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Abstract—In this short paper we show how one may
extract elastic properties of materials by probing it
with elastic waves and processing the signal that re-
turns (i.e. the scattered waves) in an appropriate way.
In particular, we present a linearized inversion scheme
to estimate the high–frequency, anisotropic compo-
nents of the elastic tensor and density (the elastic
moduli) in human tissue. For a given configuration
source and receiver transducers, we show what com-
binations of moduli can be determined. Conversely,
to estimate moduli in a specified region of the tissue,
we derive an algorithm that searches for an optimal
configuration of transducer pairs which best resolves
the moduli. The ultimate goal of this work is appli-
cation to biomedical imaging for early detection of
tumours.
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1 Introduction

A linear elastic material is characterized by its density
and Hooke’s tensor fields, henceforth referred to as elas-
tic moduli. Hooke’s tensor has rank 4 and relates stress
to strain linearly. Symmetry considerations yield 21 inde-
pendent components of the Hooke’s tensor c, so that there
are 22 moduli in general. Specialization to specific elastic
materials yields less components, e.g., isotropic materials
have 3 moduli; the Lamé parameters and density. We
lump the density and Hooke’s tensor fields together and
refer to them as elastic moduli for brevity. We are espe-
cially interested in anisotropic materials where the speed
of elastic wave propagation is direction–dependent.

We consider the elastic moduli fields c := {ci : i =
1, . . . , 22} as a superposition of known background fields
c0 and unknown perturbations δc, which vary rapidly
compared to wavelength scale. We linearize the equa-
tions of elasticity about c0. The equations of motion for
the perturbed displacement field δu satisfy the equations
of linear elasticity with a source term involving the back-
ground displacement u0 and δc. The scattering operator

∗We acknowledge the support of Science Foundation Ireland in

producing this paper. Contact Info: Department of Mathematics

& Statistics, University of Limerick, Castletroy, Co. Limerick, Ire-

land. Email: Clifford.Nolan@ul.ie., Niall.Ryan@ul.ie. Tel. +353-

61-202766.

F : δc(x) → δu(s, r, t) maps the perturbation δc to the
solution δu of the perturbed equations of motion. Here
x is a scattering location in the tissue and δu(s, r, t) is
the scattered field due to a point source located at s,
measured at receiver location r at time t.

Statement of main results. It is possible to construct
an ensemble of independent experiments involving various
mode converted waves, so that the scattering operator as-
sociated to the ensemble is invertible. This leads to an in-
version algorithm for recovery of the elastic moduli. Such
information can be used to directly infer the presence or
absence of a tumour in human tissue. Furthermore, for
a given locale in the tissue, one may optimize the choice
of ensemble so that the inversion procedure is optimally
stable there, i.e., the linear systems involved in inversion
are optimally-conditioned.

Our work is an extension of that in [2], [3]. The latter
papers use a combination backprojection and statistical
analysis to estimate the elastic moduli. In this paper,
we avoid the statistical element and instead show how to
estimate the moduli in a deterministic and stable (with
respect to noise) manner. It can also be viewed as an
extension of [1] which shows how to estimate the Lamé
parameters in isotropic elasticity.

We have ignored the complications caused by wave focus-
ing (caustics). Some of these complications can be dealt
with using techniques developed in [6]. We also remark
that the results in this paper are only valid provided that
anisotropic waves in very special directions are filtered
out; namely those travelling in the optic axis direction.
This is because the background propagating field is much
more complicated than the simpler approach taken here
(see [7], [8] for more details).

