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Abstract—Several statistical tools and most re-
cently Functional Networks (FN) have been used to
solve nonlinear regression problems. One of the tasks
associated with all of these methodologies consists of
discovering the functional form of the contribution of
the explanatory variables to the response variable. In
this paper, we tackle this problem using functional
network models (FNs). Since these models usually
involve from a moderate to high number of parame-
ters, a genetic algorithm (GA) for model selection is
proposed. After an introduction of FNs and GAs, the
performance of the proposed methodology is assessed
using a simulation study as well as a real-life data set.
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1 Introduction

Functional networks have been applied to reproduce the
relationship between a response variable Y and one or
more predictor variables X1, X2, . . . , Xk in [3], [4] and [5].
In this paper, we consider that the relationships among
these variables can be written as

f(Y ) = h(X1, X2, . . . , Xk) + ε. (1)

where ε is a random error whose expected value is as-
sumed to be 0. Our purpose is to discover the structure
of the transformations f and h in (1).

Functional networks can be seen as the graphical repre-
sentation of a functional equation (an equation where the
unknowns are functions), which provides a better under-
standing of the properties of the model at hand. The
principal steps to work with functional networks consist
of (1) selecting the topology (guarantying the uniqueness)
and a set of basic functions to approximate the unknown
functions in the model and (2) learning, which involves
to choose a criterion to estimate the parameters and a
procedure to select the best model.
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In this paper, we present two basic functional network
topologies: the additive model and the additive general
model, which are briefly described in Sections 2.1 and 2.2.
The advantage of these two models is that the estimation
problem can be solved using the constrained least squares
criterion, which leads to solve a linear system of equa-
tions. Moreover, the set of basic functions chosen to ap-
proximate the unknown functions is the polynomial fam-
ily of linearly independent functions Φ = {1, t, t2, . . . , tq}.
Model selection is tackled via Genetic Algorithms (GAs).
They are heuristic search algorithms based on the evo-
lutionary ideas of natural selection and genetics. An in-
troduction can be found in [7]. Previous works in func-
tional networks consider forward-backward or exhaustive
searching methods ([3], [4] and [5]). But, because of the
computational cost, these procedures are useless when
the number of parameters is large.

The rest of the paper is structured as follows. In Section
2 two basic functional network models are introduced.
Genetic algorithms are described in Section 3 together
with the strategies for its application to our particular
problem. The performance of the proposed techniques is
showed in Sections 4 and 5, where a simulation study and
a real-life data set are presented.

2 Some functional network models

We propose to approximate (1) using the additive and the
general additive functional network models. The additive
model approximates h in (1) by a sum of functions, one
on each explanatory variable, which allows us to analyse
the contribution of each predictor separately. The gen-
eral additive model also includes the interactions among
them.

2.1 Additive model

The additive functional equation is

f(y) = h1(x1) + h2(x2) + . . . + hk(xk), (2)

which leads to the functional network showed in Figure
1.

To estimate f and h1, . . . , hk in (2) we consider linear
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Figure 1: The additive functional network.

combinations of basic functions φ, that is,

f̂(y) =
q0∑

j=1

a0jφ0j(y) and ĥi(xi) =
qi∑

j=1

aijφij(xi) (3)

and the problem is reduced to estimate the parameters
aij ,∀i, j. If the set of basic functions is the polynomial
family, equation (2) can be approximated by

q0∑

j=1

a0jy
j = a +

q1∑

j=1

a1jx
j
1 + . . . +

qk∑

j=1

akjx
j
k, (4)

where a is the constant term, which is included just
once for avoiding identifiability problems. Note that the
number of parameters in this model is

∑k
i=0 qi + 1. If

qi = q, ∀i, then the number of parameters is q×(k+1)+1.

