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Abstract—Experimental data need to be assessed
for purposes of model identification, estimation of
model parameters and consequences of misspecified
model fits. Here the first and third factors are consid-
ered via analytic formulations for the distribution of
the maximum likelihood estimates. When estimating
this distribution with statistics, it is a tradition to in-
vert the roles of population quantities and quantities
that have been estimated from the observed sample.
If the model is known, simulations, normal approxi-
mations and p*-formula methods can be used. How-
ever, exact analytic methods for describing the esti-
mator density are recommended. One of the methods
(TED) can be used when the data generating model
differs from the estimation model, which allows for
the estimation of common parameters across a suite
of candidate models. Information criteria such as AIC
can be used to pick a winning model. AIC is how-
ever approximate and generally only asymptotically
correct. For fairly simple models, where expressions
remain tractable, the exact estimator density under
TED allows for comparisons between models. This is
illustrated via a novel information criterion. Three
linear models are compared and fitted to econometric
data on patent filings.

Keywords: AIC, likelihood, model comparison, patent

filing, technique for estimator densities

1 Introduction

In the context of data analysis or data mining, a number
of indicators are used for assessing data structure and for
the comparison of explanatory models [7]. However, a
danger is that such measures may be used without un-
derstanding the logic behind their construction. When
confronted with data from an experiment that contain
errors, some basic questions arise. These include, firstly,
what (if any) model can be identified. Secondly, how can
parameters from a candidate model be best estimated.
Thirdly, what are the consequences for the parameter es-
timates if the chosen model is wrong.

There are practical considerations that should be con-
sidered in order to minimise these problems. For exam-
ple, an experiment should be well designed in a statistical
sense by including replication and the sample should span
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a useful region of the parameter space. It may well be
that the model structure is already known from previous
experience and that prior information can somehow be
incorporated into the analysis. An experiment can also
be strictly designed in advance to discriminate between a
set of prespecified models via a formal hypothesis testing
procedure.

But one may nevertheless encounter unexpected results
The data could be unique (e.g. in astronomy) or ex-
pensive to reproduce (e.g. samples taken from a nuclear
reactor), or broadly consistent with several emergent hy-
potheses (e.g. in social studies). A statistical toolbox is
required to deal with these situations. In this paper, some
developments will be described. However this toolbox is
not yet complete.

It will be assumed that data are to be analysed by using
maximum likelihood estimation under a specified model.
The approach will involve studying the distributions of
maximum likelihood estimates in terms of their probabil-
ity density functions (estimator densities). The spectrum
of methods that are available for determining these den-
sities will be reviewed. In particular a method will be
highlighted that determines the exact estimator density
when a distinct model generates the data from the model
that is used for estimation. Then there is a discussion
of information criteria for comparing models on observed
data and associated applications of the exact estimator
density.

2 Definitions

Suppose that the members of a sample wi, (i = 1, ..., n)
correspond to a model in the form of a probability dis-
tribution g(wi|θ), where θ is a px1 vector of estimable
parameters. The space of w is W , and the space of θ is
Θ. g(wi|θ) will be considered to be continuous, though
simpler equivalents exist for the results when g(wi|θ) is
discrete. In vector notation, write the sample as w(px1),
with likelihood given by the joint density g(w, θ). The

MLE is the value θ̂ of θ that maximises g(w, θ).

It will be remembered that, in statistical modelling as
well as in life, managing expectations is an important
thing. E[h(w)] indicates mathematical expectation of a
function h(w) of the data w, but possibly refers to the
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data indirectly via the MLE or some other calculable sta-
tistic.

E[h(w)] =
∫

W
h(w)g(w)dw

Useful quantities for inference are obtained from the log
likelihood l(θ, w) = log(g(w, θ)). The first derivative wrt
θ is termed the observed score l′(θ, w)(px1), where ′ indi-
cates differentiation wrt θ. The MLE then satisfies the
normal equation (l′(θ, w)|θ=θ̂) = 0(px1). From the second
derivative can be obtained a quantity called the observed
information j(θ, w)(pxp) = −l′′(θ, w). These quantities
are observed because they depend upon the realisation
of a particular sample w. But expected equivalents are
also useful, in particular the expected information ma-
trix i(θ, w)(pxp) = E[j(θ, w)]. A vector of independent
variables z can be introduced in the above expressions to
represent covariates in the regression situation.

