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1 Introduction

This paper considers mixed Poisson processes for the
analysis of panel data. We define panel data as a collec-
tion of sampled individuals from a population observed
over a period of time called the analysis period. Dur-
ing the analysis period, each unit has events occurring
at random (exponentially distributed) times. We aim to
statistically model the occurrence of events for the pop-
ulation as a whole using mixed Poisson processes.

Section 2 reviews the theory of mixed Poisson models.
Section 3 considers methods for assessing goodness of fit
of the mixed Poisson model.

2 Background

This section presents the fundamentals of mixed Poisson
process theory (see [4] for a detailed description of mixed
Poisson processes).

2.1 Mixed Poisson distributions (MPDs)

A random variable X has a mixed Poisson distribution if
it has probability mass function (p.m.f.)

px = P (X = x) =

∫
∞

0−

λxe−λ

x!
dF (λ) , x = 0, 1, 2 . . . .

(1)

where F (λ) is a cumulative distribution function (c.d.f.)
of a random variable which takes values in the interval
(0,∞). The distribution with c.d.f. F (λ) is often termed
the ‘structure’ distribution. The structure distribution
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often depends on parameters θ (unknown in practice) so
that FΛ(λ) = FΛ(λ;θ).

A common structure distribution is the gamma distribu-
tion with density function

f(λ) =
1

akΓ(k)
λk−1e−λ/a, a > 0, k > 0, λ > 0 ;

the resulting MPD is the negative binomial distribution
(NBD) with probabilities

px =
Γ(k+x)

x!Γ(k)

(
1

1+a

)k(
a

1+a

)x

,
x = 0, 1, 2, . . .
k > 0, a > 0.

(2)

In the case of panel data analysis, equation (1) has the
following natural interpretation: if the number of events
for each individual in a fixed time period follows the Pois-
son distribution and the mean of this Poisson distribution
has c.d.f. F (λ) then the number of events for a random
individual has the mixed Poisson distribution (note that
this holds for any fixed time interval).

2.2 Mixed Poisson processes (MPPs)

Let X = (X(t1), X(t2), . . . , X(tn)) be a random vector
with 0 = t0 < t1 < . . . < tn representing an increasing
sequence of time points, let x = (x1, x2, . . . , xn) be a vec-
tor of non-negative integers with 0 = x0 � x1 � . . . � xn

and let λ > 0 be the intensity of a process, then given
the multivariate Poisson distribution

P (X=x|Λ=λ)=

n−1∏
i=0

[λ(ti+1−ti)]
xi+1−xi

(xi+1−xi)!
e(−λ(ti+1−ti)),

(3)

the mixed Poisson process is consequently defined as
a process {X(t) : t ∈ {t1, t2, . . . , tn}} whose finite-
dimensional distributions are

P (X = x) =

∫
∞

0−

P (X = x|Λ = λ) dFΛ(λ). (4)

Here FΛ(λ) is the c.d.f. of a random variable Λ with sup-
port (0,∞).

Note that the mixed Poisson process conditioned upon
Λ = λ, so that the value of λ is fixed, is simply a pure
Poisson process with stationary and independent incre-
ments whose finite dimensional distributions are given
by equation (3).
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2.3 Measures of recurrence

Measures of recurrence are functionals of the MPD that
summarise the repeat behavior of the occurrence of an
event. Statistical estimators of these measures are com-
monly used for the analysis of data in fields such as con-
sumer research (see e.g. [2]), insurance (see e.g. [4]) and
health care (see e.g. [1]). The measures can be used in
any field where the theory of MPPs is applicable.

In consumer research, where an event represents the pur-
chase of a product, the measures of recurrence are more
commonly known as repeat buying measures. The repeat
buying measures are functionals of the one-dimensional
mixed Poisson distribution and represent measures of re-
currence within a fixed time period. In consumer re-
search, more accurate forecasts of sales can be achieved
by considering aggregate sales broken down into the re-
peat buying measures (see e.g. [3]).

Assume that the analysis period (0, t] is fixed, the mea-
sures defined below are applicable to any time inter-
val of length t. Let X(t) be a random variable from
the one-dimensional MPD with probabilities px(t) (x ∈
{0, 1, 2, . . .}) and let μ(t) = EX(t) denote the mean of the
MPD. We now define various characteristics of recurrence
obtained from synonymous measures used in consumer
research.

Penetration. The penetration is the probability that at
least one event occurs for a random individual.

b(t) = 1− p0(t) = 1−

∫
∞

0−

e−λtdF (λ), 0 � b(t) � 1.

