
 
 

 

  
Abstract— Imputation of missing data is important in many 

areas, such as reducing non-response bias in surveys and 
maintaining medical documentation. Nearest neighbour (NN) 
imputation algorithms replace the missing values within any 
particular observation by taking copies of the corresponding 
known values from the most similar observation found in the 
dataset. However, when NN algorithms are executed against large 
multivariate datasets the poor performance (program execution 
speed) of these algorithms can present major practical problems. 
We argue that these problems have not been sufficiently 
addressed, and we present a fast NN imputation algorithm that 
can employ any method for measuring the similarity between 
observations. The algorithm has been designed for the imputation 
of missing values in large multivariate datasets that contain many 
different missingness patterns with large proportions of missing 
data. The ideas underpinning the algorithm are explained in 
detail, and experiments are described which show that the 
algorithm delivers very good performance when it is used for 
imputation in both segmented and non-segmented datasets 
containing several million rows. 
 

Index Terms— Missing data, Missingness patterns, Nearest 
neighbour imputation, Program execution time. 
 

I. INTRODUCTION 
  A considerable amount of work has been done to evaluate 

and compare the results produced by various multivariate 
nearest neighbour (NN) imputation algorithms [1]-[4] and to 
analyse the functionality and properties of such algorithms 
[5]-[7]. In addition, several methods for measuring the 
similarity between dataset rows when searching for the nearest 
neighbour have been proposed [8]-[10]. However, the slow 
performance (program execution speed) and the resulting poor 
scalability of multivariate NN imputation algorithms has 
received very little attention - i.e. searching the dataset for each 
nearest neighbour becomes increasingly impractical as the 
number of rows in that dataset increases. This paper discusses 
this performance problem, with particular reference to NN 
imputation in multivariate datasets containing several million 
rows, with many different missingness patterns and large 
proportions of missing data.  

Generally, when NN algorithms are executed against 
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complete datasets they compare a particular dataset row with 
every other row when searching for that rows nearest 
neighbour (unless the dataset is segmented by class, so that this 
search can be limited to the subset of rows within a single class, 
as discussed in section V). Consequently, it is hard to see how 
the execution time of this type of NN algorithm can be 
decreased at the macro level. However, when NN algorithms 
are executed against incomplete datasets this is not the case. 
For example, suppose the dataset has 99% missing values. In 
this case many of the rows would be empty or they would have 
very few known values. Therefore, far fewer row comparisons 
would be required to find any particular nearest neighbour. 
Extending this idea it can be seen that as the proportion of 
missing data increases NN algorithm execution time can, in 
principle, be decreased by a corresponding proportion. This can 
be achieved by creating an algorithm that makes the best 
possible use of the information content within the missingness 
patterns that exist within the dataset. The following sections 
describe just such an algorithm. and evaluate it’s performance. 

Section II explains how the missingness patterns within the 
dataset rows can be used to find each nearest neighbour. 
Section III presents a new NN imputation algorithm and 
explains the ideas underpinning it’s design. Section IV 
evaluates the algorithm’s performance, using a set of simulated 
missing value datasets. Section V evaluates the algorithm’s 
performance using two survey datasets and discusses the need 
for segmentation when performing NN imputation in large 
datasets. Section VI summarises the paper and discusses the 
issues it raises. 

 

II. USING THE MISSINGNESS PATTERN STRUCTURE TO FIND 
EACH NEAREST NEIGHBOUR 

Nearest neighbour algorithms impute a missing value in a 
particular matrix row (dataset observation) mS  by taking a 
copy of the known value from the most similar donor row iS , 
such that icmc SS = , where c is the matrix column (variable) 
that has a missing value. And where the most similar donor row 
is found by comparing mS  with all of the other rows in the 
matrix, and using the row that returns the smallest value of  

( )im SSd ,  as the donor - i.e. Finding the minimum value of 
the similarity measure ( )im SSd ,  for all PSi ∈ . Where 

},....{ 1 nSSP = is the set of all matrix rows and where the 
variables in mS and iS  are suitably scaled, so that each 
variable carries the required weight in the similarity 
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calculations. And where ( )im SSd ,  can be measured using 
any similarity function, such as the simple Euclidean distance, 
or a more complex measure, such as the Hellinger distance [10] 
or the Mahalanobis distance [9] and [11].  