3 Estimator densities from a statistical
model

Consider the probability density function of the MLE
from a specified statistical model. Inferences about the
parameters from sample data can be based on descrip-
tors of this density. For example, the mean of the density
gives an estimate of the parameter itself and the variance
allows the construction of a confidence interval for the pa-
rameter. It is also relevant to describe the density when
the data generating mechanism differs from the model
that is assumed for estimation. This might happen in a
regression setting, where the estimation model is one of a
number of possible candidate models for a process. Spe-
cial techniques can be applied when there is doubt about
the form of the data generating model, including distrib-
ution free and robust approaches to estimation. But the
use of a specific estimation model is usual when the data
are presumed to be distributed in a certain way according
to a scientific hypothesis. Nevertheless the modeller may
accept that alternative models are possible.

In the remainder of this section and in Section 4, it will
be assumed that the parameters for the formulae are al-
ready known before generating the estimator densities.
This is of course not the case when confronted with a
real set of data. Now the parameters must be estimated
and presumptions made about their true values, so that
estimator densities can be generated. This is usually done
by a principle of inversion: assume that the parameter es-
timate is in fact the true value and generate an estimator
density on this assumption. Typically confidence inter-
vals for the true parameter value can be generated around
the parameter estimates on the basis of the estimator den-
sity. However this approach becomes questionable if the
density is highly asymmetric.

A simple example of an estimator density is that of the
mean of a normally distributed variable w, distributed as

N(θ0, σ
2), with known variance σ2. If the same model

N(θ, σ2) is fitted with the mean θ as the estimable pa-

rameter, then the MLE θ̂ is distributed as N(θ0, σ
2/n),

where n is the sample size. This result is exact and can be
easily proved (see Section 4.1). When the data are from

a more intricate model, a distribution for the MLE θ̂ is
given by a normal approximation as N(θ0, i(θ, w)−1) [5].
However this expression is generally only an approxima-
tion to the actual distribution g(θ̂), to O(n−1) accuracy
[4]. This means that it is only correct in the asymptotic
limit as n → ∞, where almost everything that can be
known about the population is present in the sample and
θ̂ → θ0 due to consistency of the MLE.

Alternative techniques are available. One of these is the
p*-formula [2] [9], which is based on ideas of the asymp-
totic sufficiency of the MLE and can be more accurate
than the normal approximation. The p*-formula is exact
for a range of common models, although it is in general
only asymptotically correct.

g(θ̂|a) = c|j(θ̂, θ̂, a)|1/2el(θ0,θ̂,a),

where c is a normalising constant and || indicates absolute
value. In this formula, the log likelihood is expressed not
in terms of the sample vector w, but via (θ̂, a), where
a is an ancillary statistic. This means a distribution-
constant statistic which, together with the MLE, con-
stitutes a sufficient statistic. Sufficient, in the classical
sense, means that the conditional density for the data w
does not depend on the true parameter value θ0 [14]. l
is the normed form of the likelihood given by the differ-
ence between the log likelihood at θ0 and its value at the
MLE θ̂, l(θ0, θ̂, a) = l(θ0, θ̂, a)− l(θ̂, θ̂, a). The p*-formula
is generally again only an approximation to the actual
distribution g(θ̂), to O(n−1) accuracy. But it can be con-
siderably better than the normal approximation, because
it takes more of the model structure into account. It is
exact for a number of commonly used distributions.

In case an exact distribution is required, the default op-
tion is to carry out a simulations based analysis [13].
But simulation is essentially a numerical technique that
requires a lot of computation. Some progress has been
made in the formulation of exact analytic expressions for
estimator densities. The trade off with approximate an-
alytic forms is that computations become more difficult,
though less extensive than with simulations and not at all
impractical where prewritten routines can be made avail-
able. The user should ensure that the initial conditions
are fulfilled for the method that is selected.