2 Forward Modeling

2.1 Equations of motion

The i–th component ui of the deformation field u of an
elastic material with density ρ and Hooke’s tensor cijkl

satisfies [5]

ρ
∂2ui

∂t2
− ( cijkluk,l), j = 0 (1)
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where (·),i is shorthand for partial differentiation; ∂xi
(·)

and the index summation convention applies. We lin-
earize about a-priori known background fields ρ0, c0

ijkl

and write

cijkl = c0
ijkl + δcijkl; ρ = ρ0 + δρ; u = u0 + δu (2)

so that the perturbed field satisfies the formal linearized
equation

ρ0 ∂2δui

∂t2
− (c0

ijklδuk,l), j = −δρ
∂2u0

i

∂t2
+ (δcijklu

0
k,l), j (3)

2.2 The scattering operator

For simplicity, let us assume the background medium is
isotropic (an assumption that can be relaxed). Suppose
we measure a particular component of a scattered field
due to a particular component of the incident field, and
that there is no density perturbation. It can be shown [3]
that the following is an approximate value for the scat-
tered field due to a perturbation δc in the Hooke’s tensor:

δu(s, r, t) =

∫
dx′ ξ(s, x′)ξ(r, x′)A(s, r, x′)

wT (s, r, x′)δc(x′) δ′′(t − τ(s, x) − τ(r, x)) (4)

with a similar formula holding when there is a density
perturbation. The formula is for a single mode prop-
agating and a single mode reflecting and ξ is a scalar
function representing just one component of a polariza-
tion vector. The function τ(s, x) is the travel time from
s to x and a similar definition for τ(r, x). The travel
time functions depend on the mode of propagation in
each case. The function A is related to geometrical op-
tics amplitudes, which describe how energy is spread over
the propagating wavefront. The function δ′′ is the second
derivative of the Dirac-delta function. We have written
the components of δc as a column vector and the weight
wT as a row vector of the same dimension. The func-
tion w ∈ RN , N ≤ 21 is a kinematical weighting on the
elastic perturbation δc ∈ RN and is called the radiation
pattern. Here, we assume an anisotropic model has N

elastic parameters that characterize it. More generally,
the scattered signal is a sum of terms (4) for the various
incident and reflected modes. However, it is possible to
isolate data described in (4) by taking appropriate pro-
jections of the actual data; these projections annihilate
unwanted polarization modes.

We are also assuming that the incident waves only scat-
ters once with a scatterer before returning to the sensor
for measurement. It is possible to incorporate multiple
scattering between unknown scatterers and known envi-
ronmental scatterers (see [11] for more details).

Let X represent a three dimensional region within the
tissue under examination. We assume that we can filter
reflections from the boundary B (locally defined by the

equation x3 = 0 say) of X . Partition the B into N dis-
tinct bounded region pairs Σk

s,r ⊂ B×B, k = 1, . . .N . We

use coordinates (s, r(s), t) ∈ Σk
s,r × (0, T ), k = 1, . . . , N

to describe N source and receiver regions. Thus, r is a
function r(s) of s and (s, r(s)) simultaneously refers to N

pairs of sources and receivers in
⋃

k Σk
s,r varying smoothly

with s. There are many other options available to us here
with regard to partitioning the data space but we chose
the one above to simplify this exposition. For each region
Σk

s,r, we cam employ a separate weighting vector wk.

Define the k–th component of the linearized scattering
operator F by formula (4) with w replaced by wk. Here
k refers to experiment k which describes a fixed Σk

s,r and a
fixed mode of scattering (i.e. specified polarization com-
ponents for the incident reflected wave). We form the
matrix WT (s, r, x′) whose k–th row is wT

k (s, r, x′).

For the next definition, we need to define the diagonal
matrix △(eiω(t−τ(s,x)−τ(r,x))) whose i-th diagonal entry is
eiω(t−τk(s,x)−τk(r(s),x)), where τk(s, x), τk(r(s), x) are the
traveltime functions for the incident and reflected mode
in experiment k. Define the ensemble scattering operator
F associated to the various experiments as

F · δc(s, t) :=

∫
dωdx′△(eiω(t−τ(s,x)−τ(r(s),x)))

WT (s, r(s), x′) δc(x′) (5)

where we have absorbed the polarization functions ξ and
amplitudes A into the the weighting matrix WT . If d is
the recorded data ensemble, then

d(s, t) = F · δc(s, t) (6)

3 Linearized Inversion

Let g(s, x) ∈ RN×N be a smooth matrix–valued function
to be determined. We form an image via backprojection:

Image(x) =

∫
dsdtdω′g(s, x)

△(e−iω′(t−τ(s,x)−τ(r,x))) d(s, r, t) (7)

which is a weighted adjoint of F applied to the data. In
this and the expression that follow, r is to be interpreted
as the function r(s).