2.2 The General Additive Model

A more general form of approximating h in (1) is consid-
ered when we use the general additive functional equation

f(y) =
q1∑

r1=1

. . .

qk∑
rk=1

cr1...rk
φr1(x1) . . . φrk

(xk), (5)

where cr1...rk
are unknown parameters and each φ be-

longs to the family of basic functions. An example of its
corresponding functional network model, for k = 2 and
q1 = q2 = q, is shown in Figure 2.
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Figure 2: The general additive functional network for
k = 2 and q1 = q2 = q.

To estimate the unknown function in (5) we just need to
approximate f as in (3). Then, the problem is reduced to

estimate the parameters a0j and cr1...rk
, ∀j, r1, . . . , rk. If

the set of basic functions is the polynomial family, equa-
tion (5) can be approximated by

q0∑

j=1

a0jy
j =

q1∑
r1=0

. . .

qk∑
rk=0

cr1...rk
xr1

1 . . . xrk

k . (6)

Note that the number of parameters in this model is q0 +∏k
i=1(qi+1). When qi = q, ∀i, the number of parameters

is q + (q + 1)k.

3 Genetic Algorithms

The number of parameters in a functional network model
depends on the number of explanatory variables and the
number of elements in the set of basic functions. In the
additive model, the dimensionality of the problem grows
linearly with the number of explanatory variables, but
when the general additive model is considered, the di-
mensionality grows exponentially with the number of ex-
planatory variables. Then, when the number of parame-
ters is from moderate to high, an heuristic search method
must be implemented for model selection. In this paper,
a genetic algorithm is considered. Its purpose is to select
the optimal subset of parameters to compose a model
which provides a good approximation to (1).

A genetic algorithm starts with a random set of initial
models. Each model is represented by a string of binary
characters, called chromosomes. As an example, let us
consider the model selection problem of an additive func-
tional network with two explanatory variables

f(y) = h1(x1) + h2(x2),

where f , h1 and h2 are approximated by polynomials of
degree 3. Each model is then represented by a chromo-
some of length 10. The chromosome v = [1111111111]
represents the complete model, that is, all the terms are
included in the model,

α1y + α2y
2 + α3y

3 = β0 + β11x1 + β12x
2
1 + β13x

3
1+

β21x2 + β22x
2
2 + β23x

3
2.

And, the chromosome v = [1001100100] represents the
linear model, that is, only the linear terms in y, x1 and
x2 are included in the model, α1y = β0 + β11x1 + β21x2.

Each model of the initial set is evaluated by the adjusted
R-squared criterion (R2

a), which penalizes models with a
high number of parameters:

R2
a = 1−

∑n
i=1 e2

i /(n− p)
∑n

i=1(f̂(yi)− f̂(yi))2/(n− 1)
, (7)

where n is the sample size, p is the number of parameters
in the model, ei is the i-th residual (for example, for the
additive model, ei = f̂(yi)−ĥ1(x1i)−. . .−ĥk(xki), where
f̂ and ĥi are obtained as in (3)) and f̂(y) = 1

n

∑n
i=1 f̂(yi).

Proceedings of the World Congress on Engineering 2007 Vol II
WCE 2007, July 2 - 4, 2007, London, U.K.

ISBN:978-988-98671-2-6 WCE 2007



Next, the best chromosomes of the initial population, in
the sense of those with highest R2

a, are selected. Then,
a new population is obtained by applying genetic opera-
tions as crossover and mutation. This population is again
evaluated and the process is repeated for some specified
number of additional generations or when the evaluation
function does not improve any more.

The size of the initial population and the probabilities of
mutation and crossover have to be chosen by the user.
See [7] for further details.

4 Assessing Performance Using Simula-
tion

To assess the performance of the proposed method we use
a set of simulated data from the model

Y 2 = X2
1 + X2

2 −X1 ∗X2 + ε, (8)

where X1 and X2 are independent U [0, 2], and ε is
N [0, 0.1] and independent of X1 and X2.

We have estimated the model by applying the general
additive functional network model, described in Section
2.2, with two explanatory variables. All the functions
have been approximated by third degree polynomials.

