

Abstract— Imputation of missing data is important in many

areas, such as reducing non-response bias in surveys and
maintaining medical documentation. Nearest neighbour (NN)
imputation algorithms replace the missing values within any
particular observation by taking copies of the corresponding
known values from the most similar observation found in the
dataset. However, when NN algorithms are executed against large
multivariate datasets the poor performance (program execution
speed) of these algorithms can present major practical problems.
We argue that these problems have not been sufficiently
addressed, and we present a fast NN imputation algorithm that
can employ any method for measuring the similarity between
observations. The algorithm has been designed for the imputation
of missing values in large multivariate datasets that contain many
different missingness patterns with large proportions of missing
data. The ideas underpinning the algorithm are explained in
detail, and experiments are described which show that the
algorithm delivers very good performance when it is used for
imputation in both segmented and non-segmented datasets
containing several million rows.

Index Terms— Missing data, Missingness patterns, Nearest
neighbour imputation, Program execution time.

I. INTRODUCTION
 A considerable amount of work has been done to evaluate

and compare the results produced by various multivariate
nearest neighbour (NN) imputation algorithms [1]-[4] and to
analyse the functionality and properties of such algorithms
[5]-[7]. In addition, several methods for measuring the
similarity between dataset rows when searching for the nearest
neighbour have been proposed [8]-[10]. However, the slow
performance (program execution speed) and the resulting poor
scalability of multivariate NN imputation algorithms has
received very little attention - i.e. searching the dataset for each
nearest neighbour becomes increasingly impractical as the
number of rows in that dataset increases. This paper discusses
this performance problem, with particular reference to NN
imputation in multivariate datasets containing several million
rows, with many different missingness patterns and large
proportions of missing data.

Generally, when NN algorithms are executed against

Manuscript received March 9th, 2007.

The corresponding author is Norman Solomon: Tel.; +44-191-567-3382;
e-mail: norman.solomon@sunderland.ac.uk

All named authors are with the School of Computing and Technology,
University of Sunderland, St. Peter’s Campus, Sunderland, SR6 ODD, UK.

complete datasets they compare a particular dataset row with
every other row when searching for that rows nearest
neighbour (unless the dataset is segmented by class, so that this
search can be limited to the subset of rows within a single class,
as discussed in section V). Consequently, it is hard to see how
the execution time of this type of NN algorithm can be
decreased at the macro level. However, when NN algorithms
are executed against incomplete datasets this is not the case.
For example, suppose the dataset has 99% missing values. In
this case many of the rows would be empty or they would have
very few known values. Therefore, far fewer row comparisons
would be required to find any particular nearest neighbour.
Extending this idea it can be seen that as the proportion of
missing data increases NN algorithm execution time can, in
principle, be decreased by a corresponding proportion. This can
be achieved by creating an algorithm that makes the best
possible use of the information content within the missingness
patterns that exist within the dataset. The following sections
describe just such an algorithm. and evaluate it’s performance.

Section II explains how the missingness patterns within the
dataset rows can be used to find each nearest neighbour.
Section III presents a new NN imputation algorithm and
explains the ideas underpinning it’s design. Section IV
evaluates the algorithm’s performance, using a set of simulated
missing value datasets. Section V evaluates the algorithm’s
performance using two survey datasets and discusses the need
for segmentation when performing NN imputation in large
datasets. Section VI summarises the paper and discusses the
issues it raises.

II. USING THE MISSINGNESS PATTERN STRUCTURE TO FIND
EACH NEAREST NEIGHBOUR

Nearest neighbour algorithms impute a missing value in a
particular matrix row (dataset observation) mS by taking a
copy of the known value from the most similar donor row iS ,
such that icmc SS = , where c is the matrix column (variable)
that has a missing value. And where the most similar donor row
is found by comparing mS with all of the other rows in the
matrix, and using the row that returns the smallest value of

()im SSd , as the donor - i.e. Finding the minimum value of
the similarity measure ()im SSd , for all PSi ∈ . Where

},....{ 1 nSSP = is the set of all matrix rows and where the
variables in mS and iS are suitably scaled, so that each
variable carries the required weight in the similarity

A Fast Multivariate Nearest Neighbour
Imputation Algorithm

Norman Solomon, Giles Oatley and Ken McGarry

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

calculations. And where ()im SSd , can be measured using
any similarity function, such as the simple Euclidean distance,
or a more complex measure, such as the Hellinger distance [10]
or the Mahalanobis distance [9] and [11].