If we substitute (5) into this for the data, after carry-
ing out a stationary phase calculation [13], we obtain an
expression

Image(x) ≈
∫

dωdsdx′ g(s, x)W (s, r, x′) δc(x′)

△(eiω(τ(s,x)+τ(r,x)−τ(s,x′)−τ(r,x′))) (8)

We use Taylor’s integral remainder theorem to write
ω(τ(s, x) + τ(r, x) − τ(s, x′) − τ(r, x′)) = (x − x′) ·
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(ωf(s, r, x′, x)), where f is remainder in Taylor’s theorem
[12]. Because of the factor (x − x′) that this introduces
into the phase, the stationary phase theorem [13] tells us
that most of the contribution to the image signal comes
from x = x′. So if δc is varying rapidly at x′ then the
same will be true for the Image function. This is the
basis of our signal processing (imaging algorithm).

If instead of using a single set of sources s to parametrize
the data ensemble, we had used N sets of source vari-
ables s (which complicates the notation), then we can
make a change variable ν = ωf(s, x′, x) in (8) for each
experiment, resulting in

Image(x) ≈
∫

dx′dξ g1(x
′, ξ)WT

1 (x′, ξ)

△(eiω′(x−x′)·ξ) δc(x′) (9)

where g1, W
T
1 are related to g, WT via a stationary phase

reduction. Provided that WT can be arranged to have full
rank, then, automatically WT

1 has full rank. Therefore,
we choose g1 as the inverse matrix of WT

1 multiplied by
(2π)−3, and we obtain

Image(x) ≈
∫

dx′ δ(x − x′)δc(x′) = δc(x) (10)

3.1 Rank of W T in an isotropic background

We recall [3] the definition of the weight (suppressing ge-
ometric optics scalar multiplicands and polarisation fac-
tors that do not effect the rank) involved in a typical row
of WT ,

w(s, r, x, η)ijkl =
1

2
(aij(s, x, η)akl(r, x, η) +

aij(r, x, η)akl(s, x, η)) (11)

where

aij(s, x, η) ≡ 1

2
(ξi(s, x, η)γj(s, x, η) +

ξj(s, x, η)γi(s, x, η)), (12)

and γ(s, x, η), ξ(s, x, η) are now described. Let γ be the
slowness vector defined by

γ(s, x) := ∇xτ(s, x) (13)

with a similar definition for γ(r, x). With this definition,
τ satisfies the Eikonal equation:

det (ρ0δik − c0
ijklγjγl) = 0. (14)

The (normalized) polarizations ξ are the corresponding
eigenvectors and so satisfy

c0
ijklγjγlξk = ρ0ξi. (15)

The associated polarization vector ξ then is either one of
the two orthonormal vectors to γ or else the unit vector

parallel to γ depending on which slowness sheet we are
considering i.e. which polarization mode is under consid-
eration; quasi-P wave, quasi-SH wave or quasi-SV wave.

The tensor w(s, r, x)ijkl exhibits precisely the same sym-
metries as the elastic tensor cijkl itself does. We will show
below that there are 21 independent components in the
radiation tensor w(·, ·, ·)ijkl for a quasi-P-P mode. Here, a
quasi-P-P mode means that ξ(s, x) is approximately par-
allel to γ(s, x) and the same is true with s replaced by r.
For quasi-P-S modes we have ξ(s, x) approximately paral-
lel to γ(s, x) and ξ(r, x, ) is approximately perpendicular
to γ(r, x) (so that there are two modes here; quasi-P-SH
and quasi-P-SV) . Furthermore, in the cases of quasi-P-
S and quasi-S-P the number of independent members of
w(s, r, x)ijkl is 20 while the number of independent mem-
bers for the quasi-S-S mode is just 15.