The penetration is a non-linear non-decreasing function
of t as t increases. Note that b(0) = 0 so that no events
may occur at time intervals of length t = 0. Addition-
ally b(∞) = 1; thus, given an infinite amount of time,
a random individual will have at least one event with
probability one.

Occurrence frequency. The occurrence frequency is the
mean number of events for a random individual who has
non-zero number of occurrences.

w(t) = E(X(t)|X(t) � 1) = μ(t)/b(t), w(t) � 1.

Measured repeat. The r-th (r = 1, 2, . . .) measured re-
peat is the probability that a random individual is likely
to have at least one more event given that the individual
has already had r events. The r-th measured repeat is

βr(t) =
1−

∑r
j=0 P(X(t) = j)

1−
∑r−1

j=0 P(X(t) = j)
, 0 � βr(t) � 1.

Repeats per repeater. The r-th (r = 1, 2, . . .) repeats per
repeater is the mean number of events for a random in-
dividual who has at least r + 1 occurrences. The mean

number of events is usually shifted by the value r so that
the minimum possible value is always one. The r-th re-
peats per repeater is

ωr(t) =
μ(t)−

∑r
j=0 j P(X(t) = j)

1−
∑r

j=0 P(X(t) = j)
− r, ωr(t) � 1.

2.4 Panel data

We define panel data as a collection of sampled individ-
uals from a population observed over a period of time
called the analysis period. During the analysis period,
each unit has events occurring at random times.

When applying the mixed Poisson process to data we use
the following model. We assume that each individual i
has events that occur according to a pure Poisson process
with random intensity λi that is fixed over time; thus,
for a fixed individual, inter-event times are independent
and identically exponentially distributed with mean 1/λi.
The λi are random variables from a structure distribution
with c.d.f. F (λ).

Note that an alternative interpretation may be applied
(see e.g. [4]) whereby each individual starts with a com-
mon fixed λ. For a fixed individual, the λ changes over
time according to the number of events observed for that
individual. In this paper, we only consider the first inter-
pretation mentioned in the previous paragraph.

3 Analysing goodness of fit

The suitability of the mixed Poisson process as a model
for panel data is considered by verifying adequacy of i) the
mixed Poisson distribution and ii) the mixed Poisson pro-
cess. In assessing adequacy, we compare model based es-
timators for the measures of recurrence to the empirical
estimators.

The measures of recurrence provide a standard set of
measures upon which to compare goodness of fit of dif-
ferent models. When applying the mixed Poisson model
to data, estimates for the measures of recurrence are ob-
tained by estimating the vector of parameters θ (e.g. by
using maximum likelihood) and computing the measures
as described in Section 2.3. Let nj , (j = 0, 1, 2, . . .) de-
note the number of individuals with j occurrences dur-
ing the analysis period and let N be the total number
of individuals in the panel; empirical estimators for the
measures of recurrence are computed by replacing the
probability P(X(t) = j) with its sample equivalent nj/N .

As a practical application, we apply the mixed Poisson
process with a gamma structure distribution to household
panel data where individuals are households and events
are the time points at which a product is purchased. We
are grateful to Phil Parker of ACNielsen BASES for pro-
viding the data.
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3.1 Adequacy of the mixed Poisson distri-
bution

The simplest method of assessing adequacy of the mixed
Poisson process is to verify the adequacy of the one di-
mensional mixed Poisson distribution by comparing ob-
served and expected frequencies of households with a
given number of purchase occasions observed during a
fixed time interval.

Figure 1 shows observed and expected frequencies when
fitting the NBD to panel data using a time interval of
length 13 and 52 weeks. It is clear, by observation, that
the NBD provides a good fit for the data. The graphs
in Figure 1, however, only consider data during the time
interval from the start of the analysis to the first 13 and
52 weeks respectively. The mixed Poisson process has the
property that the number of events in a fixed time period
follows the mixed Poisson distribution irrespective of the
start point and the chosen length of the analysis period.

To overcome this problem, we consider plotting ratios of
model based estimates for the measures of recurrence to
corresponding empirical estimators where the estimation
is made using data from multiple time intervals of varying
lengths. Figure 2 shows ratios of model based measures
of recurrence to empirical measures of recurrence plotted
against different lengths of analysis period. For a fixed
length of analysis period, each point represents a ratio
computed when fitting the model to data in sequential
non-overlapping intervals of equal length. Additionally
shown are lines for the mean of the estimates together
with corresponding 95% confidence intervals. The fact
that the ratios are very close to 1 indicate that the NBD
provides a good fit for the data over different time inter-
vals.

