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Abstract—In recent years Singular Spectrum Anal-
ysis (SSA), used as a powerful technique in time
series analysis, has been developed and applied to
many practical problems. In this paper, we intro-
duce the SSA technique based on the minimum vari-
ance estimator. We also consider the SSA technique
based on the minimum variance and structured total
least squares estimators in reconstructing and fore-
casting time series. A well-known time series data
set, namely, monthly accidental deaths in the USA
time series, is used in examining the performance of
the technique. The results are compared with sev-
eral classical methods namely, Box-Jenkins SARIMA
models, the ARAR algorithm and the Holt-Winter
algorithm.

Keywords: singular spectrum analysis, structured total
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1 Introduction

It is well known that errors can seriously limit the perfor-
mance of the methods and techniques. Effective methods
for dealing with noisy data, especially noisy time series
are currently still lacking. In general, there are two main
approaches for either fitting a model to a noisy time se-
ries or forecasting new data points of a noisy time series.
According to the first one, ignoring the presence of noise,
we fit a model directly from noisy data (such as ARIMA
type models [1]) and use the fitted model for forecasting
future data points. According to the second approach,
we start by filtering the noisy time series in order to re-
duce the noise level (such as SSA [2]) and fit a model
to noise-reduced data and then use the fitted model for
forecasting new data points.

In the case of the former approach, the fitted model and
therefore the forecasting performance are often poor if the
noise level is relatively high, especially for the economics
and financial time series. Consider a noisy time series
yT = (y1, . . . , yT )

′
, where

′
denotes the transpose, and

assume that the signal st is deterministic and the noise
ωt is additive:

yt = st + ωt t = 1, . . . , T (1)
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Assume the noise-reduced time series has been obtained
by some noise reduction method, e.g., SSA and denote it
by zT = (z1, . . . , zT ). The ideal result of noise reduction
is zt = st for each t. In this case, the fitted model on
the noise-reduced time series should be optimal, as we
remove the noise term ωt from noisy time series. If the
noise has been significantly reduced, then the latter ap-
proach is expected to give better results than the former
approach. There are several noise reduction methods. It
is currently accepted that singular value decomposition
(SVD) based methods and signal subspace (SS) methods
are more effective than many others for noise reduction
and forecasting in financial and economics time series [3].

Having a method for decomposing the vector space of the
noisy time series into a subspace that is generated by the
noise free series and a subspace for the noise series, we
can construct the noise free time series. Approximate de-
composition of the vector space of the noisy time series
into noise free time series and noise series subspace can
be done with, for example, the orthogonal matrix factor-
ization technique such as SVD.

The idea to perform SS method was originally proposed
in [4] where a modified SVD is used for reconstruction
of noise free series. A general framework for recovering
noise free series has been presented in [5]. The method
forms the basis for a very general class of subspace-based
noise reduction algorithms, is based on the assumption
that the original time series exhibits some well-defined
properties or obeys a certain model. Noise free series is
therefore obtained by mapping the original time series
onto the space of series that possess the same structure
as the noise free series.

In this context, the SSA technique, which is SVD and
SS based method, can be considered as a proper method
for noise reduction and forecasting time series data sets.
The SSA technique incorporates the elements of classical
time series analysis, multivariate statistics, multivariate
geometry, dynamical systems and signal processing. The
aim of SSA is to make a decomposition of the original
series into the sum of a small number of independent and
interpretable components such as a slowly varying trend,
oscillatory components and a structureless noise.

The appearance of SSA is usually associated with the
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publication of [6]. Possible application areas of SSA are
diverse: from mathematics and physics to economics and
financial mathematics, from metrology and oceanology
to social science and market research (see, for example,
[7, 8, 9, 10, 11] and references therein). Any seemingly
complex series with a potential structure could provide
an example of a successful application of SSA [2]. A thor-
ough description of the theoretical and practical founda-
tions of the SSA technique (with several examples) can
be found in [2] and [12]. An elementary introduction to
the subject can be found in [13].

All the aforementioned research is based on the standard
SVD and the structured total least squares (some times
refereed to simply as least squares (LS)). The LS esti-
mate (we shall use this short abbreviation for the struc-
tured total least squares) of the noise free series can be
obtained by truncating the singular values. The LS esti-
mator projects the noisy time series onto the perturbated
signal (noise + signal) subspace. The reconstructed series
using LS estimator has the lowest possible (zero) signal
distortion and the highest possible residual noise level.
In this paper, we consider an alternative method which
is based on the minimum variance (MV) estimator for re-
construction and forecasting noisy time series. The MV
estimator is the optimal linear estimator, which gives the
minimum total residual power [14, 15].

