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No Classic Boundary Conditions

Francesco A. Costabile and Annarosa Serpe *& Antonio Bruzio

Abstract—We consider the boundary value problem:

() = f(t,T(t), a<t<b, m>1
x(a) = fo
A‘T(k) = x(k) (b) - x(k)(a‘) = 61€+1’ k= 07 , M — 2

where Z(t) = (z(t),z (t), ...,z (1)), B € R,

i = 0,...,m—1, and f is continuous at least in the
interior of the domain of interest. We prove the ex-
istence and uniqueness of the solution under certain
conditions.

Keywords: Bernoulli polynomials, Green’s function,

Differential Equation.

1 Introduction

In this paper we consider the following boundary prob-
lem:

(la) 2M™(t)=f(t,Z(t)), a<t<b, m>1
(16) x(a)=fo, Az =™ () =2® (@)=
k=0,...,m—2
/ 1)
where Z(t) = (z(t),x (t),....,x™m" (1)), f is defined and

continuous at least in the domain of interest included in
[a,b] x R™; [a,b)] CR, and B; € R, i =0,....m — 1.
The equation (la) is very frequent in mathematical ap-
plications, as example for m=3,4 it is related to beam’s
analysis. The boundary conditions in (1b) aren’t classic
and we don’t find them in literature because it is easy
to give them physical interpretations; this is the moti-
vation of our investigation. The outline of the paper is
the following: in section 2 we give the preliminaries, in
section 3 we investigate the existence and uniqueness of
the solution.

2 Definition and preliminaries

If B, (x) is the Bernoulli polynomial of degree n defined
by [3]

Bn(x) =nB,_1(z) n>1 (2)
fo x)dr =0 n>1
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in a recent paper Costabile [2] proved the following
theorems.
Theorem 1. Let f € C)[a,b] we have

(k-
+Zsk< o - R[7)(2)
(3)
where
h=b—a, S(t)=Bxi(t) — Bk(0),
fo=fla), AfP = FOb) - O (a)
(v-1)
Ry ="
b — —a
L crn (e
and
B (t)=DBn(t) 0<t<1l BL{t+1)=DB;@1) (5
Theorem 2. Putting
(k-
. Zsk ( ) L (6)

the following equalities are true

Polf](@) = fa = f(a)

P[f1(b) = fy = f() 7
apr® =p, “‘)( b= P (@) = AFP = p0 3y — s0(), (7)
k=1,..,v—1

The conditions (7) in the previous equalities are called
Bernoulli interpolatory conditions analogously to Lid-
stone interpolatory conditions [1].

Theorem 3. If f € C“V[a,b] we have

- / Gl wma ®)

where
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Theorem 4. For f € C™)[a,b] we have

RN < s [ [w]a a

For the following, we need
Lemma 1. If f € C(*)[a, b] and satisfies the homogeneous
Bernoulli interpolatory conditions i.e:

fla)=0
{f<k>(b)—f<k>(a):o k=0,..,v-2 (12)

putting
M, = )| 1
Jnax, () (13)

the following inequalities hold

’f(k)(t)‘g Cos- My-(b—a)’F 0<k<v—1 (14)

where
1
Coo =g
= ——————— k=1,2,..,v—1
Cuk = Giampi2 v

Proof. From (12) the expansion (3) becomes

v!

ro=" o () B ase - midsi) o

We also have

t
Fe@) = V() +/ F) (s)ds
from which
‘Aféu—l)‘z ‘f(u—l)(b)_f(u—l)(a)‘ <M,(b—a) (17)

Using the known inequalities in [3]

I
B <—— [leN, [> <z<l1
B < ez L€V, 120 0<as<
and (11), (17) we have from (16)

hl/

101 gt 09

that is (14) for k£ = 0.
With a successive derivation of (16) and by applying (12)
we have

= BT t—a\ _hm 0D
f () (1/— )Af 1Bllk h (I/—k)'

b _
Jroos (5 )as b=12ewr-1 a9

and applying the previous inequalities we give

v—k .
’f(’“)(t) < B M, k=1,2,..,v—1

= 6(2m) k2
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that is (14). Furthermore,
Lemma 2. If f,g € C")[a,b] which satisfies (12) then

(F®=9®@) Vtelab]) = f()=g(t) ViEla,b)

Proof. The result follows by the application of (3) and

(12).

3 Existence and uniqueness

To the boundary value problem (1a)-(1b), which after
(7) is called the Bernoulli boundary value problem, we
associate the homogeneous boundary value problem

aM(t) = f(t,7(t), a<t<b  m>1
z(a) =z(b) =0 (20)
Az®) = 0 (b)) — 2 (a) = 0 E=1,..,m—2

From Theorem 3, the solution of the boundary value
problem (20) is

b
x(t) = / G(t, s)f (s,%(s))ds (21)

where G(t,s) is the Green function [4] defined by (9),
with v =m — 1.

The polynomial P,,,_1[z](t) defined by (6) with z(a) = (o,
z® () —2®)(a) = Bry1, k=0,..,m— 2, satisfies the
boundary value problem:

P [2](t) = 0
Pm—l[x] a) =0
AP’r(‘rf—lEPT(nll<b)_P7(‘f)l( ) 6k+1; k:O7>m_2

Therefore, the boundary value problem (1a)-(1b) is equiv-
alent to the following nonlinear Fredholm integral equa-
tion:

b
o) = Pucalel®) + [ Gleo)f (sa(s)ds  (21a)

Now we use a well-known tecnique to prove the exis-
tence of a solution for problem (1a)-(1b), [1], but different
proofs are also possible.

