
 

                
Abstract—For the analysis and forecasting of time series, we always 
search for a statistical model capable of understanding the underlying 
processes of data and filtering the unwanted noise. This noise may 
either be white or coloured, having some pattern of autoregressive 
moving average i.e., ARMA(p,q)  processes. This search is carried out 
by using various forecast accuracy criteria and tools such as, Akaike’s 
information criterion (AIC) and Akram test statistic (ATS).  
 

As compared to others, the AIC and ATS are noted to be more 
effective for identification of good models. However, AIC, being  
parametric in nature,  is  found to be comparatively more  sensitive to  
noise volatilities  and cumbersome to use;  whereas, ATS, the base of 
which is  distribution free is observed to be quite  robust to noise 
variations, parsimonious in nature and relatively more easy to use.  In  
this paper  both the AIC and ATS  are reviewed, practical implication 
discussed  and their  role in identifying optimum models from a class 
of candidate statistical  models, especially, the linear dynamic system 
models is examined.  For better insight, into these gadgets an example 
on analysis and forecasting of daily copper prices is given. 
 
Index Terms—Akaike’s information criterion, Akram test statistic, 
optimum forecast, statistical models, ASL, Coloured  noise. 
 
1 Introduction 

Model selection is a decision theoretic approach. The main 
purpose is to identify the model that shows the best balance 
between data fitting and model complexity. Information criteria 
offer various procedures to choose the best model amongst a set 
of many possible models through certain guiding principles in 
particular situations but not across a variety of situations. 
Akaike [1] found the unbiased estimator of (relative) Kullback-
Leibler (K-L) information or distance which is simply the 
distance between the true density and estimated density for each 
model. 
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The basic objective of this paper is not only to explain and 
compare Akaike’s information criterion (AIC) and Akram test 
statistic (ATS), but also to highlight the computational 
simplicity and effective performance of the latter. The paper is 
organized as follows: ATS is introduced through stepwise 
identification procedure in Section 2. A real life example is 
presented in Section 3. The concluding remarks are put in 
Section 4. A table of theoretical values of ASL corresponding to 
various values of coefficient of AR(1) coloured noise process is 
also presented as appendix at the end of the paper. 
 
2 Akram Test Statistic  

A model selection tool cum identifier of the colour of one 
step ahead forecast errors, Akram test statistic (ATS), was 
proposed by Akram [2]. It is applied to check the suitability and 
capability of a model to generate optimum forecasts. To search 
a suitable model by applying ATS, one has to proceed as per the 
following stepwise identification procedure. 

  
Step 1: Analyze discrete time series using a candidate model 
with a white noise component and capable of accommodating 
p-th order autoregressive i.e., AR(p) noise processes, estimate 
the parameters of the model using an optimum estimation 
technique and then generate one-step-ahead forecasts and 
residuals. Standardize the residuals and compute Average String 
Length (ASL) as under 
 

ASL = (ne - 1) / (n- → n+ + n+ → n-) 
 

Here ne is the number of residuals, n- → n+ represents the number 
of shifts from negative to positive signs of the standardized 
residulas, while n+ → n- means the reverse meaning. 
 
Step 2: The three different scenarios for formulating the 
null hypothesis (H0) and the alternative hypothesis (H1) are 
described as follows. 
 

Scenario#1 Scenario#2 Scenario#3 
        H0: µASL ≥ 2         H0: µASL = 2         H0: µASL ≤ 2 
        H1: µASL < 2         H1: µASL ≠ 2         H1: µASL > 2 
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where µASL  is the parent population’s Average String Length 
of residuals or error terms. One of these three scenarios is 
selected in the light of the sampled information and purpose of 
study. 
 