3.2 Adequacy of the mixed Poisson process

When assessing adequacy of the mixed Poisson process,
analysing goodness of fit of the mixed Poisson model by
considering ratios of model based estimators to empiri-
cal estimators does not take into consideration the fact
that parameters must remain stationary over time and
hence parameter estimates must not differ significantly
in different time periods.

Figure 3 shows time series plots of parameter estimates of
b and w computed in consecutive non-overlapping inter-
vals of length 13 weeks. The plots, in addition, show dot-
ted lines representing the overall mean of the estimators
and a confidence interval for the mean. The confidence
intervals for the mean was computed on the assumption of
asymptotic normality of the estimators (for more details
see [5]). Note that, for the NBD, the joint parameters b
and w are unique to the joint parameters a and k and
thus it is sufficient to consider stationarity of (b, w) when
investigating stationarity of (a, k).

The figures indicate that, although the parameter esti-
mates for b and w are fairly steady, there are two periods
for which the estimators significantly differ from one an-
other. Note also that, even though the majority of the
estimators do not differ significantly, high estimators of b
tend to have high estimators of w (i.e. the two estimators
seem to be correlated and indeed are correlated).

The methods considered so far only assess adequacy of
the one-dimensional marginal distribution of the mixed
Poisson process over a fixed analysis period. These meth-
ods do not consider the growth of the parameters as the
length of the analysis period varies. Figure 4 shows box
plots of empirical estimators of penetration and purchase
frequency for varying lengths of time window. (For each
length of time period, multiple estimators are obtained by
taking consecutive non-overlapping analysis periods.) In
addition, a solid line is plotted indicating the expected
growth of the measure of recurrence based on parame-
ter estimates of the mixed Poisson process from a sin-
gle period of length 52 weeks. It is clear that the ob-
served growth and the model based growth of the mea-
sures closely match.

The final method of assessing adequacy of the mixed
Poisson process uses the results of [5] in which we de-
rive the multivariate asymptotic distributions of statistics
and estimators computed over different time intervals us-
ing samples observed from mixed Poisson processes. The
method of assessing goodness of fit compares the asymp-
totic distribution of statistics and estimators (under the
assumption that the data are generated from a mixed
Poisson process) to the observed distribution of statistics
and estimators computed in two different time intervals.

Figure 5 shows, in separate plots, estimators of penetra-
tion and purchase frequency computed in two consecutive
non-overlapping intervals. The points represent estima-
tors obtained from randomly selected sub-groups of the
population. In addition, a 95% confidence ellipse is shown
which is constructed under the assumption that the data
follows a mixed Poisson process and that the estimators
are asymptotically normal. The plots again indicate a
good fit for the mixed Poisson model.

Assessing adequacy of the mixed Poisson processes by
analysing the bivariate distributions of the estimators has
the benefits of: testing goodness of fit of the mixed Pois-
son distribution (since the bivariate asymptotic distribu-
tions of the estimators are based on the assumption of the
underlying mixed Poisson distribution); testing station-
arity of parameter estimates over different time intervals;
testing the Poisson process assumption for individuals;
detecting changes in intensity for individuals over time
periods; and finally assessing adequacy of the mixed Pois-
son model to varying length analysis periods (achieved
by comparing the asymptotic distributions of statistics
in two periods of different lengths).
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Figure 1: Assessing adequacy of the MPD (single time interval)

Figure 2: Assessing adequacy of the MPD (multiple time interval)

Figure 3: Assessing stationarity of parameters over time
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Figure 4: Assessing adequacy of the MPP using growth curves

Figure 5: Assessing adequacy of the MPP using confidence ellipses
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Conclusion

The mixed Poisson process has been shown to be an ade-
quate model for the modeling of recurrent events in mar-
ket research. Numerous methods of assessing adequacy of
the mixed Poisson process have been considered. These
range from the simplest methods (assessing adequacy of
the one-dimensional mixed Poisson distribution) to more
complicated methods which take into consideration com-
parison of the dynamical behavior the data to the model.

Assessing adequacy of the mixed Poisson processes using
methods that take the dynamical behavior of the data
into account help examine possible causes of deviation
from the model (see e.g. [2]). As a result, it is possible to
develop more accurate processes for the modeling of data.
For example, it is straightforward to de-seasonalize mixed
Poisson processes to homogenous Poisson processes when
there are trends in the mean. In the case of panel flow,
where individuals have recurrent events that occur ac-
cording to a mixed Poisson process for a random period
of time, it is possible to extend the standard mixed Pois-
son model (see e.g. [6]) to accommodate for panel flow.
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