It is possible to give an (lengthy) algebraic proof of the
statements about the rank of WT in the last paragraph.
This would take up too much space in this short paper,
and so instead, we will present numerical evidence of this
in the next section. However, the algebraic proof is actu-
ally useful from a practical point of view because it shows
us how to choose the regions Σk

s,r so that the rank of WT

is optimally conditioned. We will present the full detail
of these calculations elsewhere.

4 Numerical Results

Figure 1 shows a plot of WT (no density perturba-
tion) corresponding to δc varying rapidly across a sur-
face whose normal has various orientations (dips), and
only quasi-P-P mode conversions are present. One can
plainly see that WT has full rank from the triangular
structure of the matrix, and non-zero entries along the
diagonal. The corresponding plot of singular values for
matrix WT is displayed in figure 2. In the figure annota-
tions, polarisation mode or index refer to an experiment
index k = 1, . . . , N ≤ 22.

Figure 3 shows WT (with density perturbation) and fig-
ure 4 shows the corresponding SVD. The caption in fig-
ure 4 refers to N × N matrices Γ and Ξ, which are the
matrices whose rows are the various slowness γk and po-
larisation ξk vectors. In figure 3 there are several modes
present in the experimental ensemble. The choice was de-
termined by attempting to minimize the condition num-
ber of WT via a Newton search over various locations
of the source-receiver sets Σk

s,r. Also, we only consid-
ered experiments with a vertical dip. From these experi-
ments, we extracted the sub-matrix WT corresponding to
a transversely isotropic medium. The results are shown
in figure 5 and 6. Figure 5 shows the SVD (with density)
and figure 6 shows the 5 rows of WT (without density)
which are clearly linearly independent. Finally, figures
6 and 7 show the corresponding modes and experiments
that went into the ensemble of 5 experiments to resolve
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the TI moduli perturbations.

From this brief suite of experiments, it is clear that we
can extract various combinations of elastic moduli from
the scattered wave signals. Moreover, this information is
of a quantitative rather than qualitative nature, which is
potentially very useful to the clinician in determine the
nature of a tumour.

5 Conclusions

We have shown how to use various elastic waves to im-
age tissue stiffness in an optimally stable manner. The
results may be at odds with the readers prior expecta-
tions of only being able to recover linear combinations of
elastic moduli. But the situation is different here, we are
only recovering the singular components of the the mod-
uli, responsible for scattering. We are not attempting to
recover the background fields. It is the latter fields that
one can only expect to recover linear combinations, using
tomography-like experiments. The background fields are
responsible for the kinematics and the perturbed fields
are responsible for the scattering, so it is not that sur-
prising that we are able to recover the elastic moduli per-
turbations.
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Figure 1: Scattering matrix for varying dips but all modes
are P-P. The rank is 21 with condition number (2–norm)
of 22.88.
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Figure 2: Singular values for P-P scattering.

0
5

10
15

20
25

0

5

10

15

20

25
−6

−4

−2

0

2

4

6

s−r polarisation mode

Scattering matrix for general elastic medium for dip vector ≡ [0 0 1]T

w
ijkl

Figure 3: Scattering matrix WT for vertical dips and
multi–modal experiments. Density is included in this en-
semble and condition number (2–norm) of 331.
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Figure 4: Singular values for modes and slownesses in
Ξ, Γ associated to a vertical dip.
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Figure 5: Singular values associated to vertical dip in a
TI medium.

Figure 6: Five experiments that resolve the elastic pa-
rameters of a TI medium. Dashed lines indicate rays
coming out of the page at a 45 degree angle. The ratio
of the shear and compressional speeds was 1 :
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Figure 7: Five experiments of previous figure used to de-
termine five TI moduli perturbations (excluding density).
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