The genetic algorithm described in Section 3, with popu-
lations of size 700, and crossover and mutation probabil-
ities equal to 0.4, and 0.1, respectively, has been applied
hundredfold. In this example, the models are represented
by chromosomes of 19 bits. The chromosome represent-
ing the true model (8), including the constant term, is
[0101010010100000000]. The mapping of this chromo-
some and the corresponding terms in the functional net-
work model can be depicted as follows:

y y2 y3 1 x1 x2
1 x3

1 x2 x2
2 x3

2

0 1 0 1 0 1 0 0 1 0
x1x2 x1x

2
2 x1x

3
2 x2

1x2 x2
1x

2
2 x2

1x
3
2 x3

1x2 x3
1x

2
2 x3

1x
3
2

1 0 0 0 0 0 0 0 0

Table 1 shows the terms included in the 17-th best se-
lected models, ordered by the value of the evaluation
function R2

a. They are models whose R2
a is greater than

0.79. The constant term does not appear in the table,
since it is always included in the model. Model number
5 is the true model with R2

a = 0.8033. The rest of the
models have R2

a values very close to that. Note that all
the models contain a number of terms less than 6 (in-
cluding the constant term), far away from the maximum,
19. Moreover, most of them (10/17) have exactly 4 pa-
rameters, the same as the true model. We can define a
simple measure of the complexity of the model by adding
the powers of the terms included on it. It is shown in the
last column of Table 1. With the help of this measure,

Table 1: Selected Models to Approximate the Simulated
Model in (8).

y x1 x2 Interactions R2 Complexity
1 y2, y3 x2

1 x2 x2
1x

3
2 0.8124 13

2 y3 x3
1 x2

2 x2
1x

2
2 0.8121 12

3 y3 x3
1 x2 x2

1x
3
2 0.8111 12

4 y3 x3
1 x2

2 x3
1x

3
2 0.8039 11

5 y2 x2
1 x2

2 x1x2 0.8033 8
6 y2, y3 x2

1 x2 x3
1x

3
2 0.8030 14

7 y2 x2
1 x2 x3

1x
3
2 0.8017 11

8 y2, y3 x2
1 x2

2 x1x
2
2 0.8008 12

9 y2, y3 x3
1 x2 x2

1x
2
2 0.7998 13

10 y2 x2
1 x2

2 x2
1x2 0.7971 9

11 y3 x3
1 x2 x3

1x
2
2 0.7970 12

12 y3 x3
1 x2

2 x1x
2
2 0.7965 11

13 y2 x2
1 x2 x2

1x2 0.7945 8
14 y2, y3 x1, x

2
1 x2

2 x2
1x

3
2 0.7924 15

15 y2, y3 x2
1 x2, x

2
2 x2

1x2 0.7922 13
16 y3 x3

1 x3
2 x1x2, x

2
1x2 0.7912 14

17 y3 x1 x2 x2
1x

3
2 0.7911 10

we can choose the model with smallest complexity among
those with highest R2

a. In this case, this model is number
5, the true model.

5 Assessing Performance Using Real
data

Boston Housing data set contains 506 observations of 13
continuous variables and 1 binary valued variable related
with housing values in suburbs of Boston. The purpose is
to find the best fitting functional form and, in particular,
to determine the pattern of the influence of air pollution
on housing values as measured by x5. The variables are:

y: Median value of owner-occupied homes in
dollar 1000’s,

x1: Per capita crime rate by town,
x2: Percentage of residential land zoned for lots over

25,000 sq.ft.,
x3: Percentage of non-retail business acres per town,
x4: Charles River dummy variable (= 1 if tract

bounds river; 0 otherwise),
x5: Nitric oxides concentration (parts per 100 millions),
x6: Average number of rooms per dwelling,
x7: Percentage of owner-occupied units built prior

to 1940,
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x8: Weighted distances to five Boston employment
centres,

x9: Index of accessibility to radial highways,
x10: Full-value property-tax rate per dollar 10,000,
x11: Pupil-teacher ratio by town,
x12: (Bk − 0.63)2 where Bk is the proportion of

blacks by town,
x13: Proportion of lower status of the population.