The structure of the paper is as follows. The next section
briefly describes least squares and minimum variance es-
timators. The reconstruction and forecasting algorithm
is presented in Section 3. Our forecast results are then
presented and described in Section 4 and some conclu-
sions are given in Section 5.

2 LS and MV Estimators

Consider a noisy signal vector yT = (y1, . . . , yT )
′

of
length T . We will add the additive white noise to the
noise free series (signal) and assume that the noise is un-
correlated with the signal:

yT = sT + nT ; (2)

here sT represents the signal component and nT noise
component. Let K = T − L + 1, where L is some inte-
ger called the window length (we can assume L ≤ T/2).
Define the so-called ‘trajectory matrix’ X = (xij)

L,K
i,j=1,

where xij = yi+j−1. Note that X is a Hankel matrix
(by the definition, these are the matrices such that their
(i, j)-th entries depend only the sum i+ j).

X = (xij)
L,K
i,j=1 =




y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1

...
...

...
. . .

...
yL yL+1 yL+2 . . . yT




(3)

We then consider X as a multivariate data with L char-
acteristics and K = T −L+1 observations. The columns
Xj of X, considered as vectors, lie in an L-dimensional
space RL. It is obvious that:

X = S + N, (4)

where S and N represent Hankel matrices of the signal sT
and noise nT , respectively. The Singular value decompo-
sition (SVD) of the trajectory matrix X can be written
as:

X = UΣV
′
, (5)

where U ∈ RL×K is the matrix consists of the normal-
ized eigenvector Ui corresponding to the eigenvalue λi
(i = 1, . . . , L), V ∈ RK×K , is the matrix contains the
principal components defined as Vi = X

′
Ui/
√
λi, and

Σ = diag(λ1 ≥ λ2 ≥ . . . ≥ λL). The diagonal elements
of Σ are called singular value of X, and their set is called
the singular value spectrum.

The SS methods are based on the assumption that the
vector space of the noisy time series (signal) can be split
in mutually orthogonal noise and signal+noise subspaces.
The components in the noise subspace are suppressed or
in the ideal form removed completely. Therefore, one
can reconstruct the noise free series from signal+noise
subspace by choosing the weight. Thus, by adapting the
weights of the different singular components, an estimate
of the Hankel matrix X, which corresponds to noise re-
duced series, can be achieved:

X = U(WΣ)V
′
, (6)

where W is the diagonal matrix containing the weights.
Now, the problem is choosing weight matrix W. In the
following we consider the problem of choosing this matrix
using different criteria. The SVD of the matrix X can be
written as:

X = [U1 U2]
[

Σ1 0
0 Σ2

] [
V
′
1

V
′
2

]
(7)

where U1 ∈ RL×r, Σ1 ∈ Rr×r and V1 ∈ RK×r. We can
also represent SVD of the Hankel matrix of the signal sT
as:

S = [U1s U2s]
[

Σ1s 0
0 0

] [
V
′
1s

V
′
2s

]
(8)

It is clear that the Hankel matrix S can not be recon-
structed exactly if it is perturbed by noise.

2.1 LS Estimate of S

Let us consider the assumption that the matrix XL×K is
rank deficient, i.e., rank X = r and r < L < K. The
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simplest estimate of S is obtained when we approximate
S by a matrix of rank r in the LS sense:

min ‖ X− ŜLS ‖2F (9)

where ‖ . ‖F is Frobenius norms. That is, the LS es-
timate is obtained by setting smallest singular value to
zero (λr+1 = 0, . . . , λL = 0) in (7):

ŜLS = [U1 U2]
[

Σ1 0
0 0

] [
V
′
1

V
′
2

]
= U1Σ1V

′
1 (10)

The SLS estimate removes the noise subspace, but keeps
the noisy signal uncorrelated in the signal+noise sub-
space. Among different weighting methods, the LS es-
timate contains the highest possible residual noise level,
only the noise from the noise subspace is filtered out, but
has the lowest signal distortion (it keeps signal+noise
subspace). The disadvantage of LS is that the perfor-
mance of the LS estimator is crucially dependent on the
estimation of the signal rank r. That is, selecting singular
value in LS is a binary approach. The main advantage of
the LS estimate is that one does not need consider any
assumptions either about the signal or noise. For exam-
ple, if the noise is not white, many other methods need
prewhitening and dewhitening steps [16].

