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Abstract—Positive stable laws have become a stan-

dard tool in modelling heavy tailed data in such di-

verse areas as finance, engineering and survival anal-

ysis. Due to the non–existence of closed–form expres-

sion for the corresponding densities, standard proce-

dures for estimation of the parameters of positive sta-

ble distributions appear to be computationally expen-

sive. In this note we show that the first two moments

of negative order provide a straightforward estimation

procedure, in which the solution of the resulting equa-

tions exists, and leads to unique moment estimates for

the parameters involved. Simulations and application

of this method on real data are also included. Key-

words: stable distribution, moment estimation, heavy

tails, skewness

1 Introduction

Stable distributions arise as the only possible limit laws
for normalized sums of independent and identically dis-
tributed random variables. Alternatively, a random vari-
able X is said to have a stable distribution if, for any
a, b > 0, there exists a positive number c and a real num-
ber d, such that

aX1 + bX2 ∼ cX + d, (1)

where X1 and X2 are independent copies of X and where
∼ denotes equality in law. If X follows a stable distribu-
tion then, there exists an α ∈ (0, 2] such that the number
c in (1) satisfies, cα = aα+bα. The number α is called the
index of stability or characteristic exponent. For α = 2,
the normal distribution results, which is the only member
of the stable class having a finite variance.

Typically, the support of stable distributions is the en-
tire real line. There exists however a subclass of stricly
positive stable (SPS) laws. This subclass results by re-
stricting the value of the characteristic exponent to the
interval (0, 1), and by setting the skewness parameter
equal to its upper bound, +1 (or −1 depending upon
the parametrization). Hence SPS laws are parameterized
by (α, c), where α ∈ (0, 1) (resp. c > 0) denotes shape
(resp. scale). Members of the SPS class will be denoted
by PSα(c). SPS laws are important in their own right
as building blocks of all stable distributions with index
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α ∈ (0, 1). In particular, each stable random variable
with α ∈ (0, 1) can be written as a linear combination of
two independent variables both following the same SPS
law. Moreover, since as with all sub–Gaussian stable laws
there is a considerable amount of mass in the tails of the
distribution, SPS laws may be good models for positive
heavy–tailed phenomena. See for example, [3], [5] and
[4]. In [3] for instance it is shown that in exchange–
rate markets, data on the so–called intrinsic time pro-
cess, T (t) = {Numbers of transactions up to time t}, are
satisfactorily fitted to a SPS distribution.

In this note, we first compute the theoretical moments
of negative order via an entirely elementary argument
involving the Laplace transform of the SPS law. Subse-
quently, the first two negative–integer moments are used
to construct simple moment estimators of (α, c). It will
be seen that the calculation of these highly intuitive esti-
mates involves minimal computational effort, which leads
to a unique solution. An illustration with simulated data
is followed by application of these estimates to real data
from the stock market.

2 Moment estimation for SPS laws

A most convenient definition of SPS laws is via the
Laplace transform L(t) = E[exp (−tX)]. Specifically if
X ∼ PSα(c), it follows that

L(t) = exp (−cαtα), t > 0. (2)

With the aid of the Laplace transform we can prove the
following lemma:
Lemma 2.1 Let E denote a unit exponential random
variable, and X ∼ PSα(c) be an independent SPS ran-
dom variable with density f(·). Then,

W =
E

X
,

follows a Weibull distribution with shape parameter equal
to α, and scale equal to c−1.
Proof. Let FW (·) denote the distribution function of
W . Then by conditioning on X we have

FW (w) = P(W ≤ w) =
∫ ∞

0

P(W ≤ w|x)f(x)dx

=
∫ ∞

0

P(E ≤ wx)f(x)dx =
∫ ∞

0

(1 − e−wx)f(x)dx. (3)
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The density fW (·) of W results by differentiating with
respect to w > 0 in the last integral in (3). Then,

fW (w) =
∫ ∞

0

xe−wxf(x)dx.

Hence fW (w) = E(Xe−wX), which is equal to −L′(w),
with L(·) given by (2). Consequently

fW (w) = αcαwα−1 exp (−cαwα),

and the proof of the lemma is complete.

From Lemma 2.1, it follows that if X ∼ PSα(c) then,

E
(

1
X

)
=

Γ(1 + α−1)
c

, (4)

E
(

1
X2

)
=

Γ(1 + 2α−1)
2c2

, (5)

where Γ(·) denotes the Gamma function. The moment
equations result by replacing in (4), E(X−1) by

x
(1)
n =

1
n

n∑
j=1

1
xj

,

and in (5), E(X−2) by

x
(2)
n =

1
n

n∑
j=1

1
x2

j

,

where x1, x2, ..., xn, denote specific independent realiza-
tions of X. Then the moment estimator (α̂n, ĉn), of (α, c),
satisfies the system of equations,

ĉn =
Γ(α̂−1

n )

α̂nx
(1)
n

, Fn(α̂n) = 0, (6)

where

Fn(α) =
α

B(α−1, α−1)
− x

(2)
n(

x
(1)
n

)2 , (7)

and B(a, b) =
∫ 1

0
xa−1(1−x)b−1dx denotes the Beta func-

tion.