However, only some ( )im SS ,  pairs can be meaningfully 
compared, as shown in Fig. 1 (where 1 represents a known 
value and 0 represents a missing value). Fig 1 shows the rows 
that can be considered as potential donors when imputing the 
missing value in column 4 of row 1. Notice that row 3 can be a 
potential donor for any other row, because it has a full set of 
known values.  

The most important point is that row 2 can be considered as a 
potential donor, but row 5 cannot, because the similarity 
between rows 1 and 2 cannot be meaningfully compared with 
the similarity between rows 1 and 5. For example, a Euclidean 
distance calculation would produce a smaller value when 
measuring the similarity between rows 1 and 5, because only 

one column would be included in the calculation, whereas 3 
columns would be included in the calculation when measuring 
the distance between rows 1 and 2.  

However, row 5 could be considered as a potential donor if 
some form of weighting was included in the similarity 
calculation to compensate for the reduced number of variables 
used to measure that similarity. This approach has been tried by 
[8], who use an experimental “pseudo-nearest-neighbours” 
method to impute missing values in multivariate Gaussian 
datasets, where the “pseudo-similarity” measurement 
implemented “is actually a weighted correlation value between 
the two vectors with partially missing element values”. 
However, this approach requires each imputed row to be 
compared with every other row in the matrix. Therefore, the 
method of enhancing NN algorithm performance described in 
section III could not be applied (see section VI for a further 
discussion of this issue). 

 
 1 2 3 4 5 

1 1 1 1 0 0 

2 1 1 1 1 0 

3 1 1 1 1 1 

4 0 1 1 0 1 

5 1 0 0 1 0 

Fig 1  –  Imputing the missing value in column 4 of row 1 in a data matrix 

function    matrix   simple_NN_imputation_in_column  ( int  c,   matrix  data ) 
 dataMatrixRow   missRow,  donorRow,  closestRow 
 removeEmptyRowsIn  ( data ) 
 
 for  m  = 1   to  num_rows_in ( data ) 
  missRow  =  data ( m ) 
  if   ( missRow . patt ( c )  ==  0 ) 
   minDistance  =  null 
   for  d  =  1   to  num_rows_in ( data ) 
    donorRow  =  donors ( d ) 
    if   ( donorRow . patt ( c )  == 1 ) 
     match  =   true 
     j = 1 
     while  (  j  <=  num_cols_in ( missRow )   &&   match  ==  true ) 
      if   ( missRow . patt ( j )  ==  1    &&   donorRow . patt ( j )  ==  0 ) 
       match  =  false 
      end  if 
      j ++ 
     end  while 
     if   ( match  ==  true ) 
      distance  =  euclideanDistanceBetween  ( missRow,  donorRow ) 
      if   ( distance  <  minDistance   | |   minDistance  ==  null ) 
       minDistance  =  distance 
       closestRow  =  donorRow 
      end  if 
     end  if 
    end  if 
   next  d 
   if   ( minDistance  !=  null ) 
    missRow ( c )  =  closestRow ( c ) 
   end  if 

List of missingness patterns for 
every row in the data matrix 

The missing value in column 4 of row 1 is to be imputed 

These potential donors have known values in the same columns as 
row 1 and they also have a known value in column 4 

Cannot be a donor because only 1 known value matches with row 1 

Cannot be a donor because no donor value is present in column 4 
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  end  if 
 next  m 
 return  data 
end  function 

Algorithm 1 – Simple nearest neighbour imputation algorithm 

 
Algorithm 1 can be used to impute missing values in any 

multivariate dataset that has many missingness patterns, using 
the row comparison method shown in Fig. 1. The algorithm 
uses the Euclidean distance as a NN similarity measure, but any 
other measure could be substituted, as required.  

The following parameters are passed to the algorithm; (1)  int  
c  is the  data  matrix column containing the values to be 
imputed. (2)  matrix data  is the data matrix, which is passed to 
the algorithm with missing values in column  c  and returned 
with imputed values in column c, where the statement   
missRow ( c )  =  closestRow ( c )  imputes each missing value. 
And where each  dataMatrixRow  object contains a binary array  
patt( )  which represents it’s missingness pattern (see Fig. 1). 

