y. A 
multi-objective optimization problem can be formulated in the 
following form: 

 

Minimize [ ( )]y x                              (2.1)                                                         

Subject to L inequality constraints  

ig ( ) 0x ≤   i = 1,..., L                           (2.2) 

which may also include equality constraints. 
 A feasible design point is a point that does not violate any 
constraints. Therefore the feasible design space X* is defined as 
the set {x | gi(x)≤ 0, i=1,…,L}. The feasible criterion 
(objective) space Y* is defined as the set {Y(x) | x ∈ X*}. 
 A design vector a (a ∈ X*) is called a Pareto optimum if, and 
only if, it does not exist any b ∈ X*such that yi(b) ≤ yi(a), i 
=1,…, M and there exist 1 ≤ j ≤ M such that: yi(b) < yi(a). Here 
and further it is supposed that all vectors are considered in the 
appropriate Euclidean spaces. 
 

III. PARETO APPROXIMATION 
 In this section, we assume that the Pareto surface is smooth 
in the vicinity of the Pareto solution under study. A local 
approximation of the Pareto surface would allow the DM to 
obtain quickly both qualitative and quantitative information on 
the trade-off between different local Pareto optimal solutions.  
 A constraint is said to be active at a Pareto point x* of the 
design space X if a strict equality holds at this point [3]. In this 
section, it is assumed that constraints that are active at a 
particular Pareto point remain active in its vicinity. Thus, the 
sensitivity predicted at the given Pareto point is valid until the 
set of active constraints remains unchanged [2], [3]. Without 
loss of generality, let us assume that the first I constraints are 
active and the first Q of those correspond to inequality 
constraints (Q ≤  I  ≤  L).   

 Let us note the set of active constraints (2.2) as G ∈ I. At the 
given point x* of the design feasible space X* it means: 
 

*G(x ) 0.=                                  (3.1) 
 

 Assume that G ∈ C1( I), then locally the constraints can be 
written in the linear form: 
 

*J(x x ) 0− = ,                       (3.2) 
 

where J is the Jacobian of the active constraints set at x*: 
J=∇G. If all gradients of the active constraints are linearly 
independent at a point, then this point is called a regular point 
[1]. Thus, we say that a point x* ∈ X* is regular if rank(J) = I.   
 Let us further assume that in the objective space Y the Pareto 
surface is given by: 
 

( ) 0S =y                                  (3.3) 
 

and at the Pareto point y* = f (x*) function S ⊂ C2( 1). 
 The values of the gradient of any differentiable function F at 
point x* under constraints are defined by the reduced gradient 
formula (see, e.g., [10]): 
 

| lSF F∇ = ∇P                                (3.4) 

where Sl is the hyperplane tangent to the feasible space X*: 
 

{ ( ) 0}lS = =*x | J x - x                        (3.5) 
 

and P is projection matrix onto this hyperplane : 
 

1( ) .T T −= −P I J JJ J                          (3.6) 
Directional derivatives on corresponding to (3.4) in the 
objective space are represented by: 
 

.
lS

i i

dF dF d
df d df

=
x

x
                           (3.7) 

 
The first element of the product corresponds to the reduced 
gradient. In the second element, dx represents the infinitesimal 
change in the design vector x required to accommodate the 
infinitesimal shift in the objective vector df tangent to the 
Pareto surface.  
 The last derivative in (3.7) can be represented via the 
gradients in the design space X as follows. Assume that matrix 
P∇f, (f = (f1,f2,…,fM)T) has nf  < M linearly independent 
columns. It is to be noted that nf ≠ M. Indeed, since 

 

( )Td d= ∇f P f x ,                          (3.8) 
 

nf = M would mean that for any df, in particular one where all 
objectives are improved together, there would exist a dx so that 
the set of active constraints remains unchanged. This 
contradicts the fact that the point under study is a Pareto 
solution. Indeed, in view of (3.3) we have 

 

