
 

 

 

  
Abstract— This paper proposes a population based adaptive 

tuning for dynamic position control of robot manipulators. The 

dynamic behavior of a robot manipulator is highly nonlinear, and 

the positional control is conventionally achieved by inverse 

dynamics feedforward and PID feedback controllers. The 

proposed method tunes the PID controller parameters using 

cross-entropy optimization to minimize the error in tracking a 

repeated desired trajectory in real-time. The stability of the system 

is granted by switching the inappropriate settings to a stable 

default using a real-time cost evaluation function. 

 The proposed tuning method is tested on a two-joint planar 

manipulator, and on a planar inverted pendulum. The test results 

indicated that the proposed method improves the settling time and 

reduces the position error over the repeated paths. 

 
Index Terms— Cross entropy optimization, dynamic control, 

PID tuning, population based optimization.  

I. INTRODUCTION 

Robot manipulators are mainly positioning devices with 

multiple degrees-of-freedom (DoF). Dynamic position control 

of robot manipulators is a well known problem in control 

engineering due to the multi-input-multi-output nonlinear 

behaviour of their equation of motion. There are a large number 

of excellent survey books and articles on the control of the 

manipulators [1]-[4]. In a typical position control problem, the 

plant is characterized by the dynamic equation of motion of the 

manipulator, which describes the motion of the joint 

displacements corresponding to the applied joint torques. The 

controller is designed to generate appropriate joint torques to 

track a desired task space trajectory, or equivalently to track the 

corresponding desired joint space trajectory. The conversion of 

trajectories from the task space to the joint space requires 

kinematic modeling of the robot manipulator. The equation of 

motion is obtained by one of the methods such as Newton-Euler, 

Lagrangian, and their backward and forward recursive 

applications.  

 The decentralized PD and PID control is the standard 

method for position control of the manipulator joint 

displacement. PD control can achieve global asymptotic 

stability in tracking a trajectory in the absence of gravity. The 

integral action of the PID control further compansates any 
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tracking offset due to gravitational forces [4]. Several methods 

were proposed in literature to obtain suitable propotional, 

integral and derivative controller gain settings: Kp, Ki and Kd.  

In absence of friction, the gains may be selected using a 

Lyapunov function candidate and LaSalle’s Invariance 

Principle [4]. Adaptive PID settings were also proposed for 

obtaining proper local gain settings based on plant identification 

and pole placement techniques [5].  

 Cross-Entropy (CE) Method is an information theoretic 

method of inference about an unknown probability density from 

a prior estimate of the density and new expected values [7]-[8]. 

CE Method was further developed as a combinatorial 

optimization method to obtain the optimal solutions for 

rare-event problems and optimization of the scalar functions 

[8]-[10]. Similar to Monte-Carlo and simulated  annealing 

methods, it is one of the optimization methods with the proven 

convergence to the optimal parameters. 

 This paper is organized as follows: Section 2 presents the 

kinematics, dynamic modeling and control of a robot 

manipulator. Section 3 introduces the cross-entropy method for 

optimization of the controller gains. Section 4 explains the 

objective and algorithm of the optimization, Section 5 and 6 

contains the experimental details and the results of the proposed 

parameter switching on a two-link planar manipulator, and on 

an inverted pendulum system. Section 7 concludes the paper. 

II. KINEMATICS DYNAMIC AND CONTROL 

The forward kinematics relation maps the joint space position 

q to the end-effector pose  

 p = f0(q)   (1) 

using homogenous link-frame coordinate transformation 

matrices. Denavit-Hartenberg (D-H) convention provides the 

D-H transformation matrix Ai that maps a coordinate at i-th 

frame to the (i−1)-st frame [11].  