Step 3: For the standardized residuals and notations having the 
usual meanings, compute ATS with the constraint n ≥ 30  

 
ATS : τ = { 2 (ne -1) / (n- → n+ + n+ → n-) } 

 
Step 4: For making decision on the fate of null hypothesis, 
define the acceptance region (Ar) and the rejection regions (Rr) 
at some level of significance α are defined e.g. for a two tailed 
test of significance 
 Ar: 2n / (n-1)+Zα/2√(n-1) ≤ Region ≤2n / (n-1) - Zα/2 √(n-1) 
Rr:  Region < 2n / (n-1) + Zα/2 √(n-1)  
or  Region  > {2n / (n-1) -  Zα/2 √(n-1)} 
 
Step 5: Accept H0 if the value of test statistic τ lies in the 
acceptance region AR; otherwise, reject H0 and accept H1. The 
acceptance of H0 implies that the residuals are white; whereas 
rejection of H0 leads us to the conclusion that the residuals are 
not white, but coloured.  
 
Step 6: In case of coloured noise process, the question is, of 
what type this noise is? AR type, MA or ARMA type and 
what is the order of the noise process? p, q or (p, q). Here, 
discussion is confined to AR(p) processes as an ARMA 
process can be approximated and adequately represented by 
an AR process [3]. For the empirical value of ASL computed 
from the data, a corresponding value Φ of AR(1) coefficient is 
determined. Using this Φ value the initially used candidate 
model is restructured or updated and again applied to the data. 
Then, generate one-step-ahead forecasts and residuals and 
move through the above testing procedure again. If H0 is 
accepted, it depicts that the model with AR(1) noise process is 
suitable. Its one-step-ahead forecast, therefore would be 
optimum. If H0 is rejected again, it means that the model with 
AR(1) coloured noise component, has  failed to filter the noise 
and therefore is not suitable for analysis of data. In this case, 
determine Φ again from the table of theoretical values of ASL 
given at the end as Appendix. The candidate model with AR(1) 
process would therefore be considered inappropriate and 
model with AR(1) process will be reconstructed considering 
AR(2) noise process, using Φ1 (the first Φ)  and Φ2 (the 
second Φ) coefficients.  
 

The above procedure is repeated until the colour is filtered 
out i.e., H0 is accepted. To highlight the practical aspects of 
ATS, a real life example is presented. 
 
3 Example 

Consider a local model at time t, the observation and state 
equations are as under. 

y
t
 = f θt    +  vt 

  θ
t 
= G θt-1 +   wt 

where at time t, for an observation yt, f = (1 x n) is the vector of 
some known functions of independent variables or  constants, θ 
= (n x 1) is the vector of unknown stochastic parameters, G = 
diag{Gi}i=1,2,…, r is a  (n x n) state or transition matrix having n 
number of non–zero eigenvalues {λi }such that i = 1, ..., n, v = 
white noise (having independently  and identically and normally 
distributed terms) with mean zero and some constant variance V 
and w  = (n x 1)  is the parameter noise vector.  
 
For a known prior of θ at time t-1 

(θi t-1, | Di t-1)  ~ N[mi t-1 ;  Ci t-1] 
and the  posterior  of  θ at time t 

(θi t | Di t) ~ N[mi t ; Ci t] 
 the updating mechanism of mt, the estimate of θt is given as,                  

R
t
  =  G C

t-1  G'   +   Wt 

    A
t  

=  R
t 
F  [ I +  F R

t F' ]-1 

                               C
t  

=  [ I – A
t F ] R

t 
                m

t 
=  G m

t-1
 +  A

t [yt
  -  F G m

t-1
] 

where at time t, R is a system matrix, W = diag{Wіt} for         i 
=1,…,n. A is an updating or gain vector and I is an identity 
matrix. All vectors and matrices are assumed compatible in 
dimensions with their associated vectors and matrices of the 
system. Analogous to linear control theory these stochastic 
difference equations cluster themselves into an ensemble of a 
closed loop of linear system. On the basis of updating, the one-
step-ahead forecasts are given by y^t+1 = f G mt-1. one-step-
ahead forecast residuals are obtained as under. 

 
e

t
 = y

t 
  -   f G m

t-1
 

 
Data consisting of 158 observations on closing day copper 

prices per 1000 kilograms, in Pak Rupees (PKR) during the 
period from August 01, 2005 to March 06, 2006 are noted from 
the London Metal Exchange (LME) and plotted to observe their 
pattern.   