However, only some ()im SS , pairs can be meaningfully
compared, as shown in Fig. 1 (where 1 represents a known
value and 0 represents a missing value). Fig 1 shows the rows
that can be considered as potential donors when imputing the
missing value in column 4 of row 1. Notice that row 3 can be a
potential donor for any other row, because it has a full set of
known values.

The most important point is that row 2 can be considered as a
potential donor, but row 5 cannot, because the similarity
between rows 1 and 2 cannot be meaningfully compared with
the similarity between rows 1 and 5. For example, a Euclidean
distance calculation would produce a smaller value when
measuring the similarity between rows 1 and 5, because only

one column would be included in the calculation, whereas 3
columns would be included in the calculation when measuring
the distance between rows 1 and 2.

However, row 5 could be considered as a potential donor if
some form of weighting was included in the similarity
calculation to compensate for the reduced number of variables
used to measure that similarity. This approach has been tried by
[8], who use an experimental “pseudo-nearest-neighbours”
method to impute missing values in multivariate Gaussian
datasets, where the “pseudo-similarity” measurement
implemented “is actually a weighted correlation value between
the two vectors with partially missing element values”.
However, this approach requires each imputed row to be
compared with every other row in the matrix. Therefore, the
method of enhancing NN algorithm performance described in
section III could not be applied (see section VI for a further
discussion of this issue).

 1 2 3 4 5

1 1 1 1 0 0

2 1 1 1 1 0

3 1 1 1 1 1

4 0 1 1 0 1

5 1 0 0 1 0

Fig 1 – Imputing the missing value in column 4 of row 1 in a data matrix

function matrix simple_NN_imputation_in_column (int c, matrix data)
 dataMatrixRow missRow, donorRow, closestRow
 removeEmptyRowsIn (data)

 for m = 1 to num_rows_in (data)
 missRow = data (m)
 if (missRow . patt (c) == 0)
 minDistance = null
 for d = 1 to num_rows_in (data)
 donorRow = donors (d)
 if (donorRow . patt (c) == 1)
 match = true
 j = 1
 while (j <= num_cols_in (missRow) && match == true)
 if (missRow . patt (j) == 1 && donorRow . patt (j) == 0)
 match = false
 end if
 j ++
 end while
 if (match == true)
 distance = euclideanDistanceBetween (missRow, donorRow)
 if (distance < minDistance | | minDistance == null)
 minDistance = distance
 closestRow = donorRow
 end if
 end if
 end if
 next d
 if (minDistance != null)
 missRow (c) = closestRow (c)
 end if

List of missingness patterns for
every row in the data matrix

The missing value in column 4 of row 1 is to be imputed

These potential donors have known values in the same columns as
row 1 and they also have a known value in column 4

Cannot be a donor because only 1 known value matches with row 1

Cannot be a donor because no donor value is present in column 4

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

 end if
 next m
 return data
end function

Algorithm 1 – Simple nearest neighbour imputation algorithm

Algorithm 1 can be used to impute missing values in any

multivariate dataset that has many missingness patterns, using
the row comparison method shown in Fig. 1. The algorithm
uses the Euclidean distance as a NN similarity measure, but any
other measure could be substituted, as required.

The following parameters are passed to the algorithm; (1) int
c is the data matrix column containing the values to be
imputed. (2) matrix data is the data matrix, which is passed to
the algorithm with missing values in column c and returned
with imputed values in column c, where the statement
missRow (c) = closestRow (c) imputes each missing value.
And where each dataMatrixRow object contains a binary array
patt() which represents it’s missingness pattern (see Fig. 1).

