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Abstract—Goodness–of–fit tests for the family of

symmetric normal variance inverse Gaussian distri-

butions are constructed. The tests are based on a

weighted integral incorporating the empirical char-

acteristic function of suitably standardized data. An

EM– type algorithm is employed for the estimation of

the parameters involved in the test statistic. Monte

Carlo results show that the new procedure is com-

petitive with classical goodness–of–fit methods. An

application with financial data is also included.

Keywords: EM – type algorithm, Characteristic Func-
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1 Introduction

Applied researchers in the area of quantitative Finance
have almost unanimously rejected the Gaussian hypothe-
sis for the long term (unconditional) distribution of finan-
cial variables. Rather that this, they often operate in the
context of the Mixture of Distributions Hypothesis under
which it is assumed that the conditional sample returns
are Gaussian, with a stochastic (latent) variance. Fol-
lowing the lead of Barndorff–Nielsen [1] many researchers
have popularized the inverse Gaussian for modelling the
stochastic behavior of the variance; see for instance [4],
[10], [2], [9] and [6]. The resulting specification, called the
normal variance inverse Gaussian (NIG) distribution, en-
joys infinite divisibility, a feature which is desirable for
financial modelling, and includes the Normal and the
Cauchy distribution as special cases which shows the vari-
ety of peakness at the tails that this family encompasses.

In view of the popularity of the NIG model there is al-
ways a need to validate this hypothesis on the basis of real
data. It should be noted that researchers avoid the use
of classical goodness–of–fit procedures and often resort
to explanatory data analysis techniques (such as Q–Q
plots) to assess the fit of real data to the NIG law. This
is due to the complicated structure of the cumulative dis-
tribution function and the density of the NIG distribu-
tion. The aim of this paper is to provide ‘user friendly’
goodness–of–fit tests for symmetric NIG (SNIG) distribu-
tions. The proposed test makes use of the characteristic
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function which, unlike the corresponding cumulative dis-
tribution function, can be written in a simple closed–form
expression. In particular suppose that on the basis of in-
dependent copies X1, X2, . . . , Xn, on a random variable
X we wish to test the null hypothesis

H0: The law of X is SNIG(δ, c, λ), for some δ ∈ R,
c > 0 and λ > 0,

where δ denotes location, c scale and λ shape, quantities
that jointly define a specific parameterization of the SNIG
law.

The remainder of the paper is structured as follows. In
Section 2 we define the SNIG law, and use its characteris-
tic function to compute the test statistic. Section 3 deals
with estimation of parameters (which appear as nuisance
in the test statistic). In Section 4 a Monte Carlo study
is presented while Section 5 is devoted to an application
with financial data.

2 The test statistic

Let X |V = v be distributed as normal with mean δ and
variance v, and assume that V follows an inverse Gaus-
sian distribution with parameters (c2, λ) and correspond-
ing density

f(v) =
cλ√

2πv3/2
e−

1
2

(v−c2λ)2

c2v .

Then X follows a SNIG distribution with characteristic
function ϕ(t) = E(eitX) given by

ϕ(t) = eiδteλ(1−
√

1+c2t2). (1)

Since (δ, c) are location and scale parameter, respectively,
it is natural in the test statistic to consider the charac-
teristic function φ(t; λ) = eλ(1−

√
1+t2) corresponding to

the standardized variable Y = (X − δ)/c. Specifically we
propose the test statistic

Tn,w = n

∫ ∞

−∞
|φn(t) − φ(t; λ̂n)|2w(t)dt, (2)

where

φn(t) =
1

n

n
∑

j=1

eitŶj ,
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is the empirical characteristic function of the standard-
ized data Ŷj = (Xj − δ̂n)/ĉn, j = 1, 2, ..., n, involving the

parameter estimates (δ̂n, ĉn, λ̂n) and w(t) denotes a non–
negative weight function. Rejection of the null hypothesis
H0 is for large values of Tn,w.

By straightforward algebra we have from (2)

Tn,w =
1

n

n
∑

j,k=1

∫ +∞

0

cos(t(Ŷj − Ŷk))w(t)dt (3)

+ne2λ̂n

∫ +∞

0

e−2λ̂n

√
1+t2w(t)dt

−2eλ̂n

n
∑

j=1

∫ +∞

0

e−λ̂n

√
1+t2 cos(tŶj)w(t)dt.

