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Abstract— The problem of parameter esti-
mation and statistical inference when fitting an
M/G/∞ queuing process to data is considered in
the situation where the times of arrival and de-
parture are unknown; instead recurrent events,
which occur according to a mixed Poisson pro-
cess, are observed between the times of arrival
and departure.
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1 Introduction

This paper investigates the modeling of arrival
and departure times of individuals in the case
where precise arrival and departure times are un-
known; instead we observe recurrent events be-
tween the times of arrival and departure. In the
case where arrival and departure times are known,
it is straightforward to fit a standard queueing
model of the form M/G/∞ where the arrival pro-
cess is Markovian, the time spent between arrival
and departure follows a general distribution G and
there are no queues.

The situation described above occurs in many
fields. In the field of market research we observe
purchases made by individuals during an observa-
tion period. The time when an individual begins or
ceases to buy (i.e. time of arrival and departure),
however, is unknown. Such an example occurs for
purchases of products such as baby food, where in-
dividuals “flow” in and out of the panel.

1.1 Panel flow

Consider a panel of individuals consisting of sub-
jects that have recurrent events. Panel flow oc-
curs when individuals move into and out of the
panel. We assume that panel flow occurs accord-
ing to an M/G/∞ process so that: individuals en-
ter the panel according to a Poisson process with
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intensity ν; individuals stay in the panel for a ran-
dom period of time σ (independent and identically
distributed for each individual) and that there are
an infinite number of servers so that an individual
will immediately enter into the panel.

When the problem of panel flow exists then recur-
rent events may no longer be analyzed under the
assumption of stationarity. In this case, to model
recurrent events, we require knowledge of Nt, the
number of individuals in the panel at time t. If
we know the intensity of the Poisson arrival pro-
cess (ν) and the distribution of the time spent in
the panel (G) then we can use the properties of
M/G/∞ processes to model Nt.

Let us assume that Nt, modeled by an M/G/∞
process, is at a steady stationary state. For all t the
random variables Nt have Poisson distribution with
mean νEσ and the covariances cov(Nt, Nt+s) =
νE[max(0, σ − s)] for all s > 0 (see e.g. [4]).

The assumption that individuals enter the panel
according to a Poisson process with intensity ν is
a very natural assumption in practice. If the ar-
rival process is non-stationary, it can be easily de-
seasonalised (that is, made stationary). The in-
tensity ν of the arrival Poisson is also simple to
estimate.

1.2 Recurrent events

In estimating the parameters of the M/G/∞ pro-
cess we require the arrival and departure times for
each individual. In our problem, the arrival and
departure times are unknown. We consider the use
of recurrent events to estimate these times.

We consider mixed Poisson processes as a model
for the recurrent events. We define a mixed Pois-
son process as a pure Poisson process with random
intensity λ.

In the case of panel data analysis, the mixed Pois-
son process has a natural interpretation in that
each individual has events according to a Pois-
son process; however, the intensity of each process
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varies randomly across processes according to some
distribution.

The fitting of mixed Poisson processes to recurrent
data has been studied in fields such as: market re-
search where events are purchases of products (see
e.g. [2, 5]); health care where events may be the oc-
currence of cancer tumours or arrivals at hospitals
(see e.g. [1, 6]) and insurance where events may be
the occurrence of accidents or insurance claims (see
e.g. [3]).

1.3 Observation period

In practice, we collect panel data over a fixed time
period called the observation period. When ana-
lyzing flow through, we must assess whether or not
an individual is in the panel at the start and at the
end of the observation period.

For individuals whose recurrent events occur com-
pletely within the observation period, we may use
the full realization of recurrent events to estimate
the time of their arrival and the duration of their
service time. For all other individuals we have i) a
censored observation for the length of duration in
the panel and ii) an estimate for either the time of
arrival or the time of departure (but not both).

For a given individual, let t∗ be the time when an
individual enters the panel and let t∗ (t∗ ≥ t∗)
be the time when this individual leaves the panel.
During the period of time [t∗, t∗], the individual
has recurrent events according to a mixed Poisson
process. The individual is observed during [T∗, T ∗].

Layout

We consider the following problems related to panel
flow (modeled by a stationary M/G/∞ system)
where individuals have recurrent events in accor-
dance to a mixed Poisson process:

• estimation of individual intensities and the un-
derlying distribution of these intensities;

• estimation of the time period an individual
spends in a panel;

• estimation of the distribution G (the distri-
bution for a random individual to stay in the
panel);

• estimation of the distribution for the number
of recurrent events in a given time interval;

• estimation and forecast of the characteristics
of recurrence.

2 Estimation of intensities

Let [T∗, T ∗] be a fixed time interval during which
we observe recurrent events. For a given individ-
ual, let t∗ be the time when the individual enters
the panel and t∗ (t∗ ≥ t∗) be the time when this
individual leaves the panel. We assume that any
individual on the panel has a positive probability
of having recurrent events during the time interval
[t∗, t∗]. These events occur according to a Poisson
process with constant intensity λ, where λ is a ran-
dom variable. That is, the rate of events It for a
particular individual is

It =
{

λ if t ∈ [t∗, t∗]
0 otherwise.

We assume that if the same individual enters the
panel more than once then the individual is as-
signed a new interval of random duration σ and a
new random intensity λ; both σ and λ are inde-
pendent of the values used previously.