2.2 MV Estimate of S

The aims of the noise reduction can be considered as
follows: (1) separate the (signal+noise) subspaces from
the (noise only) subspace, (2) remove the (noise-only)
subspace, (3) ideally, remove the noise components in
the (signal + noise) subspace. The first two steps can
be achieved by the least squares estimate, while the MV
estimate allows us to have the third one as well. However,
one should consider the following assumptions to obtain
the MV estimate:

i) The signal is orthogonal to the noise: S
′
N = 0.

ii) N
′
N = σ2

noiseI, where I is a identity matrix. That is,
every column of N has norm σnoise.

iii) The smallest singular value of Σ1, λr, is larger than
largest singular value of Σ2, λr+1.

If the assumptions i–iii are met, one can obtain the MV
estimate as follows [14, 15]. Given the matrix X, with
rank X=rank N = L and also rank S = r. Find the
matrix T ∈ RK×K that minimizes:

min ‖ XT− S ‖2F . (11)

The solution is obtained by

T = (X
′
X)−1X

′
S. (12)

Therefore, the MV estimate of S is:

XT = X(X
′
X)−1X

′
S. (13)

Using the SVD of the X, we can obtain:

XT = UU
′
S. (14)

That is, the MV estimate of S can be interpreted as a
orthogonal projection of S onto the column space of X
because UU

′
is the associated projection matrix. Note

also that rank (XT)= rank (S) = r. In real application
the matrix S is not known, but it is possible to achieve
the MV estimate, from SVD of X, if assumption i–iii are
satisfied. Let us now consider an alternative form of the
SVD of the matrix X using the SVD of S (8) as follows:

X = S + N = U1sΣ1sV
′
1s + NV1sV

′
1s + NV2sV

′
2s

=
[
(U1sΣ1s + NV1s)(Σ2

1s + σ2
noiseI)−1/2 σ−1

noiseNV2s

]

×
[

(Σ2
1s + σ2

noiseI)1/2 0
0 σnoiseI

] [
V
′
1s

V
′
2s

]
.

(15)
As it appears from (15), the middle matrix is diago-
nal, and the left and right matrices have orthonormal
columns. Therefore, (15) can be considered as an alter-
native form of the SVD of X, and the singular values of
X are:

Σ1 = (Σ2
1s + σ2

noiseI)1/2,
Σ2 = σnoiseI .

(16)

Hence, the singular values in Σ2 can be interpreted as a
noise threshold, which permits estimating σnoise from Σ2

in (16). We can also consider the following submatrices:

U1 = (U1sΣ1s + NV1s)(Σ2
1s + σ2

noiseI)−1/2

= (U1sΣ1s + NV1s)Σ−1
1 ,

U2 = σ−1
noiseNV2s ,

V1 = V1s ,
V2 = V2s .

(17)

Now, using (16–17) and also S
′
N = 0, U

′
1N = 0, we then

obtain the MV estimate of S:

ŜMV = UU
′
S = U1U

′
1U1sΣ1sV

′
1s + U2U

′
2U1sΣ1sV

′
1s

= U1Σ−1
1 (Σ1sU

′
1s + V

′
1sN

′
)U1sΣ1sV

′
1s

+σ−1
noiseU2V

′
2sN

′
U1sΣ1sV

′
1s

= U1Σ−1
1 Σ2

1sV
′
1s

= U1Σ−1
1 (Σ2

1 − σ2
noiseI)V

′
1 .

(18)

It should be noted that the success of SS methods es-
sentially depends on assumptions i–iii, which in practice,
except probably for condition iii, are never satisfied ex-
actly. Let us consider the first assumption. If, for ex-
ample, S

′
N 6= 0 but ||S′N|| is small, we can still use

the SVD of X. The smaller S
′
N gets, the better will be

the approximations. For the second assumption we can
assume that E(N

′
N) = σ2

noiseI. However, it has been
shown that, under some weak conditions, the assump-
tions i–iii can be considered true asymptotically [14]. We
can therefore still use the robustness feature of SVD with
respect to weak violations of these conditions.
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2.3 Weight matrix W

Let us consider again the weight matrix W based on the
LS and MV estimates. As it is appears from (10) and
(18), the left and right singular vector, U1 and V1, of LS
and MV estimates are the same, but the singular values
are different. The LS and MV estimates can be defined
based on the weight matrix Wr×r as follows:

ŜLS = U1(WLSΣ1)V
′
1

ŜMV = U1(WMV Σ1)V
′
1

(19)

where

WLS = Ir×r
WMV = diag

(
(1− σ2

noise

λ2
1

), . . . , (1− σ2
noise

λ2
r

)
) (20)

3 Reconstruction and Forecasting

3.1 Reconstruction

The matrices ŜLS and ŜMV are not Hankel matrices,
and thus one can not obtain noise free time series from
these estimates. We thus need a formal procedure of
transformation an arbitrary matrix into a Hankel ma-
trix and therefore into a series. This procedure is the
so-called Hankelization and is obtained by diagonal av-
eraging, where every element from antidiagonal of either
ŜLS or ŜMV is replaced by the average value along the
antidiagonal. Let us consider the Hankelization proce-
dure in detail.