III. A FAST NEAREST NEIGHBOUR IMPUTATION ALGORITHM

The functionality of all NN imputation algorithms that
process datasets with multivariate missingness patterns must be
based on (be some variant of) the simple algorithm given above,
since it will generally be necessary to test each row in the
dataset to discover whether it can be meaningfully compared
with the imputed row before measuring the similarity (where
meaningful comparisons are defined as shown in Fig. 1 for the
algorithms given here, but they could be defined otherwise, as
required). More precisely, we can say that NN algorithms
generally have a time complexity of)(2nO , where n is the
number of rows in the data matrix [12] and [13], i.e. the

algorithm execution time)(nT is proportional to the square of
the number of rows in the data matrix, such that 2)(cnnT = ,
where c is the constant of proportionality. However, the
algorithm given below reduces the size of the constant of
proportionality for all missing value datasets, which in turn
reduces)(nT . An explanation of the ideas underpinning the
algorithm’s functionality is given below.

The donor matrix shown in Fig. 2 would be constructed by
the algorithm when imputing the missing values in column 3 of
every data matrix row that has missingness pattern 1, where 1
represents a known value and 0 represents a missing value.
Only those data matrix rows that have the pattern shown in
rows 2 and 4 can be added to this donor matrix, because these
are the only rows with a known value in column 3 and with the
same set of known values as the rows that have pattern 1.

It can be seen that pattern 5 also has missing values in
column 3. However, the rows with pattern 5 cannot use the
same donor matrix as the rows with pattern 1, since only those
rows with pattern 4 can be used to construct the donor matrix in
this case. Notice also that the rows with pattern 4 can be added
to every donor matrix constructed by the algorithm, because
pattern 4 has a full set of known values.

This method is faster than the simple algorithm given in the
previous section because the search for each nearest neighbour
is carried out within the subset of data matrix rows added to
each donor matrix (rather than searching all of the rows in the
data matrix every time).

 1 2 3 4

1 1 0 0 1

2 1 0 1 1

3 0 1 1 1

4 1 1 1 1

5 1 1 0 0

Fig 2 – Constructing a donor matrix for multivariate NN imputation

This donor matrix would
be constructed by the
NN algorithm when
imputing the missing
values in column 3 of
missingness pattern 1.

All data matrix rows that
have missingness

pattern 2

All data matrix rows that
have missingness

pattern 4

Donor matrix constructed
by the NN algorithm

List of missingness
patterns in the data matrix

Each missingness
pattern contains a
set of matrix rows

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

function matrix fast_NN_imputation_in_column (int c, matrix data)
 missPatternRow missPatt, matchPatt
 dataMatrixRow missRow, donorRow, closestRow
 removeEmptyRowsIn (data)
 vector patterns = missPatternListFor (data)

 for i = 1 to num_rows_in (patterns)
 missPatt = patterns (i)
 if (missPatt . patt (c) == 0)
 donors = new vector ()
 for p = 1 to num_rows_in (patterns)
 matchPatt = patterns (p)
 if (matchPatt . patt (c) == 1)
 match = true
 j = 1
 while (j <= num_cols_in (missPatt . patt) && match == true)
 if (missPatt . patt (j) == 1 && matchPatt . patt (j) == 0)
 match = false
 end if
 j ++
 end while
 if (match == true)
 for r = matchPatt . pattStartRow to matchPatt . pattEndRow
 donors . add_to_end (data (r))
 next r
 end if
 end if
 next p

 for m = missPatt . pattStartRow to missPatt . pattEndRow
 missRow = data (m)
 minDistance = null
 for d = 1 to num_rows_in (donors)
 donorRow = donors (d)
 distance = euclideanDistanceBetween (missRow, donorRow)
 if (distance < minDistance | | minDistance == null)
 minDistance = distance
 closestRow = donorRow
 end if
 next d
 if (minDistance != null)
 missRow (c) = closestRow (c)
 end if
 next m
 end if
 next i
 return data
end function

Algorithm 2 – Fast nearest neighbour imputation algorithm

The pseudo-code implementation of the method is given in

Algorithm 2. The algorithm uses the Euclidean distance as a
NN similarity measure, but any other measure could be
substituted The parameters passed to the algorithm are the same
as those passed to the simple algorithm, as described in section
II.

