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Linear Combinations of Gaussians with a Single Variance are Dense in L?

Craig Calcaterra

Abstract—Linear combinations of translations of
e~ are shown to be dense in L? (R) for 1 < p < 0o
with a nearly trivial proof. A potential application
to signal analysis is detailed where the Gaussian
filter is seen to be a universal synthesizer with ar-
bitrarily short load time.

Key Words: Gaussian filter, Hermite approximation

The Result

Denote the space of square integrable functions f : R — R
as L2 (R) with norm ||f||, := \/[g |f (2)]° da-
f 7 g tomean |[f —gl, <e

We use

Theorem 1 For any f € L?(R) and any € > 0 there
exists t > 0 and N € N={0,1,2,...} and a, € R such
that

N
()2
~ Zane (xz—nt)
n=0

Proof. Since the span of the Hermite functions is
dense in L? (R) we have for some N

e/2 nz ndn"< $2)'

Now use finite backward differences. We have for some

small t > 0
Z - ( ) S b 35 (o (M) et
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| ]

So all signals can be approximated by Gaussian
bumps. This bump approximation scheme is an affront
to our intuition; it promises we can approximate to any
degree of accuracy a function such as the following char-
acteristic function of an interval

| 1 for ze[-101,—100]
X[-101,-100] (z) == 0 otherwise

with support far from the means of the Gaussians
e~ (@=")" which shrink precipitously away from nt €
[0,00). Theorem 1 also promises an approximation of func-
tions with any small variance such as e=109%" despite the
fact that e~(@+70” all have an identical variance.
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The following figures give graphical evidence for The-
orem 1. The original function is the dashed graph and the
approximation is a solid curve.

Bump approximation
N =100, t =.001

Bump approximation
N =20,t=.01
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Bump approximation
N =15,t=.01

Clearly Hermite expansions perform better with smooth
data; see [4], [8], e.g. The first function approximated
above is discontinuous at two points, and we need large
values of NV for visual accuracy. The second is still non-
smooth at two points, but needs much less computation.
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Application to Signal Analysis

The basic insight that propels signal analysis is that most
any signal can be approximated by a linear combination
of sine waves with countably infinitely many frequencies.
Bump approximation gives an alternative signal approx-
imation scheme to explore, using linear combinations of
Gaussians with a single variance. We use a linear time-
invariant (LTI) system to implement Theorem 1. An ana-
log reading of the following results give an arbitrarily short
load time; a digital implementation is naturally motivated
which gives a simple compression scheme. The LTI system
we need is the Gaussian filter which is represented with the

operator W : L? (R) — L? (R) defined by convolution with

a Gaussian G (z) = \/%—ﬂe_mz, that is,

W)= (5 6) @) = == [ f(s)e P as.

The letter W is used to denote the operator because this
is precisely the Weierstrass transform from pure mathe-
matics. W is a low-pass frequency filter and in the 2-D
case is famous as Gaussian blur in image processing. The
question we wish to answer in this section is: “Given an
arbitrary signal f what input for the Gaussian filter has
output f?”

The simplest application of Theorem 1 is to use the
Gaussian filter’s impulse response. An impulse response
for a system such as W is the output after feeding the
system a Dirac delta distribution, 8. In fact since §q is
the identity under the convolution operation the impulse
response is W (8¢) = 8o *G = G. The Gaussian filter takes
its name from its impulse response.

W is an LTT system because it is linear

Wiaf+g)=aW(f)+WIg)
and time-invariant
W(f)oTe =W (fory)

where 7 () = x + t. This gives us W (6;) (z) = G (v — t)
and Theorem 1 gives

Corollary 2 For any f € L?>(R) and any ¢ > 0 there
exists t > 0 and N € {0,1,2,...} and a,, € R such that

N
f%W<Zan6nt) .
€ n=0

So any signal is the Gaussian blur of a sum of pulses.
The a,, are easily calculated analytically from the proof
of Theorem 1. There are well-known applications of
Fourier analysis to speed up the digital processing of a
convolution-the Fourier transform of the convolution of
two functions is the product of the transforms. The
Gaussian filter is particularly simple since the transform
of the Gaussian is another Gaussian.

There are, however, inherent difficulties in realizing
an analog Gaussian filter. The first attempt is recorded
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in [2]. Then [3] details the need for n elements to make
an nth order approximation to a perfect analog Gaussian
filter; various improvements have been made in the in-
tervening years. Analytical investigations along the lines
above, using [1], give criteria for determining the viability
of any such approximate Gaussian.
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