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Abstract—In this work we present a variational for-
mulation for a multilayer perceptron neural network.
With this formulation any learning task for the neural
network is defined in terms of finding a function that
is an extremal for some functional. Thus the multi-
layer perceptron provides a direct method for solving
general variational problems.

The application of this numerical method is investi-
gated through an optimal control example, the air-
craft landing problem. Using a multilayer perceptron
neural network, the optimal control of the aircraft was
determined by locating the extremal value of a vari-
ational problem formulated using the state variables
of the aircraft.

Keywords: neural networks, multilayer perceptron, op-

timal control, aircraft landing.

1 Introduction

Many problems arising in science and engineering aim to
determine a function that is the optimal value of a spec-
ified functional. A functional is defined as a correspon-
dence that assigns a number to each function belonging
to some class. The extremal values of a functional can
be determined using a branch of mathematics known as
the calculus of variations [8]. Problems of this type are
labelled variational problems.

Optimal control problems fall into the general class of
variational problems, which are becoming increasingly
more important in the design of modern engineering sys-
tems. In this type of problem the objective is to deter-
mine the input to a system which optimises a given ob-
jective functional, whilst satisfying a set of constraints on
the input and the states of the system [10]. The control
input that yields an extremum of the objective functional
is known as the optimal control and the corresponding
variation of the state variables is called the optimal tra-
jectory.

While some simple optimal control problems can be
solved analytically, general optimal control problems can
only be solved by approximating the solution using direct
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methods [3]. The fundamental principle of this method
is to reduce a variational problem into a function optimi-
sation problem in many dimensions.

Here we present a variational formulation for the multi-
layer perceptron. In this formulation the learning task
for the neural network consists of finding a function that
is an extremal for some functional [12]. Thus the multi-
layer perceptron can be considered as a direct method for
solving general variational problems, and consequently
optimal control problems [11].

The application of this numerical method to the solution
of optimal control problems is investigated by studying
an aerospace example. Here we seek to determine the
optimal control and the corresponding optimal trajectory
of an aircraft during its final approach before landing.
The aircraft landing problem examined here is similar to
that considered in [6].

2 The aircraft landing problem

The landing of an aircraft consists of two main stages:
the glide-path phase and the flare-out phase. In the first
stage an air traffic controller guides the pilot to a posi-
tion where the aircraft will be range of the Instrument
Landing System (ILS). At this position the pilot sets the
navigational receivers to the correct ILS frequency [5].
On board the aircraft a glide slope indicator utilises this
ILS signal to give the pilot a visual indication if the air-
craft is currently above or below the desired glide path.

At approximately 30 meters above the runway the pilot
begins the second and final stage of landing, the flare-
out procedure. At this point the ILS glide slope becomes
unsuitable and the pilot must guide the aircraft along
the desired trajectory by making visual contact with the
ground [6]. It is assumed that at the beginning of this
flare-out phase the values of the altitude and the altitude
rate of the aircraft lie within a given range and that the
aircraft has been guided to the correct position by the
air traffic controller. It is also assumed that during the
flare-out the aircraft is not affected by wind gusts or other
perturbations.

In this work our attention is focussed on the final phase
of the landing process, the flare-out. The aim of this
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problem is to determine the optimal elevator deflection
angle as a function of time, which also satisfies a set of
performance requirements. The problem has been sim-
plified as it is assumed that only the longitudinal motion
of the aircraft need be considered, as the lateral motion
is primarily used to set the orientation of the aircraft in
the same direction as the runway, prior to the flare-out
phase.

The longitudinal dynamics of the aircraft are controlled
by the pitch angle via the elevator, a rotatable trailing
edge flap traditionally located on the horizontal stabiliser
[1]. The pitch angle of the aircraft is a measure of the
degree the nose of the aircraft make with the earth in
the vertical plane. By changing the elevator angle the
pitching moment around the centre of mass of the aircraft
is altered, causing a change in the pitch angle. Figure 1
depicts the elevator deflection angle and the pitch angle
of an aircraft.