The function missPatternListFor (data) creates and returns
the patterns vector, which contains a list of missPatternRow
objects, which represent the missingness patterns in the data
matrix. Where each missPatternRow object has the following
attributes; (1) A binary array patt() representing the
missingness pattern, as shown in Fig. 2. (2) pattStartRow
which gives the first row number of the pattern in the data
matrix. (3) pattEndRow which gives the last row number of
the pattern in the data matrix.

Note that the algorithm requires the data matrix to be sorted
into missingness pattern order - i.e. all rows with the same
missingness pattern must be adjacent. Further, this algorithm
and the simple algorithm will produce the same set of imputed
values when they are executed against the same data matrix,
provided that the rows in this matrix are sorted into the same
order (matrix row order affects the values imputed by NN
algorithms). However, the simple algorithm does not require
the matrix to be in any particular order when it is executed
independently.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

IV. PERFORMANCE EVALUATION USING SIMULATED MISSING
VALUE DATASETS

The pseudo-code versions of the two NN algorithms
described in the preceding sections have been implemented
using the Microsoft Visual C# programming language. This
section evaluates the performance of these algorithms when
they are used to impute missing values in the simulated datasets
described below.

The experiments were performed to try to answer the
following questions; (1) Would algorithm execution time
decrease as the proportion of missing data in the matrix was
increased? (2) Would the method of creating donor matrices
(as implemented in the algorithm above) decrease algorithm
execution time?

Table I – Comparison of NN algorithm execution times.

Number of
rows in the
data matrix

% of missing
values in the
data matrix

Simple algorithm
execution time

(seconds)

Fast algorithm
execution time

(seconds)

10,000
25
50
75

7
5
4

5
2
1

20,000
25
50
75

26
20
16

21
9
3

30,000
25
50
75

58
46
37

50
22
7

40,000
25
50
75

104
78
62

87
38
11

50,000
25
50
75

159
125
102

136
58
18

60,000
25
50
75

233
181
140

193
94
29

70,000
25
50
75

315
238
195

275
127
34

80,000
25
50
75

417
314
241

353
159
45

90,000
25
50
75

529
421
300

445
195
57

100,000
25
50
75

649
515
379

534
247
72

110,000
25
50
75

787
603
464

655
300
95

120,000
25
50
75

918
720
559

765
357
118

The experiments were performed against 12 randomly

generated data matrices containing between 10,000 and
120,000 rows, as shown in column 1 of Table I. The data values
inserted into these matrices were randomly generated integers
in the range 1 to 100, where 25%, 50% and 75% of these values
were randomly deleted in three stages. This process generated

36 different matrices, as shown in column 2 of Table I. Each of
these matrices contained 7 columns, where the missing values
in column 1 were imputed for every experiment.

Each matrix contained the maximum possible number of
missingness patterns. Generally, the maximum number of
missingness patterns in any matrix = 2n, where n is the
number of columns in the matrix. In this case each matrix
contained 7 columns, therefore 27 = 128 patterns were added
to each matrix. Where these patterns were balanced and evenly
distributed across the rows in each matrix, because the missing
values were deleted completely at random.

Both of the algorithms described in the two preceding
sections were executed against all 36 of the matrices described
above, thus creating 72 sets of experimental results, as shown
in columns 3 and 4 of Table I. The results given in Table I are
also presented in line chart form below. Algorithm execution
times are shown on the y axis of each chart. The number of
rows in the data matrices are shown on the x axis.

The execution time increases for both algorithms as the
number of matrix rows increases, as expected. However,
execution time decreases as the proportion of missing data in
each matrix increases, which confirms the central hypothesis -
i.e. the fastest execution times are shown on the final chart,
where each matrix has 75% missing values.