An exact formula for g(θ̂) was given by Skovgaard [15].
This is specified for the general class of contrast esti-
mators, but is restricted here to the case of maximum
likelihood estimation.
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g(θ̂) = E[|j(θ, w)||l′(θ,w)=0].gs(0, θ0), (1)

where gs(l
′(θ, w), θ0) is the marginal density of the ob-

served score.

Another formulation for g(θ̂) was proposed by Hillier and
Armstrong [8]. This is an integral equation, that can also
apply to more general statistics than the MLE. It also
depends upon l′(θ, w) and j(θ, w).

g(θ̂) =

∫

W
θ̂

|j(θ, w)|.|l′(θ, w).[l′(θ, w)]T |−1/2g(w|θ0)(dWθ),

(2)

where (dWθ) denotes a volume element on the surface
Wθ.

In both equations (1) and (2), only the data, the observed
score and the observed information are involved. Thus it
is not required that an analytic expression be available for
θ̂ in terms of the underlying data, which is useful because
the MLE can usually only be found by an iterative esti-
mation routine. The formulae however differ from each
other in that (2) eschews the use of an expectation term
within the formula, rather leaving the whole formula as
a kind of extended expectation. Both sets of authors go
on to show that their exact techniques can be used to
re-establish previously known approximate approaches.

For simple densities, approximate methods such as p*-
formula are at least asymptotically correct. They can also
be used to make approximate inferences for small samples
where the asymptotic results do not hold. But a trade-off
should be applied, with exact techniques to be preferred
unless they are too difficult to apply in a particular situa-
tion. Approximate techniques are often sufficiently close
to exactness to be acceptable when the estimation model
is equivalent to the data generating model. However they
are not usually appropriate when models differ, and nei-
ther expression (1) nor (2) can be used directly in this
situation either. In the next section an alternative for-
mula will be discussed that can operate when the data
generating model differs from the estimation model.

4 An exact technique for estimator den-
sities (TED)

In the following, statistical models will be specified in
terms of the densities of data that are generated by them.
Consider that g0(w) is the true density of w, and g1(w|θ)
is a presumed density for estimation of θ. The log likeli-
hood corresponding to g1(w|θ) is l(θ, w). g0 and g1 can
also be the same, in which case g0(w) = g1(w|θ0).

When models differ, the estimate obtained by minimising
l(θ, w) is technically a quasi maximum likelihood estimate

(QMLE) [17]. Nevertheless it will continue to be termed

MLE (θ̂) here and is given by the same expression as that
for the MLE in the usual situation, (l′(θ, w)|θ=θ̂) = 0.

The space of θ̂ is Θ̂, a subspace of Θ.

Consider a (p×1) vector T .

T (θ, θ∗, w) = l′(θ∗, w) − l′(θ, w) (3)

θ∗ is fixed at an arbitrary value. Under a simple set of
regularity conditions, the exact density for θ̂ is given as
follows [10].

g(θ̂) = Ew[|j(θ, w)||θ=θ̂] . g[T (θ̂,θ∗=θ̂,w)](0), (4)

where j(θ, w) = −l′′(θ, w) is the observed information
under the estimation model g1(w|θ), and the second
term represents the value of the density g[T (θ̂,θ∗,w)](t),

for which θ∗ = θ̂, and hence t = 0 by (3). This is to

be derived as the density of a transform T (θ̂, θ∗, w) of
the data w on the data generating model g0(w). The
term Ew[|j(θ, w)||θ=θ̂] describes a conditional expecta-

tion, that is conditional on θ = θ̂ and is taken wrt w over
g1(w|θ).




∫
W

θ̂(v)

|j(θ, w(v))||θ=θ̂ . g1(w(v)|θ=θ̂) . ||w′(v)|| dv

∫
W

θ̂(v)

g1(w(v)|θ=θ̂) . ||w′(v)|| dv


 (5)

Here, integration is carried out on a manifold W
θ̂(v)