 

III. A FAST NEAREST NEIGHBOUR IMPUTATION ALGORITHM 

The functionality of all NN imputation algorithms that 
process datasets with multivariate missingness patterns must be 
based on (be some variant of) the simple algorithm given above, 
since it will generally be necessary to test each row in the 
dataset to discover whether it can be meaningfully compared 
with the imputed row before measuring the similarity (where 
meaningful comparisons are defined as shown in Fig. 1 for the 
algorithms given here, but they could be defined otherwise, as 
required). More precisely, we can say that NN algorithms 
generally have a time complexity of )( 2nO , where  n  is the 
number of rows in the data matrix [12] and [13], i.e. the 

algorithm execution time )(nT  is proportional to the square of 
the number of rows in the data matrix, such that 2)( cnnT = , 
where c is the constant of proportionality. However, the 
algorithm given below reduces the size of the constant of 
proportionality for all missing value datasets, which in turn 
reduces )(nT . An explanation of the ideas underpinning the 
algorithm’s functionality is given below.  

The donor matrix shown in Fig. 2 would be constructed by 
the algorithm when imputing the missing values in column 3 of 
every data matrix row that has missingness pattern 1, where 1 
represents a known value and 0 represents a missing value. 
Only those data matrix rows that have the pattern shown in 
rows 2 and 4 can be added to this donor matrix, because these 
are the only rows with a known value in column 3 and with the 
same set of known values as the rows that have pattern 1.  

It can be seen that pattern 5 also has missing values in 
column 3. However, the rows with pattern 5 cannot use the 
same donor matrix as the rows with pattern 1, since only those 
rows with pattern 4 can be used to construct the donor matrix in 
this case. Notice also that the rows with pattern 4 can be added 
to every donor matrix constructed by the algorithm, because 
pattern 4 has a full set of known values. 

This method is faster than the simple algorithm given in the 
previous section because the search for each nearest neighbour 
is carried out within the subset of data matrix rows added to 
each donor matrix (rather than searching all of the rows in the 
data matrix every time).  

 
 1 2 3 4 

1 1 0 0 1

2 1 0 1 1

3 0 1 1 1

4 1 1 1 1

5 1 1 0 0

Fig 2 – Constructing a donor matrix for multivariate NN imputation 

This donor matrix would 
be constructed by the 
NN algorithm when 
imputing the missing 
values in column 3 of 
missingness pattern 1. 

All data matrix rows that 
have missingness 

pattern 2 

All data matrix rows that 
have missingness 

pattern 4 

Donor matrix constructed 
by the NN algorithm 

List of missingness 
patterns in the data matrix

Each missingness 
pattern contains a 
set of matrix rows 
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function    matrix   fast_NN_imputation_in_column  ( int  c,   matrix  data ) 
 missPatternRow   missPatt,   matchPatt 
 dataMatrixRow   missRow,  donorRow,  closestRow 
 removeEmptyRowsIn  ( data ) 
 vector  patterns  =  missPatternListFor ( data ) 
 
 for   i  =  1   to   num_rows_in ( patterns ) 
  missPatt   =  patterns ( i )  
  if   ( missPatt . patt ( c )  ==  0 ) 
   donors  =  new  vector ( ) 
   for   p  =  1   to   num_rows_in ( patterns ) 
    matchPatt   =  patterns ( p )  
    if   ( matchPatt . patt ( c )  ==  1 ) 
     match  =   true 
     j = 1 
     while  (  j  <=  num_cols_in ( missPatt . patt )   &&   match  ==  true ) 
      if   ( missPatt . patt ( j )  ==  1   &&   matchPatt . patt ( j )  ==  0 ) 
       match  =  false 
      end  if 
      j ++ 
     end  while 
     if   ( match  ==  true ) 
      for  r  =  matchPatt . pattStartRow   to   matchPatt . pattEndRow 
       donors . add_to_end ( data ( r ) ) 
      next  r 
     end  if 
    end  if 
   next  p 
 
   for  m  =  missPatt . pattStartRow   to   missPatt . pattEndRow 
    missRow  =  data ( m ) 
    minDistance  =  null 
    for  d  =  1   to  num_rows_in ( donors ) 
     donorRow  =  donors ( d ) 
     distance  =  euclideanDistanceBetween  ( missRow,  donorRow ) 
     if   ( distance  <  minDistance   | |   minDistance  ==  null ) 
      minDistance  =  distance 
      closestRow  =  donorRow 
     end  if 
    next  d 
    if   ( minDistance  !=  null ) 
     missRow ( c )  =  closestRow ( c ) 
    end  if 
   next  m 
  end  if 
 next   i 
 return  data 
end  function 

Algorithm 2 – Fast nearest neighbour imputation algorithm 

 
The pseudo-code implementation of the method is given in 

Algorithm 2. The algorithm uses the Euclidean distance as a 
NN similarity measure, but any other measure could be 
substituted The parameters passed to the algorithm are the same 
as those passed to the simple algorithm, as described in section 
II.   