Any weight function w(t) which renders the integrals in
(3) finite could in principle be used in our test statistic.
Particular appeal however lies with weight function which
add the extra advantage of computational simplicity to
the test statistic. To this end and by considering the
formula of the modified Bessel function of the third kind
of order zero (see [5], equation 3.961),

K0(α
√

β2 + γ2) =

∫ +∞

0

e−γ
√

α2+t2 cos(βt)
1√

α2 + t2
dt,

(4)
we set w(t) = (1+ t2)−1/2 in (3) and denote the resulting
test statistic simply by Tn. Then using (4) we have

T̂n =
1

n − 1

∑

j 6=k

K0(δjk)+ne2λ̂nK0(2λ̂n)−2eλ̂n

n
∑

j=1

K0(dj)

(5)

where δjk = |Ŷj − Ŷk|, and dj =

√

Ŷj
2

+ λ̂2
n.

3 ML Estimation of parameters

In this section, the representation X |V ∼ N(δ, V ) and
V ∼ IG(c2, λ) used in the previous section for the SNIG
model is employed. This representation is similar to the
standard derivation of the normal inverse Gaussian dis-
tribution [1] and the density function takes the form

f(x; δ, c, λ) =
λeλ

π
K1

(

r(x)1/2

c

)

r(x)−1/2 (6)

where r(x) = c2λ2 + (x − δ)2. The null hypothesis H0

is stated in this parametric form, with the corresponding
distribution denoted by SNIG(δ, c, λ)

The likelihood function is complicated, and therefore it is
difficult to obtain the ML estimates by direct likelihood
maximization. Instead, we use a EM type algorithm pro-
posed by Karlis [6].

At the E–step on the basis of sample values xi, i =
1, 2, . . . , n , and using the current estimates δ, c, λ, cal-
culate the quantities

si = E(V | X = xi) = cr(xi)
1/2 K0(c

−1r(xi)
1/2)

K1(c−1r(xi)1/2)

wi = E(V −1 | X = xi) =
1

cr(xi)1/2

K2(c
−1r(xi)

1/2)

K1(c−1r(xi)1/2)
,

while at the M-step update the parameters using

δnew =

n
∑

i=1

wixi

n
∑

i=1

wi

λnew = (s̄w̄ − 1)
−1

cnew =

(

λnew + 1

w̄(λnew)2

)1/2

where s̄ = n−1
∑

si and w̄ = n−1
∑

wi. The algorithm
iterates between the two steps until a stopping criterion
to be satisfied. We have used a rather strict stopping
criterion, namely we stopped the iterations when the rel-
ative change of the log-likelihood was smaller than 10−8.

It must be pointed out that the normal distribution re-
sults from the SNIG as λ → ∞. Therefore estimating the
parameter λ for normal samples (or samples that are too
close to the normal distribution), often results in a diver-
gent estimate of λ which may cause numerical instability.

4 Simulations

In this section we present the results of a Monte Carlo
study for the new test given by (5), denoted by CF. The
Monte Carlo study was implemented by drawing 1000
samples of size n = 100, n = 200 and n = 500. For
comparison purposes we also include results on the clas-
sical Cramér–von Mises (CM) test; The CM statistic is
computed as (see [3])

CM =
1

12n
+

n
∑

j=1

(

Fλ̂n
(Ŷj) −

2j − 1

2n

)2

where Fλ(x) denotes the cumulative distribution func-
tion corresponding to the standard SNIG density. This
distribution function was computed numerically, as

Fλ(x) =

∫ x

−∞
f(u; 0, 1, λ)du,

where f(·; δ, c, λ) is given by (6).

The null distribution of both test statistics depends on
the value of the parameter λ, which is unknown. There-
fore we resort to a parametric bootstrap procedure in
order to obtain the critical point pα of the test based on
the observed values of Xj , j = 1, 2, . . . , n:
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Table 1: Percentage of rejection for 1000 Monte Carlo
samples of size n = 100 at 5% (upper entry) and 10%
(lower entry) level of significance (CF test)