 The Lagrangian method is a systematic method to obtain 

the equation of motion of a multi-degree-of-freedom open chain 

mechanism. The Lagrangian function L is defined by  

L = K − P,  where K is the kinetic energy, and P is the potential 

energy of the analyzed system. The partial derivatives of L 

provide a simple means of calculation for the joint force and 

torques. The derivatives of the D-H transformation matrices 
 
Ai 

can be  expressed by 
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This property provides a convenient form for the derivatives of 

the link transformation matrices 0Ti with respect to the j-th 

generalized-joint displacement variable qj . 
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Linear or revolute, the kinetic energy of a mass dmi located at 

the position irdm  and moving with the i-th coordinate frame is 

 d ki = 
1
2
 d mi 0vi

T  0vi ,  (4) 

where 0vi is the velocity of mass mi. 

The total kinetic energy of the link requires the integration of 

d ki over the complete mass of the i-th link.  

 ki = ∫mi dki = 1
2
Trace[(Σi

p=1 Σ
i
 r=1Uip Jpi  Uir

T q̇ r q̇p )], (5) 
where Jpi=∫mi 

irdm

 irdm
Tdmi  is the pseudo-inertia matrix of the 

i-th link. The potential energy of i-th link due to the 

gravitational field is expressed using the mass mi, the center of 

mass icm and the gravitational acceleration vector ga  

 pi = − mi ga
T 

 0Ti  
icm .  (6) 

Finally, the Lagrangian of the complete system is obtained 

 L= K−P = 1
2
 Σn

i=1 Σ
i
k=1 Σ

i
r=1 Trace(Uik Jpi Uir

T
 ) q̇r q̇p  

  − Σn
 i=1 mi ga

T  0Ti icm  (7) 
and its derivatives gives the generalized joint-force at the 

joint-j.  

τj = 
dt

d














∂
∂

jq

L

&
− 

jq

L

∂
∂

 ,  (8) 
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Further, (8) and (9) can be organized to Uicker-Kahn form. 

 τi =Σ
n
 i=j Dij q̇̇ j +Σ

n
 i=j Σ

n
 k=1 Cijk q ˙j q ˙k +gi.  (10) 

where Dij =Σ
n

 i=j Trace(Uik Jpi  Uij
T) ; Cijk =Σ

n
 r=1Trace(Uikr Jpi  

Uij
T), and gj= − Σ

n
 i=j mi ga

T Uij 
icm , are the inertial, coriolis, 

and gravitational terms of the equation of motion. The equation 

is also written in a matrix form [4] 

τ  = D(q) q̇̇  + C(q, q̇  ) q̇  + g(q)  . 
 

A constant field dc-motor converts the total control action  by 

an almost linear relation of rotor current irotor to the joint torque 

τ =  ki × irotor . Accordingly, without loss of generality, the 

torque coefficient ki is assumed ki=1 so that the joint torques are 

determined directly by the control action.  

A fully actuated rigid manipulator has an independent control 

input for each degree-of-freedom, which simplifies its 

decentralized control. Robots with flexible links or joints have 

control problems and which may require singular perturbation 

and two-time-scale control techniques [4], [5]. 

The equation of motion is highly nonlinear to apply 

independent PID control directly to each joint motion. The 

usual method is to apply the expected joint torques for the 

desired trajectory by a feedforward control, and correct any 

deviation from the trajectory by the feedback loop of the PID 

control. The feedforward control action τc is obtained by the 

sum of the anticipated gravitational and inertial terms, so that all 

coriolis forces remains as a disturbance to the feedback loop 

τc =Dc(qd) q̇̇ d +gc(qd) , 

where Dc and gc are the inertial coefficients and gravitational 

torques of the anticipated equation of motion; qd is the desired 

trajectory in joint space. The discrepancy of the anticipated 

equation of motion from the actual dynamics of the manipulator 

is expected to contribute to the disturbance torques, and thus a 

feedback control loop is inevitable for the stability of the control 

action. 

 
Fig. 1. Position Control System. 

 

The difference of the desired position qd(t) and the measured 

position qf (t) is called the displacement error e(t) of the control 

system. A proportional gain provides main correction of the 

error, an integral gain provides correction of the offset, and a 

derivative gain provides faster response of the controlled 

system.  