If zij stands for an element of a matrix Z, then the k -th
term of the resulting time series is obtained by averaging
zij over all i, j such that i+ j = k + 2. The result of the
Hankelization of a matrix Z is the Hankel matrix HZ,
which is the trajectory matrix corresponding to the time
series obtained as a result of the diagonal averaging.

The operator H acts on an arbitrary L×K-matrix Z =
(zij) with L ≤ K in the following way: for i+ j = s and
N = L+K − 1 the element z̃ij of the matrix HZ is





1
s− 1

s−1∑

l=1

zl,s−l 2 ≤ s ≤ L− 1,

1
L

L∑

l=1

zl,s−l L ≤ s ≤ K + 1,

1
K + L− s+ 1

L∑

l=s−K
zl,s−l K + 2 ≤ s ≤ K + L.

Note that the Hankelization is an optimal procedure in
the sense that the matrix HZ is the nearest to Z (with
respect to the Frobenius norm) among all Hankel matri-
ces of the corresponding size [2]. The Hankel matrix HZ

uniquely defines the time series by relating the values in
the diagonals to the values in the series.

By applying the Hankelization procedure to matrices ŜLS
or ŜMV , we obtain:

S̃LS = HŜLS , S̃MV = HŜMV (21)

Therefore, the reconstructed series is:

yt =
m∑

k=1

ỹ
(k)
t (22)

where Ỹ (k)
T = (ỹ(k)

1 , . . . , ỹ
(k)
T ) corresponds to the matrix

S̃LS and S̃MV .

3.2 Forecasting

Forecasting by SSA can be applied to the time series that
approximately satisfies linear recurrent formulae (LRF):

yi+d =
d∑

k=1

akyi+d−k, 1 ≤ i ≤ T − d (23)

of some dimension d with the coefficients a1, . . . , ad. An
important property of the SSA decomposition is that, if
the original time series YT satisfies a LRF (23), then for
any T and L there are at most d nonzero singular values
in the SVD of the trajectory matrix X; therefore, even if
the window length L and K = T − L+ 1 are larger than
d, we only need at most d matrices Xi to reconstruct the
series.

Let us briefly describe the so-called SSA recurrent fore-
casting algorithm (for more information see [2]). De-
fine the original series YT = (y1, . . . , yT ) and the re-
constructed series ỸT = (ỹ1, . . . , ỹT ) (which can be ob-
tained by either LS or MV estimates). For an eigenvector
U ∈ RL we denote the vector of the first L−1 components
of the vector U as UO ∈ RL−1. Set v2 = π2

1 +. . .+π2
r < 1,

where πi is the last component of the eigenvector Ui
(i = 1, . . . , r). It can be proved that the last com-
ponent yL of any vector Y = (y1, . . . , yL)T is a lin-
ear combination of the first components (y1, . . . , yL−1);
that is, yL = a1yL−1 + . . . + aL−1y1 where the vector
of coefficients A = (a1, . . . , aL−1) can be expressed as
A =

∑r
i=1 πiU

O
i /(1 − v2). The forecasts yT+1, . . . , yT+h

are then obtained as

yi =
{
ỹi for i = 1, . . . , T∑L−1
j=1 ajyi−j for i = T + 1, . . . , T + h.

4 Comparison

Let us now consider the performance of the SSA tech-
nique based on the MV and LS estimates by applying
it to a well-known time series data set, namely, monthly
accidental deaths in the USA. The results are compared
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with those obtained using Box-Jenkins SARIMA models
(Model I and II), the ARAR algorithm and the Holt-
Winter algorithm (as described in [17]):

Model I:

∇12yt = 28.831 + (1− 0.478B)(1− 0.588B12)Zt
Zt sWN(0, 94390)

(24)

Model II:

∇12yt = 28.831 + Zt − 0.596Zt−1−
0.407Zt−6 − 0.685Zt−12 + 0.460Zt−13

Zt sWN(0, 94390)
(25)

where backward shift operator B is: BjZt = Zt−j .