1 |

0
M

i
i i S

S df
f=

∂
=

∂∑                                (3.9) 
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and it is easy to see that to move locally on the Pareto surface, 
dfi (i = 1,…,M) cannot be chosen independently.  
 Without loss of generality, let us assume further that the first 
nf components of P∇f are linearly independent and represented 
by: 

 

1( ,..., ).
fnf f∇ ≡ ∇ ∇P f P P                      (3.10) 

 
Therefore, (3.8) reduces to 
 

( ) .Td d= ∇f P f x                             (3.11) 
 

Now, let us write dx in the following form: 
 

.d d=x A f                                   (3.12) 
 

Then, having multiplied both sides of (3.12) by ( )T∇P f  and 
taking into account (3.11)  we obtain that 

 

( ) .T d d∇ =P f A f f                             (3.13) 

Hence, 
1[( ) ] .T −= ∇ ∇ ∇A P f P f P f                      (3.14) 

 

Thus, matrix A is the right-hand generalized inverse matrix to 
( ) .T∇P f  It is possible to prove that the inverse matrix 

1[( ) ]T −∇ ∇P f P f is always non-singular because all the vectors 
P∇fi, (i = 1,…, nf) are linearly independent. From the definition 
of matrix A it follows that ( )T∇ =P f A I  and T

i j ijf∇ =A P δ  , 
where I is the unit matrix and δij is the Kronecker symbol. 
Hence, the system of vectors { }  ( 1,..., )i fi n=A  creates the 

basis reciprocal to the basis of vectors { }  ( 1,..., )j ff j n∇ =P .  

 From (3.14) it follows that PA = A and dx in (3.12) belongs 
to the tangent plane Sl at the Pareto point.  
 Thus, 

1[( ) ]Td
d

−= ≡ ∇ ∇ ∇
x A P f P f P f
f

               (3.15) 

 

 and for any fi n≤ : 
 

,
i

d
df

= i
x A                                   (3.16) 

 
where 1 2( , ,..., ).

fn=A A A A Then, from  (3.4), (3.7) and (3.15) 

it follows that for any fi n≤ : 
 

( )T T T
i i i

i

dF F F F
df

= ∇ = ∇ = ∇P A A P A        (3.17) 

 

If F = fj, (nf  < j ≤ M), then we can obtain the sensitivity of an 
objective fj along the feasible descent direction of an objective 
fi. Thus, 
 

     (0 ,  ).j T
i j f f

i

df
f i n n j M

df
= ∇ ≤ ≤ < ≤A       (3.18) 

 
It is important to note that this formula coincides with the 
formula: 

   
( , ) ( , )
( , ) ( , )

j j i j i

i i i i i

df f f f f
df f f f f

∇ ∇ ∇ ∇
= ≡

∇ ∇ ∇ ∇

P P P
P P P

            (3.19) 

 

obtained in [3] if and only if either the vectors ∇P f create an 
orthogonal basis or nf = 1. In this case, the matrix ( )T∇ ∇P f P f  
is diagonal. In particular, these formulas always coincide in the 
case of two-objective optimization since nf = 1.  
 On the Pareto surface in the objective space the operator of 
the first derivative can be defined by: 

 

.T
i

i

d
df

= ∇A                                  (3.20) 

 

By applying this operator to the first order derivative found 
previously, one can obtain the reduced Hessian as follows: 
 

( )
2

2      (0 , ).T T T
i j i j f

i j

d F F F i j n
df df

= ∇ ∇ ≈ ∇ ≤ ≤A A A A    (3.21) 

 

Thus, the Pareto surface can be locally represented as a linear 
hyperplane: 

1

0
fn

i
ii

dS f
df=

Δ =∑                           (3.22) 

 
or a quadratic surface: 
 

 
2

1 , 1

1 0
2

f fn n

i j k
i j ki j k

dS d Sf f f
df df df= =

Δ + Δ Δ =∑ ∑           (3.23) 

 
where ∆f = f – f(x*). 
  