This data set was created by Harrison and Rubinfeld,
[6], and it is analyzed in [1] and [2], among others. In
[6] and [1] a linear model is proposed where y, x8, x9

and x13 are transformed by logarithms and x5 and x6

are squared. In [2] the ACE algorithm is applied to the
transformed variables suggested in [6]. They conclude
that the best model only need x6, x10, x11 and x13, as
predictors, with a milder transformation for y (different
than logarithmic), a transformation for x6 different from
squared one and some transformation for x10.

We apply an additive functional network model. Each
function is approximated by third degree polynomials.
The GA proposed in Section 3 is applied. The models are
represented by chromosomes of 42 bits. Table 2 shows
the 11 best models (R2

a > 0.68) obtained by repeating
hundredfold the GA. All these models include a complete
transformation in y and the constant term. Note that
any model contain x6, x10 or x12. Most of the models
suggest a complete transformation of x1, x2, x3 and x13

and include just one term of x5, x7, x9 and x11. Note
that x5 appears in all the models squared or cubic, as it
was found by Harrison and Rubinfeld.

Attending to the complexity measure introduced in Sec-
tion 4, the best model is number 4 followed by number
9. Both give complete transformations of x1 and x13, do
not transform x7 and include x2

5 and x3
9. They just differ

in the transformations suggested for x3 and x8.

6 Conclusions and Future Work

A genetic algorithm is presented as a powerful tool to
select the terms involved in a functional network model.
The GAs solve the computational problems which appear
in model selection with a moderate to high number of
parameters. The obtained models are simple and provide
satisfactory approximations.
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Table 2: Selected Models GA.
Terms in the selected model R2 Complexity

1 x1, x
3
1 x3, x

2
3, x

3
3 x4 x3

5 x3
7 x2

8, x
3
8 x2

9, x
3
9 x3

11 x13, x
3
13 0.7057 40

2 x1, x
2
1 x2, x

2
2x

3
2 x3, x

2
3, x

3
3 x4 x3

5 x3
7 x2

8, x
3
8 x2

9, x
3
9 x3

11 x13, x
3
13 0.7002 45

3 x1, x
2
1 x3, x

3
3 x4 x2

5 x7 x3
8 x3

9 x2
11 x13, x

2
13, x

3
13 0.6909 31

4 x1, x
2
1 x3, x

3
3 x4 x2

5 x7 x3
8 x3

9 x2
11 x2

13, x
3
13 0.6908 30

5 x2
1, x

3
1 x3, x

2
3 x3

5 x3
7 x2

8 x3
9 x3

11 x13, x
3
13 0.6845 31

6 x1, x
3
1 x2

2, x
3
2 x2

3, x
3
3 x3

5 x7 x2
8, x

3
8 x3

9 x3
11 x2

13, x
3
13 0.6835 40

7 x1, x
3
1 x2, x

3
2 x3, x

2
3, x

3
3 x3

5 x2
7 x3

8 x3
9 x3

11 x2
13, x

3
13 0.6821 39

8 x2
1, x

3
1 x2

2 x3, x
2
3, x

3
3 x3

5 x8 x2
9 x2

11 x2
13, x

3
13 0.6819 32

9 x1, x
2
1 x3

3 x4 x2
5 x7 x2

8, x
3
8 x3

9 x11 x2
13, x

3
13 0.6817 30

10 x1, x
3
1 x3

2 x2
3, x

3
3 x3

5 x7, x
3
7 x3

8 x9 x3
11 x2

13, x
3
13 0.6817 37

11 x1, x
2
1, x

3
1 x2, x

3
2 x3, x

2
3, x

3
3 x2

5 x3
7 x3

8 x2
9 x3

11 x13, x
3
13 0.6802 39
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