The function  missPatternListFor (data)  creates and returns 
the  patterns  vector, which contains a list of missPatternRow 
objects, which represent the missingness patterns in the data 
matrix. Where each  missPatternRow object has the following 
attributes; (1) A binary array patt() representing the 
missingness pattern, as shown in Fig. 2. (2)  pattStartRow  
which gives the first row number of the pattern in the data 
matrix.  (3)  pattEndRow  which gives the last row number of 
the pattern in the  data  matrix. 

Note that the algorithm requires the  data matrix to be sorted 
into missingness pattern order - i.e. all rows with the same 
missingness pattern must be adjacent. Further, this algorithm 
and the simple algorithm will produce the same set of imputed 
values when they are executed against the same  data  matrix, 
provided that the rows in this matrix are sorted into the same 
order (matrix row order affects the values imputed by NN 
algorithms). However, the simple algorithm does not require 
the matrix to be in any particular order when it is executed 
independently. 
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IV. PERFORMANCE EVALUATION USING SIMULATED MISSING 
VALUE DATASETS 

The pseudo-code versions of the two NN algorithms 
described in the preceding sections have been implemented 
using the Microsoft Visual C# programming language. This 
section evaluates the performance of these algorithms when 
they are used to impute missing values in the simulated datasets 
described below. 

The experiments were performed to try to answer the 
following questions; (1) Would algorithm execution time 
decrease as the proportion of missing data in the matrix was 
increased?  (2) Would the method of creating donor matrices 
(as implemented in the algorithm above) decrease algorithm 
execution time? 

Table I – Comparison of NN algorithm execution times. 

Number of 
rows in the 
data matrix 

% of missing 
values in the 
data matrix 

Simple algorithm 
execution time 

(seconds) 

Fast algorithm 
execution time 

(seconds) 

10,000 
25 
50 
75 

7 
5 
4 

5 
2 
1 

20,000 
25 
50 
75 

26 
20 
16 

21 
9 
3 

30,000 
25 
50 
75 

58 
46 
37 

50 
22 
7 

40,000 
25 
50 
75 

104 
78 
62 

87 
38 
11 

50,000 
25 
50 
75 

159 
125 
102 

136 
58 
18 

60,000 
25 
50 
75 

233 
181 
140 

193 
94 
29 

70,000 
25 
50 
75 

315 
238 
195 

275 
127 
34 

80,000 
25 
50 
75 

417 
314 
241 

353 
159 
45 

90,000 
25 
50 
75 

529 
421 
300 

445 
195 
57 

100,000 
25 
50 
75 

649 
515 
379 

534 
247 
72 

110,000 
25 
50 
75 

787 
603 
464 

655 
300 
95 

120,000 
25 
50 
75 

918 
720 
559 

765 
357 
118 

 
The experiments were performed against 12 randomly 

generated data matrices containing between 10,000 and  
120,000 rows, as shown in column 1 of Table I. The data values 
inserted into these matrices were randomly generated integers 
in the range 1 to 100,  where 25%, 50% and 75% of these values 
were randomly deleted in three stages. This process generated 

36 different matrices, as shown in column 2 of Table I. Each of 
these matrices contained 7 columns, where the missing values 
in column 1 were imputed for every experiment. 

Each matrix contained the maximum possible number of 
missingness patterns. Generally, the maximum number of 
missingness patterns in any matrix  =  2n,  where n is the 
number of columns in the matrix. In this case each matrix 
contained 7 columns, therefore  27 = 128  patterns were added 
to each matrix. Where these patterns were balanced and evenly 
distributed across the rows in each matrix, because the missing 
values were deleted completely at random. 

Both of the algorithms described in the two preceding 
sections were executed against all 36 of the matrices described 
above, thus creating 72 sets of experimental results, as shown 
in columns 3 and 4 of Table I. The results given in Table I are 
also presented in line chart form below. Algorithm execution 
times are shown on the y axis of each chart. The number of 
rows in the data matrices are shown on the x axis. 