 Approximations (3.22) and (3.23) can be rewritten with 
respect to the trade-off relations between the objective 
functions as follows: 
 

*

1

        ( 1,  ..., ),
fn

p
p p i f

ii

df
f f f p n M

df=

= + Δ = +∑    (3.24) 

 

( )*

1 , 1

1    ( 1,  ..., ),
2

f fn n
p p

p p i j k fjk
ii j k

df
f f f H f f p n M

df= =

= + Δ + Δ Δ = +∑ ∑
    (3.25) 

  where 
2

( ) pp
jk

j k

d f
H

df df
= .  
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 Quadratic approximation (3.25) with nf = M - 1 is used in [3] 
where the reduced Hessian matrix Hij is evaluated with a 
least-squared minimization using the Pareto set generated 
around the original Pareto point. In an industrial situation, such 
evaluation can be unsuitable because it would require 
generating more Pareto points in the vicinity of the point under 
study. Instead, the local determination of the reduced Hessian 
using (3.21) is more accurate and is entirely based on the value 
of the objective and constraint gradients with respect to the 
independent design variables. These gradients are calculated 
and used during the optimization procedure; therefore the local 
approximations can be obtained at no extra computational cost. 
It is important to note that in contrast to [3] the developed 
approximations precisely correspond to the first three terms of 
the Taylor expansion in the general case. 

 

IV. LOCAL QUICK PARETO ANALYSIS 
 The first order derivatives p idf df  provide us with first 
order sensitivity of an objective fp along the feasible descent 
direction of an objective fi when all other objectives are kept 
constant. It is to be noted here that all the derivatives p idf df  
are non-positive (1 ≤ i ≤ nf and nf  < p ≤ M). Otherwise, two 
objectives could be locally improved which would contradict 
the Pareto-solution assumption.  
 The local approximations of the Pareto surface can be used 
to study the local adaptability of a Pareto solution. Since in a 
real-life problem it can be very computationally expensive to 
obtain even a single Pareto solution, local approximate 
solutions around a Pareto point can be obtained using either 
(3.24) or (3.25). 
 As discussed above, in the preliminary design it can be very 
beneficial to the DM if s/he is able to perform quick SA of the 
solution obtained. Using the local approximation of the Pareto 
surface the DM has an opportunity to perform the SA without 
additional full-run computations. It is also easy to obtain the 
information on trade-off between different objectives. Usually, 
the number of objectives considered in an industrial case is 
larger than two. In this case, the change of one objective does 
not fully determine the changes of the others. If the DM freezes 
all objectives apart from two or three, it is then possible to 
obtain information which is useful for understanding the 
trade-off between the selected objectives. The analysis of 
solutions around a Pareto point allows the DM to correct 
locally the solution with respect to additional preferences. 
Furthermore, the DM is able to analyze possible violations of 
the constraints as part of the trade-off analysis. In the design 
practice, the opportunity of further improvement of some 
objectives at the expense of local degradation of some other 
objectives can also be important. Representations (3.24) and 
(3.25) are only local approximations and there is a question on 
the range of Δx where the approximation is valid.  In the 
framework of a local analysis, giving a strict answer to this 
question is not possible. Nevertheless, it is possible to evaluate 
qualitatively the reliable range of the variation of Δx by 
comparing the solutions obtained by the linear and quadratic 
approximations. It is reasonable to expect that the 

approximations are suitable as long as the difference between 
the two approximations is small.  
 As a qualitative example, let us consider the case of an 
optimization problem with three objectives and assume that 
linear and quadratic approximations for objective f3 are 
available. Assume that the DM compromises objective f2 and 
improves objective f1. The local approximations (3.24) and 
(3.25) provide the DM with the information on how objective f3 
is affected. If the discrepancies between the linear and 
quadratic approximation remain relatively small in some norm, 
the local approximation may be considered as reliable, as 
shown in Figure 1.  
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Figure 1: « Reliable » local Pareto approximation 

Otherwise, the local approximation is not reliable for the 
chosen range of variation of the design variables, as illustrated 
in Figure 2. 
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Figure 2: « Non-reliable » local Pareto approximation 