CF
λ = 0.50 1.00 2.00 3.00 5.00

SNIG(λ) 5 5 5 6 5
9 10 11 11 12

λ = 0.50 0.80 1.00 1.20 1.50
AL(λ) 90 19 7 16 51

95 29 13 25 65
λ = 0.15 0.25 0.35 0.50 0.75

TU(λ) 11 22 39 73 99
19 32 52 84 100

λ = 0.00 0.50 1.00 2.00 5.00
SN(λ) 6 5 6 14 55

11 12 12 23 67
λ1 = 1.00 1.25 1.50 1.75 2.00

ST(λ1, 0.0) 4 9 15 13 4
10 15 22 19 12

ST(λ1, 0.5) 43 32 21 14 4
56 43 32 21 12

ST(λ1, 1.0) 100 90 55 19 4
100 95 70 30 12

c = 2.00 5.00 10.0 15.0 20.0
ML(c) 5 5 8 8 8

10 10 13 15 14
λ = 0.25 0.50 0.75 1.00 2.00

NW(λ) 100 50 14 8 6
100 63 22 13 11

p = 0.25 0.50 0.75
NS(p, 1.25, 0.0) 13 21 25

20 31 33
NS(p, 1.50, 0.0) 16 17 15

25 25 23
NS(p, 1.75, 0.0) 12 11 10

18 18 14
NS(p, 1.25, 0.5) 31 29 25

45 40 33
NS(p, 1.50, 0.5) 23 22 14

33 32 21
NS(p, 1.75, 0.5) 13 12 9

20 20 16

• 1. Compute the observations Yj = (Xj − X̄n)/σ̂n,
j = 1, 2, . . . , n, where X̄n = n−1

∑n
j=1 Xj and σ̂2

n =

n−1
∑n

j=1(Xj − X̂n)2.

• 2. Based on {Yj}n
j=1, compute the estimates

(δ̂n, ĉn, λ̂n) and then the observations Ŷj = (Xj −
δ̂n)/ĉn, j = 1, 2, . . . , n.

• 3.a. Calculate the value of the test statistic, say T̂ ,
based on {Ŷj}n

j=1 and λ̂n.

• 3.b.1. Generate a bootstrap sample {X∗
j }n

j=1, from

SNIG(0, 1, λ̂n).

• 3.b.2. On the basis of {X∗
j }n

j=1, compute the

Y ∗
j = (X∗

j − X̄∗
n)/σ̂∗

n, j = 1, 2, . . . , n, where X̄∗
n =

n−1
∑n

j=1 X∗
j and σ̂∗2

n = n−1
∑n

j=1(X
∗
j − X̄∗

n)2.

• 3.b.3. On the basis of {Y ∗
j }n

j=1, compute the esti-

mates (δ̂∗n, ĉ∗n, λ̂∗
n) and then the observations Ŷ ∗

j =

(X∗
j − δ̂∗n)/ĉ∗n, j = 1, 2, . . . , n.

• 3.b.4. Calculate the value of the test statistic, say
T̂ ∗, based on {Ŷ ∗

j }n
j=1 and λ̂∗

n.

Table 2: Percentage of rejection for 1000 Monte Carlo
samples of size n = 100 at 5% (upper entry) and 10%
(lower entry) level of significance (CM test)

CM
λ = 0.50 1.00 2.00 3.00 5.00

SNIG(λ) 4 4 4 5 6
8 10 8 9 11

λ = 0.50 0.80 1.00 1.20 1.50
AL(λ) 99 35 5 29 80

100 50 11 42 88
λ = 0.15 0.25 0.35 0.50 0.75

TU(λ) 18 38 60 90 100
28 52 73 96 100

λ = 0.00 0.50 1.00 2.00 5.00
SN(λ) 5 5 8 24 78

11 11 13 36 87
λ1 = 1.00 1.25 1.50 1.75 2.00

ST(λ1, 0.0) 4 4 7 8 6
9 10 14 16 12

ST(λ1, 0.5) 78 51 27 11 6
85 67 41 20 12

ST(λ1, 1.0) 100 99 80 26 6
100 100 91 39 12

c = 2.00 5.00 10.0 15.0 20.0
ML(c) 4 4 5 6 7

9 9 11 14 12
λ = 0.25 0.50 0.75 1.00 2.00

NW(λ) 95 21 10 5 5
99 36 20 12 10

p = 0.25 0.50 0.75
NS(p, 1.25, 0.0) 6 6 7

13 13 14
NS(p, 1.50, 0.0) 7 7 9

16 15 17
NS(p, 1.75, 0.0) 8 7 7

16 14 14
NS(p, 1.25, 0.5) 52 31 15

67 48 26
NS(p, 1.50, 0.5) 26 19 11

42 30 20
NS(p, 1.75, 0.5) 11 10 7

22 19 15

• 3. Repeat steps 3.b.1 - 3.b.4., and calculate M values
of T̂ ∗, say {T̂ ∗

j }M
j=1.