τf =  KP e(t)  +KI ∫
t
t0
 e(t) dt +KD ė(t) .  (13)  

Assuming that the anticipated feedforward control law can be 

predicted by the mechanical properties of the manipulator, the 

PID parameters remain to be determined for the optimum 

tracking of the specified joint space trajectory. The following 

section contains the cross entropy method, which is employed to 

find the optimum PID gains. 

III. CROSS ENTROPY METHOD 

In the optimization of the PID gains, The closed loop control 

system is considered as a stochastic system with the controller 

parameters. Cross Entropy method is a population based 

optimization algorithm that utilize the scores of the trial runs 

optimal in the information rhetoric meaning.  

Let X be the set of real valued states, and let the scores S be a 

real function on X. CE-method targets to find the minimum of S 

over X, and the corresponding states x* satisfying the minimum  

 γ* = S(x*) = minx∈X S(x),   (14) 

by employing importance sampling and minimizing the cross 

entropy between the samples of a family of succeeding 

probability mass function f(-, vk).  A naive random search can 

find an expected value for x* and determine γ* with probability 

1, if some of the scores S(x) for the random states x can satisfy 

the minimum. However, methods like Crude Monte-Carlo 

requires considerable computational effort because it uses 

homogeneously distributed random states in searching x*. CE 

method provides a methodology for creating a sequence of 

vectors x0, x1 ... and levels γ0, γ1, ... such that γ0, γ1, ... 

converges to γ* and x0, x1 , ... converges to x*.  

Equation  
of Motion 

Shaft  Encoder 
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 Define a collection of functions { H( - ; γ ) } on Χ, via  

H( x ; γ ) = I{S(x(i) ) >γ  } ={1   if  S(x)   ≤ γ 
0   if  S(x)   > γ  . (15) 

for each x ∈ X, and threshold γ ∈ R. Let f(-; v) be a family of 

probability mass function (pmf) on X, parameterized by a real 

valued vector v ∈ R. Consider the probability measure under 

which the state x satisfies the threshold γ 
lv (γ)  = Pv ( S(X) ≥ γ )  

 = Σx H( x; γ ) f(-; v) = Ev H( X; γ ) , (16) 
where Ev denotes the corresponding expectation operator. It 

converts the optimization problem to an associated stochastic 

rare event problem. Using the Importance Sampling (IS) 

simulation, the unbiased estimator of  l  with the random sets of 

states x(1), ...  taken from different independent pmf f(x, v) and 

g(x)  is 

 l
^
 =   1

N
 ΣN 

i=1  I{S(x(i) ) >γ  } W (x(i))  , (17) 

where W(x) = f(x, v)/g(x) is the likelihood ratio. Searching the 

optimal importance sampling density g*(x) is problematic, since 

determination of g*(x) requires l  to be known. Instead, the 

optimum tilting parameter v* of a pmf  f(x, v) reduces the 

problem to scalar case. 

The tilting parameter v can be estimated by minimizing 

Kullback-Leibler “distance” (also called cross entropy) between 

the two densities f(x) and g(x)  

CE(f, g)= ∫ f(x) ln f(x) g(x) dx .  (17) 

After reducing the problem to tilt parameter v, the 

cross-entropy between f (x, v) and the optimal distribution f(x, 

v*) is described by 

CE(v, v*) := { } { }




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where c = { }∫ ≥ dxxfI XS )()( γ . The optimal solution v* is 

obtained by solving v*  from   min
v
  CEN(v) , where  

CEN(v) =Ev1=
 1
N
 ΣN 

i=1  I{S(x(i) ) > γ  } W (x(i), v, v*) , (19) 

For example, if all γ is equal to γ*, in that case lv (γ)=f(x*; γ), 

which typically would be a very small number. lv (γ*) is 

estimated by Importance Sampling with vk=v  

v* = argmax 
v ¯

ΣN
i=1  Ev H(X ; γ) ln f (X ; v̄ ) , (20) 

and using X(i), which are generated from pmf f (X ; v̄ ) by 

 argmax 
v ¯

Σ
N
 i=1  H(X(i) ; γ) ln f (X(i) ; v̄ ) . (21) 

However, the estimator of v* is only valid when H(X(i) ; γ) =1 

for enough samples. 