Figure 1: Elevator deflection angle and pitch angle.

2.1 State equations

Using the simplified conditions stated previously and the
assumption that the glide angle is small (γ ≈ 0), the
equations of motion of the aircraft can be reduced to a
group of equations known as the short period equations
of motion [2].

These equations can be written using a set of transfer
functions that relate the dynamic properties of aircraft
and the control input to the state variables, as shown in
Equation (1). The variables of the aircraft motion used in
this equation are the pitch angle rate (θ′), the altitude (h)
and the altitude acceleration (h′′). The control variable
is the elevator deflection angle (δ).

The properties of the aircraft are defined using a set of
parameters defined as the short period gain (Ks), the
short period resonant frequency (ωs), the short period
damping factor (η), the path time constant (Ts) and con-
version factor (CF ) [6]. The notation ′ is used to denote
the time derivative.

θ′(s) =
Ks(Tss + 1)(
s2

ω2
s

+ 2ηs
ωs

+ 1
) δ(s),

h′′(s) =
CF V

Tss + 1
θ′(s),

h(s) =
1
s2

h′′(s),

h(s) =
CF KsV

s2
(

s2

ω2
s

+ 2ηs
ωs

+ 1
) δ(s). (1)

The variable V is the velocity of the aircraft, it is assumed
to be constant during the flare-out phase at a value of
78 ms−1. The aircraft parameters are also assumed to be
time invariant, the numerical values used here are Ks =
−0.95 s−1, Ts = 2.5 s, ωs = −0.95 rad s−1, η = 0.5 and
CF = 0.3048.

However, some of the state variables used in Equation
(1) are not readily available. For example the term h′′

can be difficult to obtain. For this reason an alternate
set of state variables will be used instead to describe the
dynamics of the aircraft [6]:

θ′, the pitch angle rate.
θ, the pitch angle.
h′, the altitude rate.
h, the altitude.

This set of variables can be easily obtained from gyro-
scopic or radar altimeter measurements in flight. Equa-
tion (1) is then transformed into the following set of or-
dinary differential equations in the time domain,

dθ′
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=

(
1
Ts
− 2ηωs

)
θ′(t)

+
(

2ηωs

Ts
− ω2

s −
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T 2
s

)
θ(t)

+
1
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V Ts
+
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)
h′(t)

+ ω2
sKsTsδ(t),

dθ

dt
= θ′(t),

dh′

dt
= CF

(
V

Ts
θ(t)− 1

Ts
h′(t)

)
,

dh

dt
= h′(t). (2)

It can be seen that the elevator deflection angle (δ) has
a direct effect on the pitch angle rate (θ′), which in turn
affects the pitch angle (θ), the altitude rate (h′) and the
altitude (h).
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2.2 Performance requirements

The performance requirements define the physical con-
straints and desired values of the control and the state
variables. The most important of these are highlighted
in the following section. In this example the flare-out
procedure begins at ti = 0s, and ends at the final or
touchdown time tf = 20s. The initial conditions of the
different state variables are displayed in Table 1.

h0 30 m
h′0 6 ms−1

θ0 −0.078 rad
θ′0 0 rad s−1

Table 1: Initial Conditions.

The performance of the control input is evaluated by com-
paring the trajectories of the state variables against their
desired variation. The desired altitude is given by the
following expression

hd(t) =
{

30 exp
(− t

5

)
, 0 ≤ t ≤ 15,

6− 0.3t, 15 ≤ t ≤ 20. (3)

This exponential-linear trajectory ensures a safe and
comfortable landing. The desired altitude is displayed
in Figure 2.

Figure 2: Desired altitude.