The existence and uniqueness of (α̂n, ĉn), are conse-
quences of the following lemma.

Lemma 2.2 The function Fn(·) defined by (7) is contin-
uous for α ∈ (0, 1), and satisfies
1. limα→0+ Fn(α) = ∞
2. Fn(1) < 0
3. F ′

n(α) < 0, ∀α ∈ (0, 1).
Proof. The continuity of Fn(·) follows directly from its
definition, and the continuity of B(a, a) for a > 0.

Proof of 1. From the definition of B(a, a) and by noticing
that x(1 − x) ≤ (1/4), we have,

α

B(α−1, α−1)
≥ 1

4
α41/α. (8)

Then the proof follows by taking the limit as α → 0+ in
(8), and applying L’ Hospital’s rule.

Proof of 2. Since B(1, 1) = 1, we must show that

1 − x
(2)
n(

x
(1)
n

)2 < 0 ⇔ x
(2)
n −

(
x

(1)
n

)2

> 0. (9)

However the last inequality in (9) is true since
its left–hand side defines the sample variance of
(1/xj), j = 1, 2, ..., n.

Proof of 3. By a straightforward calculation we have,

F ′
n(α) =

1
B(1/α, 1/α)

(
1 − 2

α
[Ψ(2/α) − Ψ(1/α)]

)
,

(10)
where,

Ψ(x) =
d log Γ(x)

dx
,

denotes the digamma function. In turn, from Ψ(x) −
Ψ(y) =

∑∞
k=0(y + k)−1 − (x + k)−1 (Gradshteyn and

Ryzhik 1994, §8.363), it follows that Ψ(x) − Ψ(y) >
(1/y) − (1/x), x > y. Hence Ψ(2/α) − Ψ(1/α) > (α/2),
and consequently, one has from (10) that, F ′

n(α) < 0.

Lemma 2.2 implies that the equation Fn(α) = 0 has a
root in (0, 1), which is unique. This root, say α̂n, which
may be found by a simple search procedure, is the es-
timate of the index parameter α. Subsequently, α̂n is
used in the first equation in (6) in order to calculate the
estimate ĉn of the scale parameter c.

3 Applications

In this section we illustrate the method of estimation by
applying it first to pseudo–random numbers from SPS
laws with scale parameter c = 1 and characteristic expo-
nent α. The normalized (×n) mean squared error (MSE)
of the moment estimators (ME) is computed for sample
size n. We also compute the corresponding MSE for the
highly efficient generalized moment estimators (GME) in
[1]. These estimators are computed as follows:
1. Compute the ME estimator α̂n, from the second equa-
tion in (6).
2. Let t = α̂n(α̂n + 4.2)/(10(1 − α̂n)).

3. With x
(t)
n = n−1

∑n
j=1(1/xt

j), find the GME, say α̃n,
of α as the solution of

Fn(α) =
αB(t, t)

B(t/α, t/α)
− x

(2t)
n(

x
(t)
n

)2 .
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4. Let τ = α̃n(3α̃n + 2.5)/(10(1 − α̃n)).

5. Compute the GME, say c̃n, of c as

c̃n =

[
Γ(τ/α̃n)

Γ(τ)α̃nx
(τ)
n

]1/τ

.

In Table 1, the MSE of the ME and the GME com-
puted from 10,000 replications is reported for sample
size n = 20, 40, and n = 100. From these figures it
may be observed that for small or moderate sample size
(n = 20, 40), the ME of scale is more efficient than the
corresponding GME when α < 0.8. Also, the ME estima-
tor of the characteristic exponent, although less efficient
than the corresponding GME, it is a close competitor at
least when the true parameter value of α is not close to
zero. As a conclusion, and apart from providing good
initial guess for the GME, the simple moment estimator
may be preferred over the more complex GME if the sam-
ple size is not large and the true characteristic exponent
is around the value α = 1/2.

Our real–data application, employs the SPS laws in the
modelling of the intrinsic time process in the Athens
Stock Exchange. It is well known that for a typical stock,
market activity is highly volatile within the trading day,
having a long right tail. In particular, the opening of
each trading day is followed by a period of intense mar-
ket activity. Then follows a ‘regular’ period, and the mar-
ket closes with a peak of transactions at the end of the
day. We have employed daily data on the stock of ‘Alpha
Bank’, a major private bank, for the period Jan. 2–May
30, 2003. In particular the volume of transactions was
broken into 10–minute time intervals within each trading
day, resulting in 30 observations per day. Then, for these
data the estimates of α and c were obtained by solving
the system of equations in (6). We have tried several par-
ticular dates, corresponding to different days of the week,
and different months. Selected results are shown in Table
2. Interestingly, in each case the second equation in (6)
yielded an estimate α̂n well within the acceptable domain
(0, 1), thus providing some confidence that indeed some
SPS law is the underlying random mechanism.
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