,

which runs over an (n - p) dimensional subset of W .
The term ||w′(v)|| indicates the magnitude of the Jaco-
bian from co-ordinates v that index the manifold to w.
In practice ||w′(v)|| dv is equivalent to the volume ele-
ment dWθ in equation (2). However equation (4) may
be easier to use than equation (2), since the evaluation
of expectation (5) involves taking conditional expecta-
tions over data sets, which can usually be done with-
out evaluation of the integrals in the expression. This
is because of the following plug-in principle. In practice
terms in w can be replaced by Ew[w|θ=θ̂], terms in w2 by
Ew[w2|θ=θ̂], etc. For example, if the model g1(w|θ) was
normal N(r[θ1], θ2), terms proportional to w would be

replaced by terms proportional to r[θ̂1], and terms pro-
portional to w2 would be replaced by terms proportional
to θ̂2+[r(θ̂1]

2. Equation (4) reduces to equation (1) when
g0(w) = g1(w|θ0).

4.1 An example of the mean of a sample
from a normal distribution

This is an example where the estimation model is equiv-
alent to the data generating model. The application of
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TED for determining the pdf of the MLE will now be
shown for the simple case of estimating the mean µ of a
sample from a normal distribution N(µ0, σ

2), with vari-
ance σ2 assumed to be known. The argument is given to
illustrate how the technique can work in more complex
cases, and there are certainly easier ways to establish this
particular result, for example via the moment generating
function [6].

The data generating and estimation models are written as
follows, in vector form, based on the analytic expression
for a normal distribution.

g0(w) = exp[−nlog(
√

2πσ2) − ( 1
2σ2 ) .

[wT w − 2µ0w
T 1 + µ01

T 1µ0] (6)

g1(w|θ) = exp[−nlog(
√

2πσ2) − ( 1
2σ2 ) .

[wT w − 2µwT 1 + µ1T 1µ], (7)

where T indicates transposition and 1 is a (nx1) vector
of 1s.

Here the parameter vector θ is just a scalar µ because
p = 1. The log-likelihood is the logarithm of (7), and its
derivative wrt µ is

l’(θ, w) = ( 1
σ2 )[1T . (w − µ1)]

By (3),

T(θ, θ∗, w) = ( 1
σ2 )[1T . (w − µ∗1)] − ( 1

σ2 )[1T . (w − µ1)]

When l′(θ, w)|θ=θ̂ = 0, µ = µ̂ = wT 1. Therefore

T (θ̂, θ∗, w) = (
1

σ2
)[1T . (w − µ∗1)] (8)

The observed information is j(θ, w) = −l′′(θ, w) = n
σ2 .

This is a constant here, so the conditional expectation
(5) is also n

σ2 .

In order to develop the density g[T (θ̂,θ∗,w)](t), recall that

this is derived as the density of T (θ̂, θ∗, w) under the data
generating model g0(w). In this case, g0(w) is given by

equation (6). Equation (8) indicates that T (θ̂, θ∗, w) is a
linear transform of w, and the use of a Jacobian shows
that g[T (θ̂,θ∗,w)](t) is N(nµ0

σ2 − nµ∗

σ2 , n
σ2 ). Therefore

g[T (θ̂,θ∗=θ̂,w)](0) = 1√
2π. n

σ2

.exp

[
−1
2n

σ2
.[0 − (nµ0

σ2 − nµ̂
σ2 )]2

]
=

1√
2π. n

σ2

.exp

[
−1
2σ2

n

.[(µ̂ − µ0)
2]

]
(9)

Applying (4), g(θ̂) is obtained as the product of n
σ2 and

(9), which is N(µ0, σ
2/n), as required.

The step of calculating g[T (θ̂,θ∗,w)](t) sets the limit of
tractability for TED. For curved exponential families in
general, T (θ̂, θ∗, w) is a linear function of w, which facil-
itates the required calculations.

4.2 Example of the mean of a sample from
a negative exponential data generating
model using a normal distribution esti-
mation model

This is an example where the estimation model is not
equivalent to data generating model. The data generating
model is given as follows.

g0(w) =
1

µ0
.exp[

−1

µ0
wT 1], wi>0, i = 1, ..., n (10)

The estimation model remains normal as in equation (7).

T (θ̂, θ∗, w) is still given by (8) and Ew[|j(θ, w)||θ=θ̂ ] is
still n

σ2 . Use can be made of the fact that the sum of n
i.i.d. negative exponential variables has a gamma distri-
bution with shape parameter of n and mean µ0 [12],

g(s) =
sn−1exp[−1

µ0
s]

µn
0 (n − 1)!