An important requirement is that the aircraft does not
land before the final touchdown time, tf . At this time
the following condition must be satisfied

hd(tf ) = 0. (4)

The desired altitude rate, or vertical velocity, of the air-
craft is the time derivative of Equation (3), and is given
as

h′d(t) =
{

6 exp
(− t

5

)
, 0 ≤ t ≤ 15,

−0.3, 15 ≤ t ≤ 20. (5)

At the time of touchdown the pitch angle of the aircraft
must lie in the range [0◦, 10◦]. This requirement is de-
fined by physical limitations. The lower limit serves to
ensure the nose wheel of a tricycle landing gear does not
touchdown prematurely. Similarly, the upper limit is set
to prevent the tail gear touching downing first. A desired
pitch angle at touchdown could be specified as

θd(tf ) = 2◦. (6)

In order to ensure safety and comfortability during the
landing phase, it is desirable to restrict the pitch angle
rate from excessive fluctuations. Thus the desired pitch
angle rate can be written as

θ′d(t) = 0, 0 ≤ t ≤ tf . (7)

As stated earlier, the elevator controls the longitudinal
motion of the aircraft. It is assumed here that any control
signal is instantaneously represented by the elevator. The
elevator deflection angle is also physically limited to a
finite range

−35◦ ≤ δ(t) ≤ +15◦, 0 ≤ t ≤ tf . (8)

Finally, it is desirable to land without expending exces-
sive amounts of control effort. Therefore the desired ele-
vator deflection angle can be defined as

δd(t) = 0, 0 ≤ t ≤ tf . (9)

3 A variational formulation for the mul-
tilayer perceptron

In this section we formulate the learning problem in the
multilayer perceptron from a variational point of view
[12]. This formulation provides a direct method to ap-
proximate the solution of any variational problem, and
consequently any optimal control problem [11]. The steps
required to solve a variational problem are shown in Fig-
ure 3, and are described in the following sections.

3.1 The multilayer perceptron function
space

A neuron model is the basic information processing unit
within a neural network; in the multilayer perceptron the
characteristic neuron model used is the perceptron [14].
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Figure 3: Activity Diagram.

A neural network is formed by connecting neurons to-
gether in a structure known as a network architecture.
The network architecture used in the multilayer percep-
tron is feed-forward [14]. Thus a multilayer perceptron
can be defined as a feed-forward network architecture
composed of perceptron neuron models.

Mathematically, a multilayer perceptron spans a param-
eterised function space V from an input X ⊆ Rn to
an output Y ⊆ Rm [12]. Elements of V are parame-
terised by the free parameters in the network, which can
be grouped together in a s-dimensional free parameter
vector α = (α1, ..., αs). The dimension of the function
space V is therefore s. The elements of the function space
spanned by a multilayer perceptron are of the form

y : Rn → Rm

x 7→ y(x;α).

A multilayer perceptron with as few as one hidden layer
of sigmoid neurons and an output layer of linear neu-
rons provides a general framework for approximating any
function from one finite dimensional space to another,
provided a sufficient number of hidden neurons are avail-
able. Therefore, multilayer perceptron networks are a
class of universal approximators [9].

3.2 The variational problem

Traditionally the learning problem for the multilayer per-
ceptron has been formulated in terms of the minimisation
of an error function of the free parameters, fitting the
neural network to some input-target data set [4]. Thus
the only possible learning tasks for the multilayer percep-
tron are data modeling type problems. In a variational
formulation for the multilayer perceptron, the concept of
error function, e(α), is changed to the concept of objec-

tive functional, F [y(x; α)] [12]. An objective functional
for the multilayer perceptron is of the form

F : V → R

y(x;α) 7→ F [y(x; α)].

The objective functional defines the task that the neural
network is required to accomplish and provides a measure
of the quality of the representation that it is required
to learn. The choice of a suitable objective functional
depends on the particular application. As shown in this
work, changing the concept of an error function to the
concept of an objective functional extends learning tasks
for the multilayer perceptron to any variational problem.

The learning problem for the multilayer perceptron can
be formulated in terms of the minimisation of an objective
functional of the function space spanned by the neural
network [12]:

Let V be the space of all functions y(x; α) spanned by a
multilayer perceptron, and let s be the dimension of V .
Find a function y∗(x; α∗) ∈ V for which the functional
F [y(x; α)], defined on V , takes on a minimum or a max-
imum value.

