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Abstract—The objective of this paper is to study
how algorithms of optimization affect the parameters-
estimation of Autoregressive AR(1)Models. In our
research we have represented the AR(1) models in
linear state space form and applied the Kalman Fil-
ters to estimate the different unknown parameters of
the model. Many methods have been proposed by re-
searchers for the estimation of the parameters in the
case of the linear state space models. In our work
we have emphasized on the estimation through the
Maximum Likelihood (ML). Statisticians have used
many algorithms to optimise the likelihood function
and they have proposed many filters; publishing their
results in many papers. In spite of the fact that
this field is so extended, we have emphasized our
study in the financial field. Two quasi-Newton al-
gorithms: Berndt, Hall, Hall, and Hausman (BHHH)
and Broyden-Fletcher-Goldfarb-Shanno (BFGS), and
the Expectation-Maximization (EM) algorithm have
been chosen for this study. A practical study of these
algorithms applied to the maximization of likelihood
by means of the Kalman Filter have been done. The
results are focused on efficiency in time of computa-
tion and precision of the unknown parameters estima-
tion. A simulation study has been carried out, using
as true values the parameters of this model published
in the literature, in order to test the efficiency and
precision of our implemented algorithms.
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1 Introduction

The class of state-space models provides a flexible frame-
work for modelling and describing a wide range of time
series in a variety of disciplines. In the lineal and Gaus-
sian case, many studies tried to derive the Kalman fil-
ter algorithm, such as derivations based on normality as-
sumption for error terms, derivations related to the mixed
estimation approach, so-called Goldberger-Theil estima-
tor, where we do not have to impose normality assump-
tion for error terms because it is based on the Generalized
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Least Square estimation, and the third one is interpreted
as minimum square linear estimator (Tanizaki,1996). For
the last decade, some researchers have studied the pro-
cedure of maximum likelihood, which is used to maxi-
mize an innovation form of the likelihood function, thus
they have worked on many algorithms to optimize the
likelihood function and they have proposed many fil-
ters and smoothers and given their results in many pa-
pers of work and many publications. In spite of the
fact that this field is so extended, we are going to em-
phasize our study in the econometric field. We will
propose three algorithms: two quasi-Newton; Berndt,
Hall and Hausman (BHHH, 1974) and Broyden-Fletcher-
Goldfarb-Shanno (BFGS, 1960), and the other optimizer
is Expectation-Maximization (EM) algorithm(Shumway
and Stoffer, 1982). The general objective is to find the
algorithm (and its computations implementation) more
efficient in question of precision and time of computation
to maximize the maximum likelihood for the estimation
of the parameters of the AR(1)models.

2 The state space form

In a lineal gaussian state space, the state space model is
formulated as follows: For all t=1,.....,n

xt = Φxt−1 + wt, wt ∼ N(0, Q) (1)

xt is a (p× 1) vector, Φ is a (p× p) matrix and wt is a
(p× 1) vector.

(2.1) is called the Transition equation or State equation.
and

yt = Axt + vt, vt ∼ N(0, R) (2)

yt is a (q × 1) vector, At is a (q × p) matrix and vt is
a (q × 1) vector. This equation is called Measurement
equation or Observation equation. where
y: represents the observed serie
x: is the series which represents the non observed state
Φ: Parameter of the autoregressive process
R(q×q): covariance matrix of the measurement equation
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(vt)
Q(p×p): covariance matrix of the transition equation(wt)
n: length of the series

2.1 The Kalman Filter

Filter purpose : our problem is to estimate the state xt

using information of the yt up to time s:

Ys = {y1, ....ys} (3)

we calculate the mean and the covariance of xt−1 given
the information at time t− 1 by Yt−1:

E[xt−1 | Yt−1] ≡ xt−1
t−1 (4)

Cov(xt−1 | Yt−1) ≡ P t−1
t−1 (5)

Prediction :
Thus using the initial conditions x0

0 = µ0 and P 0
0 = Σ0

and assuming known the estimations given at time t− 1,
we can obtain the predicted estimation xt−1

t and P t−1
t at

time t, for t = 1, ..., nusing the State equation.