The charts show that the fast algorithm executed more
quickly than the simple algorithm for every experiment - i.e. the
method of creating donor matrices implemented as part of the
fast algorithm did in fact decrease the execution times. This
performance advantage increases as the proportion of missing
data increases, with the largest difference between the
algorithm execution times occurring for the largest input matrix
shown on the final chart.

7 column matrix with 25% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Simple algorithm
 Fast algorithm

y = 8E-08 x 1.9787
R2 = 0.9998

y = 4E-08 x 2.0233

R2 = 0.9997

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

The regression equations shown on the charts are very close

to the expected 2)(cnnT = results, with the very small
differences in the expected exponents perhaps explained by the
small samples used for the regression calculations. The high R2
values suggest that these equations can be used to predict
algorithm execution times for larger matrices, as shown in
Table II.

Table II – Predicted execution times (given to the
nearest hour) for the algorithms described above.

Number of rows
in the data

matrix

% of missing
values in the
data matrix

Simple algorithm
execution time

(hours)

Fast algorithm
execution time

(hours)

1,000,000
25
50
75

17
14
10

15
8
2

2,000,000
25
50
75

65
58
38

62
33
8

3,000,000
25
50
75

146
130

84

142
78
17

4,000,000
25
50
75

257
231
148

253
141

29

5,000,000
25
50
75

400
361
230

398
224

44

V. PERFORMANCE EVALUATION USING TWO SEGMENTED
SURVEY DATASETS

The experiments described in the previous section were
performed against simulated datasets. However, it is also
important to evaluate the algorithm’s performance using real
datasets. For example, the simulated datasets all contained a
full set of well balanced and evenly distributed missingness
patterns, but this can hardly be expected to occur in practice.
This point is important for the current investigation, since the
missingness pattern structure is the most crucial factor affecting
algorithm performance.

The experiments described below evaluate the algorithm’s
performance when it is executed against segmented datasets.
This is an important consideration, because in practice datasets
are often segmented by class, so that the search for each nearest
neighbour can be limited to the subset of rows within a single
class [5]. The required classes can be created by segmenting the
dataset using a fully observed categorical variable (as for the
experiments described below) or by dividing the dataset into
numeric class intervals using a fully observed numeric variable.
This approach can improve the quality of the imputed values
and reduce the execution time of the NN algorithm. However,
if the segmentation process is carried out only to reduce
algorithm execution time it can reduce the quality of the
imputed values, for example;

• In some cases segmenting the dataset may not produce the
best imputation results - i.e. searching the entire dataset
for donors may be the only sensible way to find the best
estimates for the missing values.

• Segmenting the dataset by category can produce poorly
categorised observations when the categories are created
only to improve performance. This can result in donor
rows being selected from the wrong category.

• The boundaries selected for numeric class intervals can be

7 column matrix with 50% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Simple algorithm
 Fast algorithm

y = 1E-08 x 2.076

R2 = 0.9993

y = 5E-08 x 2.0026
R2 = 0.9998

7 column matrix with 75% missing values

0

100

200

300

400

500

600

700

800

900

1000

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

Number of matrix rows

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

 Simple algorithm
 Fast algorithm

y = 5E-08 x 1.9732
R2 = 0.9997

y = 2E-08 x 1.9258

R2 = 0.9963

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

somewhat arbitrary when they are chosen only to improve
performance. This can result in the selection of
sub-optimal donors, taken from the wrong class.

A. Performing the experiments and interpreting the results
This section evaluates the performance of the new algorithm

when it is used to impute missing values in the survey datasets
described below. The experiments were performed to try to
answer the following questions; (1) Would dividing the matrix
into an increasingly large number of segments steadily decrease
algorithm execution time? (2) Would the method of creating
donor matrices decrease algorithm execution time for large
segmented datasets?

The experiments described below were performed against
two similar survey datasets describing various different Firms
(business enterprises) within the UK. The first survey dataset
described 1,128,463 MICRO Firms, which are defined as
those Firms with less than 10 employees. The second dataset
described 271,955 SMALL Firms, which have between 10 and
49 employees. Both datasets contained the 10 variables
described below. The first 4 variables listed were fully
observed, but the other 6 variables all had large proportions of
missing data.