, s = wT 1 > 0 (11)

Equation (8) shows that T (θ̂, θ∗, w) is a linear transform
of s, and s = σ2T + nµ∗. Therefore, transformation of
equation (11) gives

g[T (θ̂,θ∗,w)](t) =
σ2(σ2T+nµ∗)n−1exp[−1

µ0
(σ2T+nµ∗)]

µn
0 (n−1)! ,

σ2T + nµ∗ > 0 (12)

The density g(µ̂) is obtained by setting T = 0, µ∗ = µ̂ in
equation (12) and multiplying by Ew[|j(θ, w)||θ=θ̂] = n

σ2 .

g(µ̂) =
nnµ̂n−1exp[−nµ̂

µ0
]

µn
0 (n−1)! , µ̂>0

This is a gamma distribution with a shape parameter of
n and mean µ0

n .

In this case, the parameter estimate µ̂ is necessarily pos-
itive. The distribution of µ̂ is independent of σ2, which
is the assumed value for the variance of the normal es-
timation model. In fact g(µ̂) is the same density that
is found when the negative exponential data generating
model (10) is retained and an equivalent negative expo-
nential distribution is used as the estimation model, in-
stead of the normal distribution estimation model. This
is no longer the case however if a negative exponential
estimation model is used with a normal data generating
model. The normal distribution therefore dominates the
negative exponential as estimation model for the mean
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with this pair of models, which is related to the fact that
the negative exponential has only one fixable parameter
while the normal distribution has two. Although the ex-
ample is simplistic, it shows that it can be possible to
pick dominant estimation models wrt the parameter of
interest.

5 Methods for comparing models

While some analysts are happy to assess the robustness
of estimation of common parameters throughout a set of
candidate models, others want to discriminate between
models in order to identify the best one. Akaike [1] sug-
gested an information criterion that can be used for this.

AIC = -2[l(θ, w|θ=θ̂)] + 2p

The best model is considered to be the member of the
candidate set that minimises AIC. In practice, the first
term in the expression measures the goodness of fit of the
model to data, while the second term is a penalty based
on the number of parameters that have to be fitted. The
latter term is a guard against over fitting.

The theoretical underpinning of this approach is that
AIC/2 can be shown to be asymptotically equivalent
to a constant minus the expected value of the Kullback-
Leibler information I(g0, g1).

I(g0, g1) = log

(
g0(w)

g1(w|θ)

)
(13)

E[I(g0, g1)] =

∫

W

[
log

(
g0(w)

g1(w|θ)

)]
g0(w)dw (14)

For models with the same number of parameters, max-
imisation of E[I] at the MLE is asymptotically equiva-
lent to minimisation of AIC. I(g0, g1) itself is equivalent
to the difference between the (Boltzmann) entropy of the
models under consideration, log(g0(w)) and log(g1(w|θ))
respectively.

In the case of a fixed data generating model g0(w), it can

be shown that the QMLE θ̂ for a particular estimation
model g1(w|θ) minimises I(g0, g1) [17].

AIC provides a benchmark for comparing adequacies of
competing models on real data sets. In case the data
generating model g0(w) is unknown, it can be argued that
the true model need not be a member of the considered
set of models [3]. However, AIC suffers to some extent
from the same problem that was alluded to earlier for
approximate forms of the estimator density, in that it is
absolutely valid only in the asymptotic limit and it is also
subject to problems of inversion. The first problem can
be tackled by attempting a more exact approach, while

the second problem is inescapable unless one is prepared
to carry out an encompassing analysis on theoretical data
sets.

Several other related information criteria for comparing
models have been proposed as improvements to AIC. One
of these is TIC [16].

TIC = -2[l(θ, w|θ=θ̂)] + 2[trace(K(θ̂)(pxp).[j(θ̂, w)]−1)],

where K(θ̂) = Eg0[l
′(θ, w).l′(θ, w)T |θ=θ̂].