The CE-algorithm consist of the two phases: 1) Generate 

random samples using f(-;vk), and calculate the estimate of the 

objective function; 2)  Update f(-;vk) on the basis of the data 

collected in the first phase via the CE method. The main CE 

Algorithm is  

1) Initialize k=0, and choose initial parameter vector v0=v. 

2) Generate a sample of states x(1), ..., x(M) according to the 

pmf  f(-;vk) . 

3)  Calculate the scores S( x(i) ) for all i, and order them from 

the biggest to the smallest,  

   s1, ≥ ... ≥ sN .  

Define γk = s[ρN] , where [ρN] is the integer part of ρN,  so that 

γk > γ, set γk = γ, this yields a reliable estimate by ensuring the 

target event is temporarily made less rare for the next step if the 

target is not reached by at least a fraction of the samples. 

4) For j=1, ..., 5, let  

ΣM
i=1 I{S(x(i) ) >γk } W (x(i) ; v , vk) x(i)

j
 

vk+1,j= 
ΣM

i=1 I{S(x(i) ) >γk } W (x(i) ; v , vk) 
.  (22) 

5) Increment k and repeat steps 2, to 5, until the parameter 

vector has converged. Let v* denote the final parameter vector. 

6) Generate a sample x(1), ..., x(N) according to the pmf   

f(-; vk) and estimate l  via the IS estimate 

 l^ =   1
N
 ΣN 

i=1 H (x(i)) W (x(i) ; v , v*) .  (23) 

Step (6) of the CE algorithm is not necessary in optimization 

of the scalar cost functions, since the goal is to minimize the cost 

rather than calculation of the probability of a rare event. 

IV. OPTIMIZATION CRITERIA AND  TEST METHOD 

The optimization of motion control parameters of a 

manipulator using reinforcement, genetic, or other population 

methods comes across important problems in testing the 

generated parameter sets. These methods are mostly applied on 

simulations, because the unrestricted population may contain 

unstable controller settings, which may cause misoperation, and 

even damage of the robot system. Lin solved the problem by 

testing stability properties of the parameters before applying 

them to the dynamic control system [12]. His method is based 

on restricting the search space to a narrow region that 

guarantees Liapunov stability of the system.  

This paper proposes a simpler, and a more flexible method 

for the application of population based optimization methods. 

The proposed method assumes that, starting with a stable 

control parameter set, the system stability is guaranteed along 

the trajectory for a tolerable deviation from the path. The 

population based algorithm generates a list of controller 

parameter sets. The evaluation module switches the control 

parameters of the PID controllers, and calculates the cost 

function of the parameter set along a test period. If the cost 

function does not exceed the specified critical level along the 

complete test period, a cost score is calculated from the cost 

criteria, which may include any absolute, derivative, integral 

and quadratic terms of tracking error. Whenever the cost 

function exceeds a prespecified critical value the control 

parameters of the PID controllers are switched back to the stable 

control parameter set, which reduces the tracking errors, and 

prepares the system for the next test. In this case, a high cost 

score is returned for the tested unsuccessful parameter set. The 

following algorithm is a demonstration of the proposed method 

on CE optimization algorithm. 
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Algorithm: 

  1)  At initialization, specify a stable controller parameter set 

ws, a real-time cost function J(t, p(t), pd(.) ), a cost threshold J*, 

and a cost score function S( w, pd(.)). Initialize k=0, and j=1, 

and choose initial vk = ws. Specify initial γk  and 0<ρ<1, and  so 

that “the ratio of stable parameter vectors to all parameter 

vectors” is higher than ρ. Τhis ensures reliable estimates of the 

target. Select the coefficients 0 < α ≤ 1 and 0 < β ≤  1   to update 

vk+1  and γk+1  smoothly. 