                  
These data are analysed by employing 14 statistical models, 

one-step-ahead forecasts generated, residuals computed and 
standardized. Based on these standardized residuals various 
statistics of forecast accuracy measuring criteria are computed 
and given in Table 1. It is noticed that AIC indicates moving 
average model of third order, i.e., MA(3) as the best model. 
However, both Durbin-Watson test statistic and ATS confirm 
the presence of coloured noise process. It is therefore 
concluded that the selected model MA(3) failed to generate 
optimum forecasts. This situation demands construction and 
application of dynamic linear models (DLMs) capable of 
filtering the colour of noise processes. Resultantly, 
generalized exponentially weighted regression (GEWR) type 
dynamic linear models are applied to get optimal forecast after 
due filtration of the coloured noise processes through linear 
dynamic system models with  AR type coloured noise 
components, as is evident from Table 2. Both ATS and D-W 
test statistic indicate presence of coloured noise processes in 
AR(0) white noise model and demand restructuring of DLM 
by redefining f, θ, G and W values. Incorporation of a value of 
0.52 of the AR coefficient indicated by ASL = 3.0784 and 
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smoothing coefficient equal to 0.35 leads to the dynamic 
optimal model with ASL equal to 2.492, generates better 
forecasts as may be visualized from the graph of the optimum 
one step ahead forecasts. The components of this  model, i.e. 
the f-vector, G matrix, W matrix plus the prior values of m0 
vector and C0 matrix for the linear growth white noise AR(0) 
model as well as the AR(1) coloured noise model, in diagonal 
form,  are given as follows. 

 
For AR(0)  Model 
 
 
f = 1 1  1 0  
 

  0 1 
1.6671  01 

       
0             0.3474 

 
  24082  -23308.9  
 

-23308.9 23412 
 

3925.88   
  

-153.07 
 
 
For AR(1)  Model 
 
 
f  1 1 1  
 
 
 0.3076 0 0  
     
 0 1 0   
    
 0 0 0   
 
 
 2 0 0   
  
 0 4.8286 0   
 
 0 0 2.9144   
 
 
  -19.55 
 
  3192.46 
 
  618.55 
  
A similar setting of the model may be made in canonical 
form, if desired,  following Akram [3, 4].  
 

 325.17  -203.76  -45.20 
    
 -203.83   1.84e+06 -1.84e+06
     
 -45.13  -1.86e+06 1.84e+6 
    

 
Forecast for AR(2) coloured noise process  
 

4   Conclusion 
Model selection is not simply hypothesis testing. Rather, it 

ranks various alternative rival models from best to worst. In real 
life situations, the assumption of whiteness of residuals is found 
to be rarely true and the data are usually polluted with coloured 
noise processes. In such situations, it becomes imperative to 
identify the noise processes prior to going for any formal 
analysis so that the models having capability of filtering the 
colour of noise may be constructed to generate results with 
residuals having whiteness in their structures. For such purposes, 
ATS is found to be very simple, parsimonious and straight 
forward test statistic which performs at least equally well as 
AIC. 
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Theoretical Values of ASL  
{AR(1) Colored Noise Process} 