• 4. Obtain pα as T̂ ∗
(M−αM), where {T̂ ∗

(j)}M
j=1 denote

the ordered T̂ ∗
j - values.

The following distributions are simulated:

i. The standard SNIG distribution with density
f(·; 0, 1, λ) given by (6), denoted by SNIG(λ).

ii. The asymmetric Laplace distribution of [7],

AL(c, λ) = c log Uλ
1 U

−1/λ
2 , with U1, U2 independent

uniform (0,1) variates.

iii. The skew normal distribution, SN(λ) = ϑ · |Z1| +√
1 − ϑ2Z2, with ϑ = λ(1+λ2)−1/2 and Z1, Z2 inde-

pendent standard normal variates.

iv. Tukey’s distribution, TU(λ) = (eλZ1 −1)/λ, with Z1

standard normal.
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Table 3: Percentage of rejection for 1000 Monte Carlo
samples of size n = 200 at 5% (upper entry) and 10%
(lower entry) level of significance (CF test)

CF
λ = 0.50 1.00 2.00 3.00 5.00

SNIG(λ) 4 4 6 5 6
9 10 12 12 11

λ = 0.50 0.80 1.00 1.20 1.50
AL(λ) 100 43 11 34 88

100 53 19 45 92
λ = 0.15 0.25 0.35 0.50 0.75

TU(λ) 13 41 79 99 100
24 56 88 100 100

λ = 0.00 0.50 1.00 2.00 5.00
SN(λ) 5 4 7 23 89

10 9 13 33 94
λ1 = 1.00 1.25 1.50 1.75 2.00

ST(λ1, 0.0) 4 19 30 19 4
10 29 38 28 9

ST(λ1, 0.5) 80 68 50 22 4
87 79 61 32 9

ST(λ1, 1.0) 100 100 93 38 4
100 100 97 50 9

c = 2.00 5.00 10.0 15.0 20.0
ML(c) 7 8 10 10 12

13 14 17 18 19
λ = 0.25 0.50 0.75 1.00 2.00

NW(λ) 100 82 27 11 6
100 90 39 19 13

p = 0.25 0.50 0.75
NS(p, 1.25, 0.0) 25 44 48

36 55 59
NS(p, 1.50, 0.0) 29 34 24

42 43 33
NS(p, 1.75, 0.0) 19 16 11

27 25 18
NS(p, 1.25, 0.5) 70 64 51

80 76 60
NS(p, 1.50, 0.5) 49 42 24

62 53 32
NS(p, 1.75, 0.5) 23 18 12

33 28 19

v. The standard stable distribution with shape param-
eter λ1 and skewness parameter λ2, ST(λ1, λ2); see
[8] for more details on this model.

vi. The mixture of Laplace distributions, ML(c)=
0.5AL(1, 1) + 0.5AL(c, 1).

vii. The mixture of a standard normal distribution with
a stable distribution, NS(p, λ1, λ2) = pN(0, 1)+(1−
p)ST(λ1, λ2).

viii. The normal variance Weibull distribution, NW(λ),
where X |V = v is N(0, v), and V is distributed as
standard Weibull with shape parameter λ.

Some of these distributions have been extensively used
by applied researchers for modelling skewed and heavy
tailed data.

Note that calculating the CM statistic numerically is not
always possible, because the numerical integration rou-
tine did not always converge. In fact we found this prob-
lem with a few samples either from the stable distribu-
tion or from a mixture of a standard normal with a stable

Table 4: Percentage of rejection for 1000 Monte Carlo
samples of size n = 200 at 5% (upper entry) and 10%
(lower entry) level of significance (CM test)