  2)  Generate a population of states w(1), ..., w(M) according to 

the pmf  f(γk;vk) .  

  3) For each w(i), at the beginning of a trajectory period pd(.) 

switch the controller settings to w(i) , and during the period, 

evaluate J(t, p, pd). Whenever J(t) exceeds J* switch the 

controller settings to ws , so that system stays stable, and the 

trajectory deviation remains within tolerable limits.  At the 

end of the trajectory period, calculate the cost score of the 

sample, s(i)= S(w(i), pd).  

  4) Order the scores from the biggest to the smallest, i.e.,  

  s1, ≥ ... ≥ sN .  

Use γk = s[ρN] , where [ρN] is the integer part of ρN, to select the 

elite subset of population. Estimate  wk+1 , and γk+1 from the 

mean and standard deviation of the parameters in the elite 

subset. Update   

wk+1 =  α wk+1 + (1–α)wk,        
βm = β - β (1−  1

 k 
) qs

 ,  and 

γk+1 =  βm  γk+1,j + (1− β m) γk .  
If vk+1 converges to vk , increment j=j+1; else reset  j=0. 

  5) Repeat the steps (2) – (4) until j=5, (i.e., the last 5 

iterations converge to the target w*.) 

The proposed method provides a higher degree of flexibility 

in specifying the cost function compared to many other 

controller parameter optimization techniques which are based 

on plant identification or state estimation techniques. For 

example, in the following simple demonstration, the cartesian 

absolute path deviation ( e(t)= | p(t)−pd(.)| )  is used instead of 

using the conventional trajectory tracking error  (e(t)= 

q(t)−qd(t) ) in joint space.   

V. SIMPLE 2-LINK (2R) DEMONSTRATION 

Consider the two link manipulator with two revolute joints 

shown in Figure 1. The length of the links L1 and L2 are 

respectively b1, and b2. The masses m1 and m2 are 

homogenously distributed along the links L1 and L2. Coordinate 

frames 0T, 1T and 2T are assigned for the base, L1, and L2 by 

applying D-H convention as shown in Fig-1. The symbolic 

equation of motion for this planar manipulator is derived in 

symbolic toolbox of MATLAB using Lagrangian formulation 

τ1 = (1
3 
m1b1

2 + 1
3
m2b1

2 +m2 b1 b2 C2 +m2b1
2) q

..
1  

  +( 1
3 
m1b1

2−m1b1b2− 12 
m1b1

2 C2+m1b2
2 +m1b1b2 C2) q

..
2 

 − m2b1b2 S2 q
.
1q

.
2 −  12 

m2b1b2 S2 q
.
2 
2  

  + 1
2 
g (b1m1C1 + b2m2C12 +2 b1m2C1) , (24) 

 

τ2 = +(1
3
m1b1

2−m1b1b2 −  12 
m1b1

2C2+m1b2
2+m1b1b2C2)q

..
1 

 + 1
3 
m2b2

2 q
..
2 + 1

2 
m2 b1b2 S2 q

.
1 
2 + 1

2 
g m2 b2C12 ,  (25) 

 

where Ci, and Si, denote cos(qi) and sin(qi);  Cij, and Sij, denote  

cos(qi + qj) and sin(qi + qj).   

  
Fig. 2. Parameters of the simulated manipulator with 2-revolute joints. 