 
 Φ      ASL     |    Φ         ASL 

--------------------------------------------- 
-0.99   1.047380   |   -0.49   1.508438 
-0.98   1.068312   |   -0.48   1.516762 
-0.97   1.084994   |   -0.47   1.525126 
-0.96   1.099504   |   -0.46   1.533532 
-0.95   1.112648   |   -0.45   1.541981 
-0.94   1.124836   |   -0.44   1.550476 
-0.93   1.136311   |   -0.43   1.559018 
-0.92   1.147234   |   -0.42   1.567608 
-0.91   1.157713   |   -0.41   1.576250 
-0.90   1.167828   |   -0.40   1.584944 
-0.89   1.177641   |   -0.39   1.593692 
-0.88   1.187198   |   -0.38   1.602497 
-0.87   1.196536   |   -0.37   1.611360 
-0.86   1.205685   |   -0.36   1.620283 
-0.85   1.214671   |   -0.35   1.629268 
-0.84   1.223515   |   -0.34   1.638317 
-0.83   1.232234   |   -0.33   1.647431 
-0.82   1.240843   |   -0.32   1.656613 
-0.81   1.249357   |   -0.31   1.665865 
-0.80   1.257785   |   -0.30   1.675189 
-0.79   1.266139   |   -0.29   1.684586 
-0.78   1.274427   |   -0.28   1.694059 
-0.77   1.282658   |   -0.27   1.703610 
-0.76   1.290838   |   -0.26   1.713242 
-0.75   1.298975   |   -0.25   1.722955 
-0.74   1.307074   |   -0.24   1.732753 
-0.73   1.315140   |   -0.23   1.742637 
-0.72   1.323180   |   -0.22   1.752611 
-0.71   1.331196   |   -0.21   1.762676 
-0.70   1.339195   |   -0.20   1.772835 
-0.69   1.347179   |   -0.19   1.783090 
-0.68   1.355152   |   -0.18   1.793443 
-0.67   1.363119   |   -0.17   1.803899 
-0.66   1.371081   |   -0.16   1.814458 
-0.65   1.379043   |   -0.15   1.825124 
-0.64   1.387007   |   -0.14   1.835899 
-0.63   1.394977   |   -0.13   1.846787 
-0.62   1.402954   |   -0.12   1.857790 
-0.61   1.410942   |   -0.11   1.868911 
-0.60   1.418942   |   -0.10   1.880154 
-0.59   1.426958   |   -0.09   1.891521 
-0.58   1.434991   |   -0.08   1.903015 
-0.57   1.443045   |   -0.07   1.914641 
-0.56   1.451120   |   -0.06   1.926402 
-0.55   1.459220   |   -0.05   1.938301 
-0.54   1.467346   |   -0.04   1.950342 
-0.53   1.475500   |   -0.03   1.962528 
-0.52   1.483684   |   -0.02   1.974864 
-0.51   1.491900   |   -0.01   1.987353 
-0.50   1.500151   |    0.00   2.000000 
-------------------------------------------- 

 
 
 

 
 

 
Φ      ASL      |    Φ         ASL 
------------------------------------------- 
0.01   2.012809   |   0.51   3.032932 
0.02   2.025785   |   0.52   3.067466 
0.03   2.038931   |   0.53   3.103051 
0.04   2.052253   |   0.54   3.139744 
0.05   2.065756   |   0.55   3.177606 
0.06   2.079445   |   0.56   3.216704 
0.07   2.093324   |   0.57   3.257108 
0.08   2.107401   |   0.58   3.298896 
0.09   2.121679   |   0.59   3.342151 
0.10   2.136166   |   0.60   3.386964 
0.11   2.150866   |   0.61   3.433436 
0.12   2.165787   |   0.62   3.481673 
0.13   2.180935   |   0.63   3.531795 
0.14   2.196317   |   0.64   3.583930 
0.15   2.211940   |   0.65   3.638223 
0.16   2.227811   |   0.66   3.694828 
0.17   2.243938   |   0.67   3.753921 
0.18   2.260329   |   0.68   3.815694 
0.19   2.276993   |   0.69   3.880361 
0.20   2.293938   |   0.70   3.948159 
0.21   2.311173   |   0.71   4.019357 
0.22   2.328708   |   0.72   4.094255 
0.23   2.346552   |   0.73   4.173190 
0.24   2.364717   |   0.74   4.256549 
0.25   2.383212   |   0.75   4.344765 
0.26   2.402050   |   0.76   4.438340 
0.27   2.421241   |   0.77   4.537850 
0.28   2.440799   |   0.78   4.643957 
0.29   2.460737   |   0.79   4.757439 
0.30   2.481068   |   0.80   4.879203 
0.31   2.501806   |   0.81   5.010323 
0.32   2.522967   |   0.82   5.152078 
0.33   2.544566   |   0.83   5.306005 
0.34   2.566621   |   0.84   5.473975 
0.35   2.589149   |   0.85   5.658286 
0.36   2.612167   |   0.86   5.861803 
0.37   2.635697   |   0.87   6.088140 
0.38   2.659759   |   0.88   6.341950 
0.39   2.684374   |   0.89   6.629334 
0.40   2.709566   |   0.90   6.958474 
0.41   2.735359   |   0.91   7.340647 
0.42   2.761778   |   0.92   7.791923 
0.43   2.788852   |   0.93   8.336141 
0.44   2.816610   |   0.94   9.010532 
0.45   2.845082   |   0.95   9.877212 
0.46   2.874301   |   0.96   11.04981 
0.47   2.904304   |   0.97   12.76558 
0.48   2.935127   |   0.98   15.63866 
0.49   2.966810   |   0.99   22.10603 
0.50   2.999397   |   0.999  69.29176 
------------------------------------------- 
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Model Std RSS AIC ASL D-W Bias  MAE MAPE MSE RMSE TS 