The execution time increases for both algorithms as the 
number of matrix rows increases, as expected. However, 
execution time decreases as the proportion of missing data in 
each matrix increases, which confirms the central hypothesis - 
i.e. the fastest execution times are shown on the final chart, 
where each matrix has 75% missing values. 

The charts show that the fast algorithm executed more 
quickly than the simple algorithm for every experiment - i.e. the 
method of creating donor matrices implemented as part of the 
fast algorithm did in fact decrease the execution times. This 
performance advantage increases as the proportion of missing 
data increases, with the largest difference between the 
algorithm execution times occurring for the largest input matrix 
shown on the final chart. 
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The regression equations shown on the charts are very close 

to the expected 2)( cnnT =  results, with the very small 
differences in the expected exponents perhaps explained by the 
small samples used for the regression calculations. The high R2 
values suggest that these equations can be used to predict 
algorithm execution times for larger matrices, as shown in 
Table II. 

Table II – Predicted execution times  (given to the 
nearest hour)  for the algorithms described above. 

Number of rows 
in the data 

matrix 

% of missing 
values in the 
data matrix

Simple algorithm 
execution time 

(hours) 

Fast algorithm 
execution time 

(hours) 

1,000,000
25
50
75

17 
14 
10 

15
8
2

2,000,000
25
50
75

65 
58 
38 

62
33
8

3,000,000
25
50
75

146 
130 

84 

142
78
17

4,000,000
25
50
75

257 
231 
148 

253
141

29

5,000,000
25
50
75

400 
361 
230 

398
224

44

 

V. PERFORMANCE EVALUATION USING TWO SEGMENTED 
SURVEY DATASETS 

The experiments described in the previous section were 
performed against simulated datasets. However, it is also 
important to evaluate the algorithm’s performance using real 
datasets. For example, the simulated datasets all contained a 
full set of well balanced and evenly distributed missingness 
patterns, but this can hardly be expected to occur in practice. 
This point is important for the current investigation, since the 
missingness pattern structure is the most crucial factor affecting 
algorithm performance.  

The experiments described below evaluate the algorithm’s 
performance when it is executed against segmented datasets. 
This is an important consideration, because in practice datasets 
are often segmented by class, so that the search for each nearest 
neighbour can be limited to the subset of rows within a single 
class [5]. The required classes can be created by segmenting the 
dataset using a fully observed categorical variable (as for the 
experiments described below) or by dividing the dataset into 
numeric class intervals using a fully observed numeric variable. 
This approach can improve the quality of the imputed values 
and reduce the execution time of the NN algorithm. However, 
if the segmentation process is carried out only to reduce 
algorithm execution time it can reduce the quality of the 
imputed values, for example; 

• In some cases segmenting the dataset may not produce the 
best imputation results - i.e. searching the entire dataset 
for donors may be the only sensible way to find the best 
estimates for the missing values. 

• Segmenting the dataset by category can produce poorly 
categorised observations when the categories are created 
only to improve performance. This can result in donor 
rows being selected from the wrong category. 

• The boundaries selected for numeric class intervals can be 
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0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

  Simple algorithm
  Fast algorithm

y = 1E-08 x 2.076

R2 = 0.9993 

y = 5E-08 x 2.0026 
R2 = 0.9998 

7 column matrix with 75% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

  Simple algorithm
  Fast algorithm

y = 5E-08 x 1.9732 
R2 = 0.9997  

y = 2E-08 x 1.9258

R2 = 0.9963 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

somewhat arbitrary when they are chosen only to improve 
performance. This can result in the selection of 
sub-optimal donors, taken from the wrong class. 

A. Performing the experiments and interpreting the results 
This section evaluates the performance of the new algorithm 

when it is used to impute missing values in the survey datasets 
described below. The experiments were performed to try to 
answer the following questions;  (1)  Would dividing the matrix 
into an increasingly large number of segments steadily decrease 
algorithm execution time?  (2) Would the method of creating 
donor matrices decrease algorithm execution time for large 
segmented datasets? 

The experiments described below were performed against 
two similar survey datasets describing various different Firms 
(business enterprises) within the UK. The first survey dataset 
described  1,128,463  MICRO Firms, which are defined as 
those Firms with less than 10 employees. The second dataset 
described  271,955 SMALL Firms, which have between 10 and 
49 employees. Both datasets contained the 10 variables 
described below. The first 4 variables listed were fully 
observed, but the other 6 variables all had large proportions of 
missing data. 