A variational problem for the multilayer perceptron can
be specified by a set of constraints, which are equalities
or inequalities that the solution must satisfy. Such con-
straints are expressed as functionals. A simple approach
is to unconstrain the constrained problem by adding a
penalty term to the original objective function for each
constraint in the problem.

3.3 The reduced function optimisation
problem

The objective functional, F [y(x;α)], has an objective
function associated, f(α), which is defined as a function
of the free parameters in the network [12],

f : Rs → R

α 7→ f(α).

The minimum or maximum value of the objective func-
tional is achieved with a vector of free parameters at
which the objective function takes on a minimum or max-
imum value, respectively. Therefore the learning problem
for the multilayer perceptron, formulated as a variational
problem, can be reduced to a function optimisation prob-
lem [12]:
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Let Rs be the space of all vectors α spanned by the free
parameters of a multilayer perceptron. Find a vector α∗ ∈
Rs for which the function f(α), defined on Rs, takes on
a minimum or a maximum value.

In this sense, a variational formulation for the multilayer
perceptron provides a direct method to approximate the
solution of general variational problems, in any dimension
and up to any desired degree of accuracy [12].

The training algorithm is entrusted to solve the reduced
function optimisation problem. There are several differ-
ent training algorithms available for the multilayer per-
ceptron, some of the most widely used are the conjugate
gradient [15], the quasi-Newton method [15] and the evo-
lutionary algorithm [7].

4 Problem solution

In this section a multilayer perceptron is trained to de-
termine the optimal control input for the aircraft land-
ing problem, as formulated in Section 2. The problem is
solved using the Flood library [13].

The first step in solving this problem is to choose the net-
work architecture, in order to define a function space for
the control variable. Here a multilayer perceptron with
a sigmoid hidden layer and a linear output layer is used.
This neural network is a class of universal approximator
[9]. Figure 4 is a graphical representation of the network
architecture used to solve this problem.

Figure 4: Network architecture for the aircraft landing
problem, with one input, three neurons in the hidden
layer and one output neuron.

The chosen neural network has one input, the time, and
one output neuron representing the elevator deflection
angle. An initial guess of the number of neurons in the
hidden layer was taken as three. This neural network can
be denoted as a 1 : 3 : 1 multilayer perceptron. Such a
multilayer perceptron spans a family V of parameterised
functions δ(t; α) of dimension s = 10, which is the number
of free parameters in the neural network. Elements V are
of the form

δ : R → R

t 7→ δ(t;α),

where

δ(t; α) = b
(2)
1 +

3∑

j=1

w
(2)
1j · tanh

(
b
(1)
j + w

(1)
j1 t

)
. (10)

The free parameters of the neural network are initialised
such that the elevator deflection angle δ(t; α) is 0 for all
landing time 0 ≤ t ≤ tf . The elevator deflection angle
must also be constrained to lie in the range [−35◦, +15◦];
the output of the neural network is therefore bounded as
follows

δ(t; α) =




−35◦, δ(t; α) < −35◦.
δ(t; α), −35◦ ≤ δ(t;α) ≤ +15◦.
+15◦, δ(t; α) > +15◦.

(11)

The second step is to select a suitable objective func-
tional in order to formulate the variational problem. This
functional will determine the form of the optimal control
function (δ∗(t)), and is based upon the performance re-
quirements discussed in Section 2.2.

From Equations (3) (4), (5), (6), (7) and (9) the objective
functional used in this problem is defined as

F [δ(t; α)] = αh

∫ tf

0

[h(t)− hd(t)]2dt

+ βhhd(tf )

+ αh′

∫ tf

0

[h′(t)− h′d(t)]
2dt

+ βθθd(tf )

+ αθ′

∫ tf

0

[θ′(t)− θ′d(t)]
2dt

+ αδ

∫ tf

0

[δ(t)− δd(t)]2dt. (12)

where αh, αh′, αθ′ and αδ are the altitude, altitude rate,
pitch angle rate and elevator deflection angle weight fac-
tors; the terms βh and βθ are the touchdown weight fac-
tors for the altitude and the pitch angle. Table 2 displays
the values used in this investigation. These numbers are
design variables of the problem and they were obtained
with some trial and error.