The window L = 24 and the first 12 singular values have
been used in reconstructing and forecasting the series and
singular values 13–24 have been considered as noise com-
ponents (for more information about parameters selec-
tion, for this series, see [9]). Here, we used the same pa-
rameters and recurrent forecasting algorithm as for the
vector forecasting algorithm that was used in [9]. To cal-
culate the precision we use Root Mean Squared Error
(RMSE):

RMSE =

(∑n
i=1(yT+i − ỹT+i)2

∑n
i=1(yT+i − ̂̂yT+i)2

)1/2

. (26)

Here n represents the number of forecasted points, ỹT+i

are the forecasted values of yT+i obtained by SSA and
̂̂yT+i are the forecasted values of yT+i obtained by other
methods. If RMSE < 1, then SSA procedure outperforms
alternative prediction method. Alternatively, RMSE > 1
would indicate that the performance of the correspond-
ing SSA procedure is worse than the predictions of the
competing method.

The methods are arranged based on the performance of
forecasting. The results are presented in Table 1. The
values of RMSE show performance of forecasting. The
last two columns, labeled Ratio, show the ratios of RM-
SEs SSA/other methods. As it appears in Table 1, the
forecasting performance using the SSA technique based
on the LS estimate (SSALS) and based on the MV es-
timate (SSAMV ) are much better than other forecasting
methods and also the SSAMV is the best among the meth-
ods considered, for example, the value of RMSE for the
SSAMV is 9 times less than the first one (model I) and
almost 3 times less than the ARAR algorithm. From the
table, one can see that the SSAMV performance is better
that the SSALS . Let us consider the performance of the
SSA forecasting results with respect to different values
of r. We choose the same window length L but differ-
ent eigenvalues r. The results are presented in Table 2,
for the first 13 eigenvalues (r = 13), and Table 3, for
the first 14 eigenvalues (r = 14). As the tables show,

again, the SSA technique outperforms the other classical
methods. It can be seen that the quality of the forecast
is changed when one changes the number of eigenvalues
in the reconstruction step. Of course, forecasting accu-
racy and reconstruction quality are related. By selecting
a group of eigenvalues, and considering other eigenvalues
as noise, some frequencies may be filtered out completely.
This destroys the signal structure and then gives a poorer
reconstruction. In general, a high signal to noise ratio will
result in good forecasting and vice-versa.

Table 1: RMSE of the Post-sample forecasts, first 12
eigenvalues (r = 12).

Ratio
Method RMSE LS MV

Model I 582.63 0.21 0.12
Model II 500.50 0.24 0.14

H-W 401.26 0.30 0.18
ARAR 253.20 0.47 0.28
SSALS 119.61 1.00 0.59
SSAMV 70.90 1.69 1.00

Table 2: RMSE of the Post-sample forecasts, first 13
eigenvalues (r = 13).

Ratio
Method RMSE LS MV

Model I 582.63 0.18 0.11
Model II 500.50 0.21 0.13

H-W 401.26 0.26 0.17
ARAR 253.20 0.41 0.26
SSALS 104.48 1.00 0.64
SSAMV 66.96 1.56 1.00

Table 3: RMSE of the Post-sample forecasts, first 14
eigenvalues (r = 14).

Ratio
Method RMSE LS MV

Model I 582.63 0.27 0.13
Model II 500.50 0.31 0.16

H-W 401.26 0.39 0.20
ARAR 253.20 0.62 0.31
SSALS 156.157 1.00 0.50
SSAMV 78.49 1.99 1.00

5 Conclusion

Classical time series methods such ARIMA type models
fit a model directly from noisy data and use the fitted
model for forecasting future data points. Forecasting re-
sults are typically better if one fits a model to noise re-
duced time series and then use the fitted model for fore-
casting new data points. The signal subspace and SVD
based methods such as SSA can be applied as powerful
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tools for finding the noise free series and using it for fore-
casting future data points.

In this paper we introduced the SSA technique based on
the minimum variance estimator. The results has illus-
trated that the SSA technique performs well in forecast-
ing time series. The comparison of the forecasting re-
sults showed that SSA, based on the minimum variance
(MV) and structured total least squares (LS) estimates,
are much more accurate than several well-known classi-
cal methods, in forecasting of a well know time series.
We also find that the SSA forecasting results based on
MV are better than based on LS for forecasting this se-
ries. However, comparison between these two estimates
depends on the choice of the SSA parameters, the win-
dow length L and the number of eigenvalues r, the data
we have and also the analysis we have to perform. We
believe that SSA based on both estimates, LS and MV,
gives accurate results.
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