TIC/2 is a closer approximation than AIC to a constant
minus E[I]. For large samples, as n → ∞, TIC and AIC

converge as trace(K(θ̂)(pxp).[j(θ̂, w)]−1) → p.

Both AIC and TIC provide rational ways to compare
nested or non-nested models of various degrees of com-
plexity - with a balance between the log likelihood and
the number of parameters as a guard against over fit-
ting. Otherwise the common practice is to compare mod-
els with different numbers of parameters via an analysis
of variance based F test, using the sums of squares asso-
ciated with the additional parameters. This is however
only strictly valid for nested linear models. So the use of
information criteria that are based on K-L information is
attractive.

The TED estimator density (4) can be used for comparing
models. One possible way to use the technique is via a
robustness index (RI), when the parameters are common
in the two models. Hingley [10] explains RI and gives an
example of the comparison for a gamma data generating
model and a negative exponential estimation model.

But TED can also be used directly to construct new in-
formation criteria. For example, since it gives exact den-
sities, it can make an indicator from K-L information
without requiring the use of either expectations or asymp-
totic approximation. However inversion is still required.
A particularly simple form is obtained when comparing
the effect of two alternative data generating models un-
der a common estimation model, because then the term
Ew[|j(θ, w)||θ=θ̂] in the expectation term (5) is the same
for both models and cancels out when taking the ratio.

It is possible to calculate two densities for θ̂. For both
densities assume that the estimation model is g1(w|θ).
For the first density, the data generating model is
g1(w|θ1), and is written as g(θ̂) = mA(θ̂|θ1). For the
second density, the data generating model is g0(w|θ0),

and is written as g(θ̂) = mB(θ̂|θ0).

An information criterion can be constructed as follows.

H(mA, mB) = log
(

mA(θ̂|θ0)

mB(θ̂|θ1)

)
=

log

(
gA[T (θ̂,θ∗=θ̂,w)](0)

gB[T (θ̂,θ∗=θ̂,w)](0)

)
(15)
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This takes a fairly simple form, and it is suggested that θ0

should be set as θ̂ for the data under g0(w|θ) as estimation

model. For θ1, it is possible to use the estimate θ̂ from
g1(w|θ) as estimation model. For the particular example
that will be given below, it will turn out to be unnecessary
to estimate θ1.

As a demonstration, consider a pair of nested linear mod-
els.

g1(w|θ1) = MNw(X1(nxq)θ1(qx1), σ
2I(nxn))

g0(w|θ0) = MNw(X0(nxp)θ0(px1), σ
2I(nxn)),

where the error variance term σ2 is assumed to be known.
q and p can be unequal, and it is not prespecified which
model is nested in the other. Pairwise comparisons are
envisaged, but a larger set of candidate models can be
used with comparisons between all pairs of models in the
set.

Under mA, both the data generating model
and the estimation model are the same, and
application of the TED formula gives g(θ̂) as

MNW (θ1, (X
T
1 X1)

−1σ2). However, under mB, g(θ̂)
is MNW ((XT

1 X1)
−1XT

1 X0θ0, (X
T
1 X1)

−1σ2). Then the
information criterion (15) is as follows.

H(mA, mB) = −1
2

log
∣∣XT

1 X1

∣∣ + 1
2
log

∣∣XT
0 X0

∣∣ +

1
2σ2

[
θ̂ − (XT

1 X1)−1XT
1 X0θ0

]T
(XT

1 X1)
[
θ̂ − (XT

1 X1)−1XT
1 X0θ0

]
−

1
2σ2

[
(θ̂ − θ1)

]T
(XT

1 X1)
[
(θ̂ − θ1)

]

Now, θ1 can be estimated from the data set under g1(w|θ)
and θ0 can be estimated from the same data set under
g0(w|θ). These estimates are substituted into the above
expression, using the principle of invariance, to make an
estimated indicator Ĥ. This simplifies matters by causing
the final term to disappear. Hence, as was stated above,
in this case θ1 does not actually need to be estimated at
all.