xt−1
t = E[xt | Yt−1] = E(Φxt−1 + wt | Yt−1) = Φxt−1

t−1 (6)

and being wt independent of observations and states,
with

E[wt] = 0 (7)

P t−1
t = ΦP t−1

t−1 Φ′ + Q

Then we estimate the mean and the variance of predic-
tion data of yt that will be observed at time t using the
observation equation, which are respectively:

yt−1
t = E[yt | Yt−1] = Atx

t−1
t (8)

When the new data arrives yt the innovation (or predic-
tion error or one-step ahead forecast error) called εt is
obtained as below:

εt = At(xt − xt−1
t ) + vt

The innovations ε1, ..., εn are independent Gaussian ran-
dom vectors with zero means and covariance matrices:

F t−1
t = V ar(εt | Yt−1) = var(yt − yt−1

t | Yt−1)
= AtP

t−1
t A′

t + R

The mean E(εt | Yt−1) and the covariance Cov(εt, yj) for
j < t of the innovations are zero as:

E(εt | Yt−1) = 0

and

Cov(εt, yj) = E[yjE[εt |t−1]]
= 0 for j < t (9)

Thus, the 1-step ahead forecast error is uncorrelated
(hence, independent in the Gaussian case) with yt for
j < t.

3 Maximum Likelihood Estimation

For the linear Gaussian model,using the Kalman filter
equation and ignoring a constant the log-likelihood can
be written as:

−2 ln LY (Θ) =
n∑

t=1

log |F t−1
t (Θ)|+

n∑
t=1

εt(Θ)′F t−1
t (Θ)−1εt(Θ) (10)

The loglikelihood can be maximized by means of itera-
tive numerical procedures. Using a numerical method,
like BHHH algorithm, we can obtain the minimum of
this function. Shumway and Stoffer (1982) presented
a conceptually simpler estimation procedure based on
EM (expectation-maximization)algorithm, and Broyden-
Fletcher-Goldfarb-Shanno used the BFGS algorithm.

3.1 Numerical maximization algorithms

A wide range of numerical search algorithms are available
for maximizing the loglikelihood. Many of these are based
on Newton’s method which solves the equation:

∂1(Θ) =
∂ log LY (Θ)

∂Θ
= 0 (11)

using a first-order Taylor series, we obtain:

∂1(Θ) ' ∂̃1(Θ) + ∂̃2(Θ)(Θ− Θ̃) (12)

for a random value of Θ̃, where:

∂̃1(Θ) = ∂1(Θ)|
Θ=Θ̃

; (13)

∂̃2(Θ) = ∂2(Θ)|
Θ=Θ̃

(14)

and

∂2(Θ) =
∂2 log LY (Θ)

∂Θ∂Θ′ (15)

Θ = Θ̃− ∂̃2(Θ)−1∂̃1(Θ) (16)

This process is repeated until it converges. If the Hessian
matrix ∂2(Θ) is negative definite for all Θ, the loglikeli-
hood is said to be concave and a unique maximum exists
for the likelihood. The gradient ∂1(Θ) determines the di-
rection of the step taken to the optimum and the Hessian
modifies the size of the step. In practice it is often com-
putationally demanding or impossible to compute ∂1(Θ)
and ∂2(Θ) analytically. Numerical evaluation of ∂1(Θ) is
usually feasible. A variety of computational devices are
available to approximate ∂2(Θ) in order to avoid comput-
ing it analytically.
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3.1.1 BFGS algorithm

The BFGS method ensures that the approximate Hes-
sian matrix remains negative definite. The details and
derivations of the Newton’s method of optimization and
the BFGS method in particular can be found (Fletcher,
1987). The BFGS method is one of the most famous
quasi-Newton algorithms for unconstrained optimization.
It is possible to overstep the maximum in the direction
determined by the vector −∂̃2(Θ)−1∂̃1(Θ) and therefore
a line search along the gradient vector within the opti-
mization process. We obtain the algorithm:

Θ = Θ̃ + s∂̃2(Θ)−1∂̃1(Θ) (17)

where various methods are available to find the optimum
value for s which is usually found to be between 0 and 1
The approximation of the Hessian matrix uses a device in
which at each new value for Θ a new approximate inverse
Hessian matrix is obtained via the recursion:

∂̃2(θ)−1 = ∂̃2(θ)−1 + (s +
g′g∗

(∂̃2(Θ)−1∂̃1(Θ))′g
)

∂̃2(Θ)−1∂̃1(Θ)(∂̃2(Θ)−1∂̃1(Θ))′

(∂̃2(Θ)−1∂̃1(Θ))′g

− ∂̃2(Θ)−1∂̃1(Θ)g∗
′
+ g∗(∂̃2(Θ)−1∂̃1(Θ))′

(∂̃2(Θ)−1∂̃1(Θ))′g

where g is defined as the difference between the gradient
∂̃1(Θ) and the gradient for a trial value of Θ prior to Θ̃,
and g∗ is defined as:

g∗ = ∂̃2(Θ)−1g (18)

3.1.2 The EM algorithm

The EM (expectation-maximization)algorithm is a well-
known tool for iterative maximum likelihood estimation.
The earlier EM methods for the state space model were
developed by Shumway and Stoffer (1982) and Wat-
son and Engle (1983). In addition to Newton-Raphson,
Shumway and Stoffer (1982)presented conceptually sim-
pler estimation procedure based on the EM algorithm
(Dempster et al.1977). The basic idea is that if we
can observe the states, Xn = x0, x1, ...., xn and Yn =
y0, y1, ...., yn, then we would consider Xn, Yn as the com-
plete data, with the joint density:

fΘ(Xn, Yn) = fµ0,Σ0(x0)
n∏

t=1

fΦ,Q(xt/xt−1)
n∏

t=1

fR(yt/xt) (19)

Under the Gaussian assumption and ignoring constants,
the complete data likelihood can be written as :

−2lnLX,Y (Θ) = ln|Σ0|+ (x0 − µ0)′Σ−1
0 (x0 − µ0)

+ln|Q|+
n∑

t=1

(xt − Φxt−1)′Q−1(xt − Φxt−1) (20)

+ln|R|+
n∑

t=1

(yt −Atxt)′R−1(yt −Atxt)

Thus, if we did have the complete data, we could then
use the results from multivariate normal theory to easily
obtain the MLEs of Θ. If we do not have the complete
data, the EM algorithm gives us an iterative method for
finding the MLEs of Θ based on the incomplete data, Yn,
by successively maximizing the conditional expectation
of the complete data likelihood. To implement the EM
algorithm, we write, at iteration j, (j =1,2,....),

Q(Θ/Θ(j−1)) = E{−2lnLX,Y (Θ)/Yn,Θ(j−1)} (21)

Expectation− step : When we calculate the equation
above we have the expectation step. Of course, given
the current value of the parameters, Θ(j−1), we can
obtain the desired conditional expectations as smoothers.

Q(Θ/Θ(j−1)) = ln|Σ0|+ trΣ−1
0 [Pn

0 + (xn
0 − µ0)(xn

0 − µ0)′]
+ln|Q|+ trQ−1[S11 − S10Φ′ − ΦS′

10 + ΦS00Φ′] (22)

+ln|R|+ tr{R−1
n∑

t=1

[(yt −Atx
n
t )(yt −Atx

n
t )′ + AtP

n
t A′

t]}

where

S11 =
n∑

t=1

(xn
t xn′

t + Pn
t ) (23)

S10 =
n∑

t=1

(xn
t xn′

t−1 + Pn
t,t−1) (24)

S00 =
n∑

t=1

(xn
t−1x

n′

t−1 + Pn
t−1) (25)

Maximization− step : Maximizing this equation with
respect to the parameters, at iteration j, constitutes the
maximization step, and is analogous to the usual mul-
tivariate regression approach, which yields the updated
estimates

Φ(j) = S10S
−1
00 (26)

Q(j) = n−1(S11 − S10S
−1
00 S′

10) (27)