Theorem 5. Let us suppose that

(i) ki >0 0 <i<m—1 are given real numbers and
let @ be the maximum of |f (¢, zg, ..., Zm—1)| on the
compact set [a,b] x Dy, where
DO :{(.fo,...,xm,l) : |xl| < 2k7,7 Oélgm_l}a

(i) max’Pgll[x}(t)‘ <k 0< i< m-—1, where

P,,—1[z](t) is the polynomial relative to x as in (6);

(iii)(b_a)g(Q_kC: ) 0<i<m-—1.
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Then, the Bernoulli boundary value problem has a solu- where

tion in Dy. @)
Proof. The set Dy={(zo,21..., Tym—1) :|z5] < Inax, ‘mel[x](t)’—i—
B[a,b]:{x(t)ec(m_l)[a,b]:Hx(i) <2k;, 0< i< m—l} L+C

* +Co-amon (SEF) 0sism-n)
is a closed convex subset of the Banach space C"~1)][a, b]. .

. ((m—1) (m)
Now we define an operator T : C [a,b] — C'™]a, b C — max I,
as follows: a<t<b 4

=0

P la]()]

b

(Tl)(0) = Pacalelt) + [ Glto)f(s.(e)ds (22) h,g,<mzlcmyih(ba)m><l’ b o

a
1=0

It is clear, after (21a), that any fixed point of (22) isa 0 boundary value problem (1a) and (1b) has a
solution of the boundary value problem (1a) and (1b). solutivon in D,

Let z(t) € Bla,b], then from (22), lemma 1, hypothesis p  r 1 y(t) = x(t) — Pm-1[z](t), so that (la) and

(1), (i), (iii) we find: (1b) is the same as

(a) TB[a,b] C Bla, b]; ym(t) = f(t,7(1)
| y(a) = y(b) = 0 (25)
(b) the sets {T'[2]®)(t) : 2(t) € Bla,b]}, 0<i<m—1 Ayak):0 1<k<m—2
are uniformly bounded and equicontinuous in [a, b];
. ) where
(c) TB.[a,b] is compact from the Ascoli - Arzela theo- 5(t) = y(t) + P [2] (1),

rem;

! ! m— (m—1)
y )+ P,_q|x t,....,y( 1)t+Pm7 x|(t).
(d) from the Schauder fixed point theorem a fixed point 2 1ll(®) () vl
of T exists in Dp. Define MJa, b] as the space of m times continuously dif-
ferentiable functions satisfying the boundary conditions
of (25). If we introduce in M|a,b] the norm:

Corollary 1. Suppose that the function
ft, o, 21..., m—1) on [a,b] x R™ satisfies the following _ ‘ (m) ‘
condition ly(®)llc = anglta%(b v
m—1 o then it becomes a Banach space. As in theorem 5, it
|f(t,zo, 21.s @m—1)| < L+ Z Li |ai|™ suffices to show that the operator T : Mla,b] — M]a, b]
=0 defined by
where L, L; 0 < i< m — 1 are non negative constants, b
and 0 < a; < 1. Tl(t) = / G(t, 5)f(5,7(s))ds
Then the boundary value problem (la) and (1b) has a a
solution. . maps the set
Lemma 3. For the Green function defined by (9), for
v =m — 1 the following inequalities hold: L+C
5= {u0 € Mal syl <no (555 )|
G(t,s)| <g (23)
) into itself. In order to demonstrate this, it is sufficient to
with 2 ) utilise the conditions (24a), lemma 1 and lemma 3.
g= i(b —a)™ (1 + M) i The thesis follows from the application of the Schauder
v 3(2r —1) fized point theorem to the operator T.
Proof. Theorem 7 Suppose that (¢, o, Z1, ..., Tm—1),

The proof follows from the known inequalities of (t:%0:¥1,.Ym—1) € [a,b] X Ds
Bernoulli polynomials and from simple calculations.

Theorem 6. Suppose th?’ft the funct%on (i) the function f(t,xo,x1...,m—1) satisfies the follow-
flt,x0, 1., Tm—1) on [a,b] x Dy satisfies the following ing Lipschitz condition
condition |f(t7x07x1---axm—1)_f(tayan1~-~7ym—1)| <
m—1
m—1 Yoico Lilwi —yil
| (t 20, 210 1) S L+ Y Li | (24a)

Pt (i) 61 = X7 CriLi(b— )" < 1
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(iif) L = max,<i<p | f(¢,0,...,0)]

Then the boundary value problem (1la) and (1) has a
unique solution in D;.

Proof. The existence of a solution follows from theo-
rem (6). Let, now, x1(t), z2(t) two solutions on D; and
y1(t),y2(t) defined as theorem 6, then after calculation,
we have

70 470 < s 70 470

and because ¢; < 1 follows ygm) (t) = yém) (t) Vt€ [a,bl;
thus from lemma 2 we have y;(t) = ya(t).
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