Note that evaluation of the objective functional, Equa-
tion (12), requires the time history of all the state vari-
ables in response to the time history of the control vari-
able. These are determined by numerically integrating
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αh 5.0× 101

βh 5.0× 103

αh′ 1.0× 10−4

βθ 2.0× 106

αθ′ 2.0× 106

αδ 1.0× 105

Table 2: Weight factors.

the state equations of the system using the Runge-Kutta
method with 1000 integration points [15]. The objective
functional also requires numerical integration for evalu-
ation; in this problem the trapezoid method has been
used.

The third step is to choose a suitable training algorithm
to solve the reduced function optimisation problem. Here
a quasi-Newton method with BGFS train direction and
Brent optimal train rate methods have been used [15].
The tolerance in the Brent’s method is set to 10−6. The
objective function gradient vector ∇f(α) is also evalu-
ated using numerical differentiation. Here the symmet-
rical central differences method has been used, with an
epsilon value of 10−6 [4].

The training algorithm is set to stop when the optimal
train rate in Brent’s method reaches 0. In our example
case, the quasi-Newton method required 291 epochs or it-
erations to find the minimum of the objective functional.
The evaluation of the initial guess was 4.76; after train-
ing this value fell to 1.002× 10−4. Figure 5 displays the
training history of this problem, with the objective func-
tional evaluation plotted against the number of training
epochs. Note that the Y-axis uses a logarithmic (base 10)
scale.

Figure 5: Training history.

The training results of this problem are displayed in Ta-
ble 3. Here N denotes the number of epochs, M the
number of objective function evaluations, f(α∗) the fi-

nal objective function value and ‖∇f(α∗)‖ the final ob-
jective function gradient norm. From this table it can
be seen that the final gradient norm approaches a very
small value, which indicates that the training algorithm
has converged to a minimum point.

N 291
M 16748

f(α∗) 1.002× 10−4

‖∇f(α∗)‖ 6.09× 10−2

Table 3: Training results.

The optimal control obtained by the neural network is
shown in Figure 6.

Figure 6: Optimal control (elevator deflection angle) for
the aircraft landing problem.

Figure 6 shows the elevator deflection angle during the
landing phase. It can be seen that the magnitude of con-
trol input ranges from -3◦ to 0◦ and has a smooth profile.
It can be seen that the effort required to control the air-
craft has been minimised.

Figure 7: Optimal altitude trajectory.
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The optimal trajectory for the altitude, depicted in Fig-
ure 7, matches the desired altitude profile detailed in
Equation (3). It can be seen that at the final touchdown
time, tf , the altitude of the aircraft is 0 m.

Figure 8: Optimal altitude rate trajectory.

Figure 8 shows that the altitude rate of the aircraft; it can
be seen that it follows the profile specified by Equation
(5).

Figure 9: Optimal pitch angle trajectory.

The pitch angle variation during the landing phase is dis-
played in Figure 9. The value at touchdown is approx-
imately 0.5◦/s. This value lies within the desired range
[0◦, 10◦]. However the desired touchdown value of 2◦ has
not been obtained. This is believed to be a result of the
simplified state equations used; the model does not ac-
count for effects such as induced lift at low altitudes.

Finally, Figure 10 displays the pitch angle rate. It can be
seen that throughout the landing phase the magnitude
of the pitch angle rate is relatively small, and its profile
is sufficiently smooth to ensure a comfortable and safe
landing.

Figure 10: Optimal pitch angle rate trajectory.

5 Conclusions and future work

In this work the variational formulation of the multilayer
perceptron has been used to provide a direct method for
the solution of general variational problems. This numer-
ical method has been applied to finding the optimal input
control of an aircraft landing system. The corresponding
state variables of the system have been shown to satisfy
the performance requirements.

However, this application requires some further refine-
ment. In particular, a more complete set of state equa-
tions describing the aircraft dynamics should be used.
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