R(j) = n−1
n∑

t=1

[(yt −Atx
n
t )(yt −Atx

n
t )′ + AtP

n
t A′

t] (28)

The initial mean and covariance cannot be estimated si-
multaneously, so it is conventional to fix both or to fix
the covariance matrix and use the estimator:

µ
(j)
0 = xn

0 (29)

obtained from minimizing the equation above under that
assumption.
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3.1.3 The BHHH algorithm

Going from the density function fΘ(yn, ......, y1), as
we defined, the gradient in (2.36) and the Hessian
Matrix in(2.40), the notation ∂1(θ0) and ∂2(θ0) indicates
the derivative evaluated at θ0, where θ0 is known as
Information Matrix.

V ar[∂1(θ0)] = −E[∂1(θ0)] (30)

The asymptotic covariance matrix of the maximum
likelihood estimator is a matrix of parameters that must
be estimated (that is, it is a function of the θ0 that is
being estimated). If the form of the expected values of
the second derivatives of the log-likelihood is known,
then:

[I(θ0)]−1 = {−E[
∂2lnLY (θ0)

∂θ0∂θ′0
]}−1 (31)

can be evaluated at θ̂ to estimate the covariance matrix
for the MLE. This estimator will rarely be available.
The second derivatives of the log-likelihood will almost
always be complicated nonlinear functions of the data
whose exact expected values will be unknown. However,
the expected second derivatives matrix is the covariance
matrix of the first derivatives vector is:

[ˆ̂I(θ̂0)]−1 = [
n∑

i=1

∂1i(Θ̂)∂1i(Θ̂)′]−1 = [Ĝ′Ĝ]−1 (32)

Where

∂1i(Θ̂) =
∂lnfθ̂(yi)

∂θ̂
(33)

Ĝ = [∂11, ∂12, ...., ∂1n]′ (34)

Ĝ is an n× k matrix with ith row equal to the transpose
of the ith vector of derivatives in the terms of the log-
likelihood function with respect to the k elements of Θ.
For a single parameter, this estimator is just the recipro-
cal of the sum of squares of the first derivatives. [ˆ̂I(θ̂0)]−1

is called the BHHH estimator.

4 Results

In this part, we are going to display the different results
of the estimation of the parameters for an AR (1) model.
As we have said that the estimation of the parameters
is not easy, nevertheless, in our work, we are going to
apply the three algorithms cited above in the AR(1)
process to see which one is the best in estimating the
unknowing parameters. We have chosen the case of
φ = 0.5, the different results are shown in the table

1 with the corresponding Quadratic Medium Error
(QEM) for each parameter φ, Q and R. We Started
with a simulation process of the data with a length of
n = 2500, and then applied the Kalman Filter. We noted
from programming and the estimation process, that
using the BHHH algorithm, the time of computation
was extremely slow, and the results are not so precise
regarding to the error and the estimation value of the
parameters. This issue can be related to the fact that
the Package used in R programm is still not so exact in
the process of estimation, for this reason, one of the step
I am going to achieve is to try to programm with the S+

package to give more precise conclusions regarding the
optimization with the three different algorithms.

Table.1. Quadratic medium error for AR(1) model

EM L-BFGS-B BHHH
φ = 0.5 0.190 0.353 0.497
Q = 1 0.197 0.771 0.923
R = 1 0.179 0.658 0.978
φ = 0.5 0.187 0.402 0.501
Q = 10 0.186 0.883 0.657
R = 1 0.168 0.635 0.886
φ = 0.5 0.181 0.421 0.833
Q = 1 0.097 0.564 0.433
R = 10 0.135 0.398 0.432

5 Conclusions and future work

Comparing the two algorithms L-BFGS-B and EM, we
have concluded that the EM algorithm is the most effi-
cient in time of computation and the most precise with
the lowest rate of error obtained in the estimation pro-
cess.In the case of AR(1) model, from the results of the
estimation of the parameters of the models and the cor-
responding errors, we can confirm that the L-BFGS-B al-
gorithm gives a good optimization of the value estimated
of the parameters.
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