ˆH(mA, mB) = −1
2

log
∣∣XT

1 X1

∣∣ + 1
2
log

∣∣XT
0 X0

∣∣ +

1
2σ2

[
θ̂ − (XT

1 X1)−1XT
1 X0θ̂0

]T
(XT

1 X1)
[
θ̂ − (XT

1 X1)−1XT
1 X0θ̂0

]

As an example of a particular application, consider three
competing linear models for data on the development of
numbers of patent filings per year at the European Patent
Office from Germany (DE), Japan (JP) and USA (US).
The models are based on an econometric specification
that is used to forecast future patent filing levels [11].

Model i: Yt,j = a + b.Yt−1,j + c.Xt−5,j + errort,j

Model ii: Yt,j = aj + b.Yt−1,j + c.Xt−5,j + errort,j

Model iii: Yt,j = aj + b.Yt−1,j + cj .Xt−5,j + errort,j ,

where j = 1, 2, 3 indicates DE, JP, US; t = 1980, ..., 2005.
The main variables are first standardised between coun-

tries by means of the following transformations. Yt,j is
the number of patent filings from country j in year t, di-
vided by the number of workers in country j in year t. Xt,j

is the discounted research and development expenditures
in country j in year t, again divided by the number of
workers in country j in year t. Model i assumes common
intercepts and regression parameters for the three coun-
tries. Model ii allows separate intercepts per country aj .
Model iii further allows separate slopes per country for
the standardised research and development expenditures
variable cj . See Figure 1.

The information criteria are calculated pairwise between
all combinations of Models i, ii and iii. The fixed value of
σ2 is estimated from the fit of the data generating model

in each case. From the above expression for ˆH(mA, mB),
it can be seen that when the formulations of g0(w|θ0) and

g1(w|θ1) are the same, ˆH(mA, mB) = 0.

Model i Model ii Model iii
estimate estimate estimate

Model i generate 0 1.30 3.54
Model ii generate 1.64 0 2.40
Model iii generate 1.25 -0.40 0

Table 1. Values of the information criterion ˆH(mA, mB)
for pairwise combinations of Models i, ii and iii as data
generating model and estimation model.

Table 1 shows the 3x3 representation of Ĥ that was found.
Minimisation of Ĥ is appropriate. In the case of data gen-
erated by Model iii, the criteria suggest that estimation
by Model ii is slightly better than estimation by Model
iii.

Calculated Mean F P
SS DF SS test value

Model i 35.5066 3
Diff. i to ii 0.06581 2 0.0329 3.2 < 0.05
Model ii 35.5724 5

Diff. ii to iii 0.0412 2 0.0206 2.0 > 0.05
Model iii 35.6136 7

Resid. to iii 0.7199 70 0.0103
Total 36.3335 77

Table 2. Analysis of variance table to compare the sig-
nificance of differences (’Diff.’) between Model i (nested
in) Model ii (nested in) Model iii. SS is Sums of Squares.
DF is degrees of freedom. F tests are of Mean SS
against the Residual (’Resid.’) to Model iii. P values are
against null hypotheses that the difference terms are not
significant.

In a case like this, where nested linear models have
been used, the information based analysis can be comple-
mented by a conventional analysis of variance analysis, as
shown in Table 2. The two F tests that are reported in
the table suggest that Model ii gives a significantly better
fit to the data than Model i does, but that no significant
improvement in fit can be established when using model
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Figure 1: Fig. 1. Transformed patent filings at the European Patent Office. Yt,j vs. Year (t), filings from three
countries (j). Fitted values (lines) by Model iii.

iii instead of Model ii. This is consistent with Table 1, in
that it suggests that Model ii is adequate for the data.

The particular information criterion that has been sug-
gested here could be extended easily to other types
of models, particularly to nonlinear regression models.
Other designs for information criteria can also be imag-
ined.

6 Conclusion

Analysts should consider using exact densities for maxi-
mum likelihood estimates whenever it is practical to do
so. The densities are particularly appropriate where al-
ternative models are to be compared and assessed. The
example in the previous section used exact densities to
construct a trial information criterion. It may also be
profitable to use exact methods to complement the range
of existing approximate techniques with exact analytic
equivalents. Although the exact techniques require more
complex calculations, it can turn out that statistics can
be created that have a simpler direct interpretation than
the approximate ones. Further work is needed on these
issues.
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