 

In the simulation, the equation of motion is integrated for m1 = 

5 kg, m2 = 3 kg, b1 = 0.5 m and b2 = 0.4 m, reducing the 

simulation model to 

τ s,1 = (199

 150 
+ 3

5 
C2) q

..
1 + (13

60 
+ 3

8 
C2) q

..
2  

  − 3
5 
S2 

q
.
1q

.
2−  310 

S2 q
.
2 
2 + 1

2 
g ( 11

2 
C1 

+
 
 6
5
 C12) 

τ s,2 = (13

60 
+ 3

8 
C2) q

..
1 +  _4

25
 q
..
2 +  3

10 
S2 q

.
2 
2 + 3

5 
g C12. (26) 

 

All joint and actuator friction forces are assumed to be zero to 

prevent their stabilizing effect on the closed loop stability of the 

system. The feedforward control force τc is calculated only from 

the inertial and gravitational terms of a similar model (τc = 

Dc(qd) q̇̇ d +gc(qd) )  but with a higher load mass m2=3.5kg.  
 

 τ c,1 (q) = (887

 600 
+  7

10
C2) q

..
1+(13

60 
+ 3

8 
C2) q

..
2d +

1

2 
g (6C1+ 

7

5
C12) 

 

 τ c,2 (q) = (13

60 
+ 3

8 
C2) q

..
1 +  7

10 
g C12 . (27) 

 

The test path is selected on a line segment in cartesian 

workspace starting from the point (0x, 0y) = (0.2, 0) to the point 

(0.7, 0.5) through the via-point (0.4, 0.2).  The test trajectory is 

calculated for ∆t = 1 ms intervals using parabolic blend with 

linear segments trajectory generation method with via points 

[11] under the constraints: maximum linear velocity= 1m/s, and 

linear acceleration 1 m/s2.  The points of the desired trajectory 

are shown in Fig. 2 for every 50 ms periods. 

Stable control parameters were initialized to be ws=[K1P, K1I, 

K1D  K2P, K2I, K2D ] = [5000, 50, 100, 5000, 50, 100]; and cost 

function was J(t, p(t), pd(t))= ||p(t), pd(t)|| which is the cartesian 

distance of end-point position p(t) to the desired trajectory pd(t); 

the cost threshold is J*= 0.002 m; the cost score function was  

S( w, pd(.))=maxt J(t)  over one trajectory period; the standard 

deviation of the gaussian pdf  was γk = 0.5 ws ;  population size 

was N= 60; elite population ratio was ρ=0.05; smooth update 

coefficients were α = 0.9 ; β = 0.9 ; and qs=5. The convergence 

plot of cartesian tracking displacement error is shown in Fig. 5. 

The CE-optimization provided almost 50% reduction of 

cartesian displacement error. The oscillatory action of actuator 

torques may be prevented by assigning an additional cost on the 

derivative of the controller output. 

b1 

b2 

0x 

0y 

1x 

1y 

 q1 

2x 
2y 

mass m1 is homogenously 
distributed along the link L1. 

mass m2 is homogenously 
distributed along the link L2. 

End-point location,  p 

 

 q2 
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  (a) (b) (c) 

Fig. 3. Plots of the desired trajectory 
(a) x vs. y (in meters), (b) q1 vs. q2 (in radians),  
(c) the movement of the links in x-y plane. 

   
Fig. 4. Convergence plot of the best-score for two-link manipulator. 

VI. CONTROL OF AN INVERTED PENDULUM 

The inverted pendulum is a well analyzed classical control 

problem [12], [13]. The objective is to track a desired cart 

trajectory with a small deviation ex by applying an external 

force f on the cart along x-axis while keeping the pendulum 

stable in vertical position. The mechanical parameters of the 

system are introduced in Fig.6. 

The equation of motion of the system is expressed by 

     [ mc+mp     

 

mpb Cq

 mp b Cq   J+mpb2] [ x&&

q&& ]+[ Cc   −mp b q& Sq

0          Cp         
] [ x&

q& ]+[      0
 mp b g Sq 

]= [ f
 
0 

],    (28)
 

where Cq and Sq are cos(q) and sin(q), g is the acceleration 

due to gravity, mc is the mass of cart, mp is the mass of the pole, 

b is the half length of the pole, Cc is the friction coefficient of 

cart, Cp is the friction of the pole,  J  is the mass moment of 

inertial about the pole, and f  is the force applied to the cart [12]. 