• The UKSIC Category (United Kingdom Standard
Industrial Classification Category) is a categorical
variable which defines the commercial activities carried
out by each Firm, such as “Publishing of software” etc.

• The OS Easting and OS Northing variables specify the
geographical location of each Firm, using UK Ordnance
Survey mapping co-ordinates.

• The Number of Employees variable specifies the number
of people employed by each Firm.

• The Payroll, Sales, Net Worth, PBT, Director Pay and
Depreciation variables describe each Firm’s financial
situation. These six variables all had large proportions of
missing data.

The UKSIC Category was used to segment both datasets at 4
different levels of granularity (but it was not used to measure
the similarity between Firms, as the other 9 variables were),
where the number of segments created increased as the level of
granularity was increased. This process created 8 different data
matrices, as shown in column 5 of Table III, below.

The algorithms described in sections II and III were executed
against each of the 8 matrices created, where the missing
Payroll values were imputed for every experiment. This
process created 16 sets of experimental results, as shown in the
2 rightmost columns of Table III.

The algorithms described in sections II and III were amended
so that the search for each nearest neighbour could be limited to
the subset of rows within a single UKSIC Category. The
amendments made to the algorithms were quite simple, but they
are not shown in the pseudo-code versions of the algorithms for
reasons of clarity. However, it should be noted that each donor
matrix created by the fast algorithm (see Fig. 2) was segmented
at the required level of granularity immediately after it was
created (while the algorithm was running). For optimum
performance a lookup table (a vector) was then created which
stored the first row number of each category within each donor
matrix, where each donor matrix was sorted by UKSIC
Category so that this could be achieved.

The figures given in the 3 rightmost columns of Table III
show that dividing the matrix into an increasingly large number
of segments steadily decreased the execution time required for
both algorithms. This occurred because as the number of
segments was increased the search for each nearest neighbour
took place within a smaller number of rows.

The figures in brackets given in the rightmost column of
Table III show the improvement in performance offered by the
new algorithm for both datasets. For example, the first row of
figures show that fast algorithm executed in just under one
seventh of the time (given to the nearest minute) taken by the
simple algorithm. It can be seen that these performance
improvements are similar for both datasets, regardless of the
number of segments created.

Table III – Comparison of algorithm execution times using two survey datasets which were
segmented into an increasingly large number of categories.

Dataset description
(number of employees)

Number of
rows in the
data matrix

% of missing
values in the
data matrix

Number of
missingness

patterns

Number of
category
segments

Simple algorithm
execution time

(minutes)

Fast algorithm
execution time

(minutes)

MICRO Firms
(with less than 10 employees) 1,128,463 61.72% 28

58
203
412
488

312
119

53
47

44 (0.14)
16 (0.13)

9 (0.17)
8 (0.17)

SMALL Firms
(with 10 to 49 employees) 271,955 54.97% 27

57
200
409
485

17
6
3
3

6 (0.35)
2 (0.33)
1 (0.33)
1 (0.33)

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

VI. SUMMARY AND DISCUSSION
The slow performance and the resulting poor scalability of

multivariate NN imputation algorithms is a major problem that
has not been sufficiently addressed. Consequently, we have
presented a new, fast, NN imputation algorithm that can be
used to impute missing values in large multivariate datasets
containing many different missingness patterns. We have also
described a set of experiments which have confirmed the
hypothesis that NN imputation algorithm execution times
would decrease as the proportion of missing values in the
dataset was increased. The experiments have also shown that
the method of creating donor matrices (implemented as part of
the new algorithm) significantly decreases NN algorithm
execution time for both segmented and non-segmented datasets
containing several million rows.

We argue that the following three questions are the most
appropriate ones to ask when evaluating the quality of any
multivariate NN imputation process. (1) Is the similarity
measure used suitable for the missing value dataset? - i.e. does
this measure find the best possible donor rows for the
imputation of missing values? (2) Is the method used to
decide which dataset rows should be considered as potential
donors appropriate for the dataset? - e.g. if the dataset has been
segmented, has this been done in such a way that the search for
donors takes place within the best possible subset of rows? (3)
Is the method used to decide which rows can be meaningfully
compared logical, given the nature of the data? This question is
discussed further, below.