CM
λ = 0.50 1.00 2.00 3.00 5.00

NIG(λ) 4 4 5 6 7
9 9 9 10 12

λ = 0.50 0.80 1.00 1.20 1.50
AL(λ) 100 66 8 55 99

100 78 18 68 100
λ = 0.15 0.25 0.35 0.50 0.75

TU(λ) 33 68 92 100 100
45 80 97 100 100

λ = 0.00 0.50 1.00 2.00 5.00
SN(λ) 6 6 10 46 98

12 10 17 60 99
λ1 = 1.00 1.25 1.50 1.75 2.00

ST(λ1, 0.0) 5 6 12 13 5
11 13 24 25 10

ST(λ1, 0.5) 97 86 58 23 5
99 92 74 36 10

ST(λ1, 1.0) 100 100 99 54 5
100 100 99 68 10

c = 2.00 5.00 10.0 15.0 20.0
ML(c) 5 7 9 8 10

11 12 18 17 18
λ = 0.25 0.50 0.75 1.00 2.00

NW(λ) 100 39 15 8 5
100 64 28 15 10

p = 0.25 0.50 0.75
NS(p, 1.25, 0.0) 7 13 26

14 27 44
NS(p, 1.50, 0.0) 12 18 18

25 30 28
NS(p, 1.75, 0.0) 13 13 10

24 23 19
NS(p, 1.25, 0.5) 84 68 37

93 82 53
NS(p, 1.50, 0.5) 59 41 21

73 58 32
NS(p, 1.75, 0.5) 23 18 11

37 29 19

distribution. What we did in practice is to discard the
‘nonconvergent’ sample, and replace it with another sam-
ple.

The figures in Tables 1–6 suggest that both tests CF and
CM capture the nominal level of significance to a satis-
factory degree, the CF–test having a slight edge in this
respect. Powerwise the proposed test is seen to be less
powerful than the CM–test for AL, TU, and SN distribu-
tions. On the other hand the performance of the new test
for NS(p, λ1, 0), ST(λ1, 0), and NW distributions, cou-
pled with the ease of computation, lead us to suggest
the CF–test as a competitive and computationally effi-
cient method for assessing the fit to a conditinally normal
variable, with a stochastic variance following an inverse
Gaussian distribution.

5 Application to currency exchange rates

In the current section, we apply the method to real data
on daily currency exchange rates. These rates are gener-
ally known to be symmetric, but leptokurtic with respect
to normality; refer to [2] and [4].
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Table 5: Percentage of rejection for 1000 Monte Carlo
samples of size n = 500 at 5% (upper entry) and 10%
(lower entry) level of significance (CF test)

CF
λ = 0.50 1.00 2.00 3.00 5.00

SNIG(λ) 5 4 5 5 5
10 9 10 11 10

λ = 0.50 0.80 1.00 1.20 1.50
AL(λ) 100 83 24 73 100

100 90 35 82 100
λ = 0.15 0.25 0.35 0.50 0.75

TU(λ) 37 90 100 100 100
50 94 100 100 100

λ = 0.00 0.50 1.00 2.00 5.00
SN(λ) 5 4 7 51 100

10 9 12 64 100
λ1 = 1.00 1.25 1.50 1.75 2.00

ST(λ1, 0.0) 4 57 68 43 5
9 67 75 52 8

ST(λ1, 0.5) 100 100 94 56 5
100 100 97 65 8

ST(λ1, 1.0) 100 100 100 86 5
100 100 100 93 8

c = 2.00 5.00 10.0 15.0 20.0
ML(c) 6 12 19 23 25

12 22 29 34 36
λ = 0.25 0.50 0.75 1.00 2.00

NW(λ) 100 100 65 22 5
100 100 74 35 11

p = 0.25 0.50 0.75
NS(p, 1.25, 0.0) 66 91 86

76 94 89
NS(p, 1.50, 0.0) 68 71 47

76 79 57
NS(p, 1.75, 0.0) 42 38 19

53 46 26
NS(p, 1.25, 0.5) 99 98 89

100 100 93
NS(p, 1.50, 0.5) 92 85 50

96 91 60
NS(p, 1.75, 0.5) 53 47 20

66 61 27

The data consist of daily currency spot exchange rates for
USA, UK and Japan, covering the period from January
1, 1975 to December 31, 2005. The variable of interest is
the daily return, computed as (rt − rt−1)/rt−1, for con-
secutive days t − 1 and t. For each pair of currencies,
the corresponding data–set was proken to 31 subsamples
(one subsample for each year) of approximately 250 ob-
servations each. We apply the test on every subsample,
to see whether the law of daily rates of return of curren-
cies follows the SNVIG distribution. Our results indicate
a rate of acceptance of 80.65% for the USD–GBP rate,
of 83.87% for the YEN–USD rate and of 80.65% for the
YEN–GBP rate. Consequently, we suggest the SNIG as
a good model for currency exchange rates, a conclusion
reached by earlier researchers based on explanatory data
techniques.
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