• The UKSIC Category (United Kingdom Standard 
Industrial Classification Category) is a categorical 
variable which defines the commercial activities carried 
out by each Firm, such as “Publishing of software” etc. 

• The OS Easting and OS Northing variables specify the 
geographical location of each Firm, using UK Ordnance 
Survey mapping co-ordinates. 

• The Number of Employees  variable specifies the number 
of people employed by each Firm. 

• The Payroll, Sales, Net Worth, PBT, Director Pay and 
Depreciation variables describe each Firm’s financial 
situation. These six variables all had large proportions of 
missing data. 

The UKSIC Category was used to segment both datasets at 4 
different levels of granularity (but it was not used to measure 
the similarity between Firms, as the other 9 variables were), 
where the number of segments created increased as the level of 
granularity was increased. This process created 8 different data 
matrices, as shown in column 5 of Table III, below.  

The algorithms described in sections II and III were executed 
against each of the 8 matrices created, where the missing 
Payroll values were imputed for every experiment. This 
process created 16 sets of experimental results, as shown in the 
2 rightmost columns of Table III. 

The algorithms described in sections II and III were amended 
so that the search for each nearest neighbour could be limited to 
the subset of rows within a single UKSIC Category. The 
amendments made to the algorithms were quite simple, but they 
are not shown in the pseudo-code versions of the algorithms for 
reasons of clarity. However, it should be noted that each donor 
matrix created by the fast algorithm (see Fig. 2) was segmented 
at the required level of granularity immediately after it was 
created (while the algorithm was running). For optimum 
performance a lookup table (a vector) was then created which 
stored the first row number of each category within each donor 
matrix, where each donor matrix was sorted by UKSIC 
Category so that this could be achieved. 

The figures given in the 3 rightmost columns of Table III 
show that dividing the matrix into an increasingly large number 
of segments steadily decreased the execution time required for 
both algorithms. This occurred because as the number of 
segments was increased the search for each nearest neighbour 
took place within a smaller number of rows.  

The figures in brackets given in the rightmost column of 
Table III show the improvement in performance offered by the 
new algorithm for both datasets. For example, the first row of 
figures show that fast algorithm executed in just under one 
seventh of the time (given to the nearest minute) taken by the 
simple algorithm. It can be seen that these performance 
improvements are similar for both datasets, regardless of the 
number of segments created. 

Table III – Comparison of algorithm execution times using two survey datasets which were 
segmented into an increasingly large number of categories. 

Dataset description  
(number of employees) 

Number of 
rows in the 
data matrix

% of missing 
values in the 
data matrix 

Number of 
missingness 

patterns 

Number of  
category 
segments 

Simple algorithm 
execution time 

(minutes) 

Fast algorithm 
execution time 

(minutes) 

MICRO Firms    
(with less than 10  employees) 1,128,463 61.72% 28 

58 
203 
412 
488 

312 
119 

53 
47 

44    (0.14) 
16    (0.13) 

9    (0.17) 
8    (0.17) 

SMALL Firms    
(with 10  to  49  employees) 271,955 54.97% 27 

57 
200 
409 
485 

17 
6 
3 
3 

6    (0.35) 
2    (0.33) 
1    (0.33) 
1    (0.33) 

 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



 
 

 

VI. SUMMARY AND DISCUSSION 
The slow performance and the resulting poor scalability of 

multivariate NN imputation algorithms is a major problem that 
has not been sufficiently addressed. Consequently, we have 
presented a new, fast, NN imputation algorithm that can be 
used to impute missing values in large multivariate datasets 
containing many different missingness patterns. We have also 
described a set of experiments which have confirmed the 
hypothesis that NN imputation algorithm execution times 
would decrease as the proportion of missing values in the 
dataset was increased. The experiments have also shown that 
the method of creating donor matrices (implemented as part of 
the new algorithm) significantly decreases NN algorithm 
execution time for both segmented and non-segmented datasets 
containing several million rows. 

We argue that the following three questions are the most 
appropriate ones to ask when evaluating the quality of any 
multivariate NN imputation process. (1) Is the similarity 
measure used suitable for the missing value dataset?  - i.e. does 
this measure find the best possible donor rows for the 
imputation of missing values?   (2)  Is the method used to 
decide which dataset rows should be considered as potential 
donors appropriate for the dataset? - e.g. if the dataset has been 
segmented, has this been done in such a way that the search for 
donors takes place within the best possible subset of rows?  (3) 
Is the method used to decide which rows can be meaningfully 
compared logical, given the nature of the data?  This question is 
discussed further, below. 