  
 In general, the Pareto surface can be non-smooth. If the 
designed Pareto solution appears at a point of lack of 
smoothness, the approximations derived above are not formally 
valid. In such a case a substantial discrepancy can appear 
between the first and second order approximations in the 
vicinity of the point.        
 In the SA, due to a perturbation δf and the appropriate 
displacement δx some constraints, which are inactive at point 
x*

, can become either violated or active. The exact verification 
of the constraints validation may be time consuming. In [6], it is 
suggested to obtain a local linear approximation of the inactive 
constraints at x* to study the degree of constraint violation.  
 The approach developed in section three above can be used 
to obtain the appropriate linear and quadratic approximations 
for non-active inequality constraints as follows: 
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*( ) ( ) ,     ( ),k
k k j

j

dg
g g f I k L

df
= + Δ < ≤x x              (4.1) 

2
* 2

2
1( ) ( ) ( ) .
2

k k
k k j j

j j

dg d g
g g f f

df df
= + Δ + Δx x            (4.2) 

 
These equations can be used to verify that inactive constraints 
remain inactive at a new approximate Pareto point. Such 
verification is necessary to ensure that the assumption that the 
set of active constraints remains unchanged is valid and 
therefore that the approximation is legitimate. 

 

V. EXAMPLE 
 To compare with the approach described in [3], let us 
consider the following multi-objective problem: 
  

 Minimise:                                                
   T(x, y, z) .=f                                    (5.1)                                                                   

 Subject to:   
2 2 2g( ) 1 x y z 0,

x 0,

y 0,

z 0.

= − − − ≤

>

>

>

x

            (5.2)  

 
 

 The design space and objective space coincide in this 
example. It is easy to see that the Pareto surface corresponds to 
the part of the unit sphere in the first quadrant and is 
represented by the following formulas: 
 

2 2z 1 x y ,

x 0,

y 0.

= − −

>

>

                                 (5.3) 

 

The analytical first order derivatives can be easily derived: 
 
 

3
2 21

3
2 22

df dz x
df dx 1 x y

df dz y
df dy 1 x y

,

.

−
= =

− −

−
= =

− −

                       (5.4) 

                                        
 Let us derive the first order approximation using approach 
[3] and the method described in this paper.         
 Using (3.19) and (3.6)  one can obtain the first order 
derivatives as in [3]: 
 

( )( )

( )
( )( )

( )

2 2
3

2 2 2 2 21

2 2
3

2 2 2 2 2
2 [3]

[3]

1 x yd xz
d y z 1 x 1 x y

1 x yd yz
d x z 1 y 1 x y

x

y

- -f -
f - - -

f
f

-
,

-
.

+

− −−

+ − − −

= =

= =

            (5.5) 

 

Note that (5.5) are different from the exact analytical first order 
derivatives (5.4). They result in the approximation given in 
Figure 3. 
 

 
Figure 3: Linear approximation [3] (unit sphere) 

 

 According to the method developed in this paper, we obtain: 
 

1 0
0 1

yx
z z

.

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥−
⎣ ⎦

A                                (5.6) 

 
Using  (3.18) and (3.21), one can easily ensure that we obtain 
the exact first order and second order derivatives. The resulting 
linear and quadratic approximations are shown in Figure 4 and 
Figure 5 respectively.  
 

 
Figure 4: New linear approximation (unit sphere) 

 

 
Figure 5: New quadratic approximation (unit sphere) 

 
 
The relative error of the prediction in objective f3 is given in 
Figure 6 in function of the local changes in objective f1 and f2.  
 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

 
Figure 6: Relative error in predicting f3 (unit sphere) 

VI. CONCLUSION 
 A method for local approximation of the Pareto frontier is 
presented in this paper. The exact general formulas for the first 
and second order approximations are derived. An approach is 
suggested to evaluate the vicinity of the Pareto solution where 
the local analysis is valid. The developed concept of the local 
Pareto analyser allows the decision maker to perform a local 
analysis of the Pareto solutions and trade-offs between 
different objectives. Future work will concentrate on testing 
and application of the method to complex MDO industrial test 
cases. 
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