Two PID controllers were cascaded to reduce the tracking 

errors ex = x – xd, and eq = q − qd, asymptotically to zero as 

shown in Fig 7. Oscillatory behavior was expected since no 

predictive or inverse dynamic feedforward action employed.  In 

the tests, the desired cart trajectory was specified by a square 

function switching between –0.01 and 0.01m with a period 25s. 

Both the cart mass mc, and pole mass mp  were selected 1 kg., 

and the half-length of the pole b was taken 2m.  

 

 
Fig. 6. Inverted Pendulum System. 

 
Fig. 5 a. Tracking performance of manipulator with  

initial stable control parameter set ws. 
 

`  
Fig. 5 b. An unstable parameter set causes excessive cartesian error  

at t=0.42, and control is switched back to ws. 
 

 
Fig. 5 c. The best parameter set reduced the cartesian error to 50%,  

but bounded oscillatory action of torques were observed  
because of the high proportional gain. 

 
Fig. 7. Block diagram of inverted pendulum system  

for parameter optimization  
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Fig. 8.  In testing an unstable controller parameter set,  

parameters were switched to ws  at t =11s. 
 

 
[a] tracking with CE- optimized w* ;  [b] tracking with initial ws . 

Fig 9. Tracking before and after parameter adaptation on an inverted 
pendulum control. 

 

The pole inertia Jp was taken 16/3. The friction coefficients 

on the cart Cc, and on the pole Cp were taken 0.01, and the 

gravitational acceleration was assumed 9.8 m/s2. Equation of 

motion was integrated over ∆ t=5ms time steps  using 

trapezoidal method. Initially, the inverted pendulum was 

stabilized by the control parameter set ws =[KxP,  KxI,  KxD, KqP,  

KqI,  KqD] = [0.13 0.01 0.01 500  0.01 100 ]. The cost function 

was specified using the quadratic displacement errors ex
2, eq

2, 

and their integrals: 

  S(w(i), pd, t) =20 ex
2 + 30  ∫ex

2dt + 50 eq
2 + 100 ∫eq

2 dt.   (29) 

For each w(i), the parameter set was switched at the beginning of 

the desired trajectory cycle, for 50s. The value of S(w(i), pd, t) at 

the end of the trajectory cycle was used for the score s(i). 

Control parameters were switched back to the stable parameter 

set ws at the threshold of S(w(i), pd) > 0.3. For the CE method, 

the initial standard deviation of the gaussian pdf was selected  

γk = 0.5 ws; population size was N = 60; elite population ratio 

was ρ = 0.05; smooth update coefficients were selected to be 

α =  0.9,  β = 0.9 , and qs = 5.    

The plot of x and q for the initial stable parameter set, and for 

the cost optimized parameter set is shown in Fig. 5, and a typical 

control parameter switching due to unstable character of the 

tested parameter set w(i) is plotted in Fig. 8. The initial and final 

performance of the cart and pole system is shown in Fig. 9. 

VII. CONCLUSION 

This study proposes a real time evolutionary search method that 

provides stability by switching the unstable control parameters 

with a prespecified stable parameter set whenever a tracking 

error based cost function exceeds a threshold. The proposed 

method has been tested successfully on two cases, on an open 

chain manipulator dynamic control, and on the control of an 

inverted pendulum. The second problem is relatively difficult 

since without a feedforward or predictive control the system is 

stable only in a very narrow band of PID parameter settings. 

During the tests none of these two systems has been fallen 

into non controllable states. Even though some of the oscillatory 

controller settings collected better scores than similar but less 

oscillatory settings, the mean of the elites always remained 

preferably stable. In both cases, a considerable reduction of the 

specified cost function reaching up to 50% is achieved by 

cross-entropy optimization method during the progress of its 

repetitive operation.   
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