Table 1: Forecast accuracy measures for LME copper 
rate forecast 

 Table 1: Forecast accuracy measures for LME  
copper rate forecast 

LR 155.00 2.97 4.62 0.39 2.20e-08  0.79 0.02 1.00 1.00 4.41e-06 

MA (1) 155.00 1.98 9.24 - 1.62e-07  0.87 0.02 1.00 1.00 2.97e-05 

MA (2) 150.36 -3.83 2.86 1.54 9.05e-09  0.73 0.02 0.96 0.98 1.95e-06 

MA (3) 147.44 -6.93 3.34 1.15 -1.65e-08  0.76 0.02 0.95 0.97 -3.47e-06

MAT (3) 154.98 2.95 2.01 2.36 3.39e-09  0.70 0.02 1.00 1.00 7.62e-07 

SES 153.10 -0.98 2.09 2.34 7.54e-09  0.67 0.02 0.98 0.99 1.78e-06 

ARIMA (1,1,0) 155.00 2.97 2.42 - 8.29e-09  0.70 0.02 1.00 1.00 1.88e-06 

ARIMA (1,1,1) 154.00 4.21 2.38 - 9.24e-09  0.72 0.02 1.00 1.00 2.02e-06 

ARIMA (2,1,0) 154.00 4.21 2.49 - -2.26e-09  0.70 0.02 1.00 1.00 -5.11e-07

ARIMA (2,1,1) 152.98 5.30 2.45 - 2.16e-08  0.72 0.02 1.00 1.00 4.78e-06 

ARIMA (0,1,1) 155.00 2.97 2.49 - 4.14e-09  0.71 0.02 1.00 1.00 9.29e-07 

ARIMA (2,1,2) 152.00 6.44 2.45 - 9.57e-09  0.71 0.02 1.00 1.00 2.11e-06 

Table 2: Accuracy measures for dynamic forecasts for 
LME copper rate 

 Table 2: Accuracy measures for dynamic forecasts
 for LME copper rate 

AR (0) 148.12 -4.21 3.08 1.65 1.05e-08  0.72 0.02 0.96 0.98 2.32e-06 

AR (1) 149.20 -0.80 2.49 1.95 6.03e-09  0.70 0.02 0.97 0.98 1.36e-06 

Key:   
LR=Linear regression,  
MA=Moving average,  
SES= Single exponential smoothing,  
MAT=Moving average with trend, 
ARIMA=Autoregressive integrated moving average, Std. 
RSS = Standardized residual sum of squares,  
MAE = Mean absolute error,  
MAPE = Mean absolute percentage error  
MSE = Mean square error,  
RMSE = Root mean square error,  
TS = Tracking signal 
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