The first two questions posed above need not be asked for
the algorithm presented here, because it is generic by design -
i.e. It can employ any method for measuring the similarity
between observations and it can be executed against any sort of
segmented dataset, regardless of the classification scheme used.
On the other hand, the algorithm does specify which rows can
be meaningfully compared, as described in section II. We argue
that this method is the most logical approach for most missing
value datasets, for the following reasons.

In surveys, respondents often fail to answer one or more of
the questions put to them - i.e. It is often the case that every
variable in a survey dataset will have a certain proportion of
missing values [14]. The method we propose can be applied to
all such datasets (from surveys or otherwise), regardless of the
structure and distribution of the missingness patterns they
contain.

Employing any method that uses only the fully observed
variables to measure the similarity between observations does
not make full use of every known value in the dataset. We argue
that the method we propose is more logical, since it attempts to
make the best possible use of the information content within all
of the known values, so as to generate the best possible
estimates for the missing values.

Employing any method that involves comparing rows that do
not have a common set of known values would require the use
of a similarity measure that returns different values depending
on the number of common values in the rows compared. We

argue that this would build an unnecessary level of uncertainty
into the NN imputation process.

REFERENCES
[1] Wasito, I. and Mirkin, B., (2005), Nearest neighbour approach in the least

squares data imputation algorithms, Information Sciences, 169 (1), pp.
1-25.

[2] Wasito, I. and Mirkin, B., (2006), Nearest neighbours in least-squares
data imputation algorithms with different missing patterns,
Computational Statistics & Data Analysis, 50 (4), pp. 926-949.

[3] Durrant, G. B., (2005), Imputation methods for handling
item-nonresponse in the social sciences: A methodological review, ESRC
National Centre for Research Methods: Methods Review Working Paper
No. NCRM/002. Available;
http://www.ncrm.ac.uk/publications/index.php Accessed 26th March
2007.

[4] Kalton, G., Compensating for Missing Survey Data, Ann Arbor, MI:
Survey Research Center, University of Michigan, 1983.

[5] Chen, J. and Shao, J., (2000), Nearest neighbour imputation for survey
data, Journal of Official Statistics, 16 (2), pp. 113-131.

[6] Fay, R. E., (1999), Theory and applications of nearest neighbor
imputation in census 2000, Proceedings of the section on survey research
methods, American Statistical Association 1999, pp. 112-121.

[7] Rancourt, E., Sarndal, C.E. and Lee H., (1994), Estimation of the variance
in the presence of nearest neighbor imputation, Proceedings of the section
on survey research methods, American Statistical Association 1994, pp.
883-893.

[8] Huang, X. and Zhu, Q., (2002), A pseudo-nearest-neighbor approach for
missing data recovery on Gaussian random data sets, Pattern Recognition
Letters, 23 (13), pp. 1613 – 1622.

[9] Stage, A.R. and Crookston, N.L., (2002), Measuring similarity in nearest
neighbor imputation: Some new alternatives, In Proceedings of the
Symposium on Statistics and Information Technology in Forestry,
Blacksburg, Virginia, pp. 91-96.

[10] Lee, C.H. and Shin, D.G., (1999), Using Hellinger distance in a nearest
neighbour classifier for relational databases, Knowledge-Based Systems,
12 (7), pp. 363-370.

[11] Mahalanobis, P.C., (1936), On the generalised distance in statistics,
Proceedings of the National Institute of Science of India, pp. 49-55.

[12] Dunham, M. H., Data Mining Introductory and Advanced Topics,
Prentice-Hall, New Jersey, 2003, pp. 125-142

[13] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., Data Structures and
Algorithms, Addison Wesley, MA, 1983, pp. 16-24

[14] Allison, P. D., Missing Data (Quantitative Applications in the Social
Sciences, series no. 07-136), Sage Publications, California, 2001, pp.
1-12.

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007