The first two questions posed above need not be asked for 
the algorithm presented here, because it is generic by design - 
i.e. It can employ any method for measuring the similarity 
between observations and it can be executed against any sort of 
segmented dataset, regardless of the classification scheme used. 
On the other hand, the algorithm does specify which rows can 
be meaningfully compared, as described in section II. We argue 
that this method is the most logical approach for most missing 
value datasets, for the following reasons. 

In surveys, respondents often fail to answer one or more of 
the questions put to them  - i.e. It is often the case that every 
variable in a survey dataset will have a certain proportion of 
missing values [14]. The method we propose can be applied to 
all such datasets (from surveys or otherwise), regardless of the 
structure and distribution of the missingness patterns they 
contain. 

Employing any method that uses only the fully observed 
variables to measure the similarity between observations does 
not make full use of every known value in the dataset. We argue 
that the method we propose is more logical, since it attempts to 
make the best possible use of the information content within all 
of the known values, so as to generate the best possible 
estimates for the missing values. 

Employing any method that involves comparing rows that do 
not have a common set of known values would require the use 
of a similarity measure that returns different values depending 
on the number of common values in the rows compared. We 

argue that this would build an unnecessary level of uncertainty 
into the NN imputation process. 

 

REFERENCES 
[1] Wasito, I. and Mirkin, B., (2005), Nearest neighbour approach in the least 

squares data imputation algorithms, Information Sciences, 169 (1),  pp. 
1-25. 

[2] Wasito, I. and Mirkin, B., (2006), Nearest neighbours in least-squares 
data imputation algorithms with different missing patterns, 
Computational Statistics & Data Analysis, 50 (4),  pp. 926-949. 

[3] Durrant, G. B., (2005), Imputation methods for handling 
item-nonresponse in the social sciences: A methodological review,  ESRC 
National Centre for Research Methods: Methods Review Working Paper 
No. NCRM/002. Available;  
http://www.ncrm.ac.uk/publications/index.php  Accessed 26th March 
2007. 

[4] Kalton, G., Compensating for Missing Survey Data, Ann Arbor, MI: 
Survey Research Center, University of Michigan, 1983. 

[5] Chen, J. and Shao, J., (2000), Nearest neighbour imputation for survey 
data,  Journal of Official Statistics, 16 (2),  pp. 113-131. 

[6] Fay, R. E., (1999), Theory and applications of nearest neighbor 
imputation in census 2000, Proceedings of the section on survey research 
methods, American Statistical Association 1999,  pp. 112-121. 

[7] Rancourt, E., Sarndal, C.E. and Lee H., (1994), Estimation of the variance 
in the presence of nearest neighbor imputation, Proceedings of the section 
on survey research methods, American Statistical Association 1994,  pp. 
883-893. 

[8] Huang, X. and Zhu, Q., (2002), A pseudo-nearest-neighbor approach for 
missing data recovery on Gaussian random data sets, Pattern Recognition 
Letters,  23 (13),  pp. 1613 – 1622. 

[9] Stage, A.R. and Crookston, N.L., (2002), Measuring similarity in nearest 
neighbor imputation: Some new alternatives, In Proceedings of the 
Symposium on Statistics and Information Technology in Forestry, 
Blacksburg, Virginia,  pp. 91-96. 

[10] Lee, C.H. and Shin, D.G., (1999), Using Hellinger distance in a nearest 
neighbour classifier for relational databases, Knowledge-Based Systems,  
12 (7),  pp. 363-370. 

[11] Mahalanobis, P.C., (1936), On the generalised distance in statistics, 
Proceedings of the National Institute of Science of India,  pp. 49-55. 

[12] Dunham, M. H., Data Mining Introductory and Advanced Topics, 
Prentice-Hall, New Jersey, 2003,  pp. 125-142 

[13] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., Data Structures and 
Algorithms, Addison Wesley, MA, 1983,  pp. 16-24 

[14] Allison, P. D., Missing Data (Quantitative Applications in the Social 
Sciences, series no. 07-136), Sage Publications, California, 2001,  pp. 
1-12. 

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007