Consider an individual who has n recurrent events
at times t1, . . . , tn during the time interval [T∗, T ∗].
Here n ≥ 0 and

T∗ ≤ t1 ≤ . . . ≤ tn ≤ T ∗. (1)

The sequence of recurrent events (1) observed dur-
ing the interval [T∗, T ∗] is a subset of the realization
of the Poisson process during the interval [t∗, t∗].

2.1 Estimators for the intensity

In the estimation of λ for a given individual, as we
have no data prior to T∗ and beyond T ∗, we can
only use recurrent events observed during the time
interval [T∗, T ∗]. If we know that [T∗, T ∗] ⊂ [t∗, t∗]
then the number of events n has a Poisson dis-
tribution with intensity λT where T = T ∗ − T∗.
Therefore, to estimate λ we can use the maximum
likelihood estimator (MLE) λ̂ = n/T . For this es-
timator, we have Eλ̂ = λ and var(λ̂) = λ/T.

If, however, [T∗, T ∗] * [t∗, t∗] then the estimator λ̂
is biased: indeed,

Eλ̂ =
S

T
λ and var(λ̂) =

S

T
λ . (2)

where S = S∗ − S∗, S∗ = max{t∗, T∗}, S∗ =
min{t∗, T ∗}. Note that, for any individual, we have
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S ≤ T . If S is very different from T , the quality
of the estimator λ̂ is poor. In many cases, we can
improve the quality of this estimator by using only
the observations that belong to the interval [t1, tn].

As an alternative estimator to λ̂ we consider the
estimator

λ̃ =





n/T for n = 0, 1, 2, 3

(n− 2)/(tn − t1) for n > 3
(3)

This estimator is based upon the fact that (for
n > 3) individuals are, with certainty, in the panel
during the period (t1, tn) and hence events during
the time interval (t1, tn) occur according to a Pois-
son process.

2.2 Efficiency and bias of estimators:
no panel flow

To understand the efficiency of the λ̃, we need
to compare the estimators λ̂ and λ̃ in the case
[T∗, T ∗] ⊂ [t∗, t∗] (that is, when S = T ). For
n = 0, 1, 2, 3 we have Eλ̃ = Eλ̂ = λ and var(λ̃) =
var(λ̂) = λ/T . Thus we only need to compare es-
timators for the case n > 3.

Lemma 1. If [T∗, T ∗] ⊂ [t∗, t∗], then the estimator
(3) is an unbiased estimator of λ and

var(λ̃) =
λ

T

(
1 + 2 exp(−λT )

∞∑
n=3

(λT )n

(n− 2)n!

)
(4)

Proof. If [T∗, T ∗] ⊂ [t∗, t∗], then the number of
events n in the interval [T∗, T ∗] has a Poisson dis-
tribution Poisson(λT ).

Note that tn − t1 is a random variable, thus to
analyze the statistical properties of λ̃ we require the
distribution of 1/(tn − t1). The random variables
t1/T, . . . , tn/T (where T = T ∗−T∗) have the same
distribution as n order statistics corresponding to
an independent sample of size n from the uniform
distribution on [0, 1]. Consequently, (tn−t1)/T has
the same distribution as the second largest order
statistics from this sample. Assume that n > 3,
then the density of ξn = (tn − t1)/T is

p(x) = n(n− 1)xn−2(1− x), 0 < x < 1.

This yields that the density of the random variable
1/ξn = T/(tn − t1) is

φn(t) = n(n− 1)t−n(1− 1/t), 1 < t < ∞.

Proof of mean: Eλ̃.

For all n > 3, we have

E(1/ξn) = n(n− 1)
∫ ∞

1

t1−n(1− 1/t)dt =
n

n− 2
.

and hence

E(λ̃|n) = [(n− 2)/T ] E(1/ξn) = n/T.

Thus for all n = 0, 1, 2, . . . we have E(λ̃|n) = n/T
which implies

E(λ̃) = En(E(λ̃|n)) = En(n/T ) = En(n)/T = λ.

Proof of variance: var(λ̃).

For the computation of the variance we require
E(1/ξ2

n) and E(n2). We have E(n2) = λT (λT +1)
and

E(1/ξ2
n)=

∫
t2φn(t)dt = n(n−1)

∫ ∞

1

t2−n(1−1/t)dt

=
n(n− 1)

(n− 2)(n− 3)
.

Let µ = λT and pn(µ) = exp(−µ)µn/n! (n =
0, 1, 2, . . .) then

E(λ̃2) = En(E(λ̃2|n))

=
3∑

n=0

pn(µ)
n2

T 2
+

∞∑
n=4

pn(µ)
(n− 2)2

T 2
E(1/ξ2

n)

and

E(λ̃2) =
3∑

n=0

pn(µ)
n2

T 2
+

∞∑
n=4

pn(µ)
n(n− 1)(n− 2)

T 2(n− 3)

=
∞∑

n=0

pn(µ)
n2

T 2
+

∞∑
n=4

pn(µ)
(

n(n− 1)(n− 2)
T 2(n− 3)

− n2

T 2

)

=
1

T 2

(
µ(µ + 1) + 2 exp(−µ)

∞∑
n=4

nµn

(n− 3)n!

)

which implies (4).

The efficiency of the estimator λ̃ can be defined as

eff(λ̃) = var(λ̂)/var(λ̃)

Then the formulae var(λ̂) = λ/T and (4) imply

eff(λ̃) = 1/

(
1 + 2 exp(−λT )

∞∑
n=3

(λT )n

(n− 2)n!

)
.

For large λ we have

eff(λ̃) = 1− 3
λT

+ O

(
1
λ2

)
as λ →∞.
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2.3 Bias of estimators: panel flow

In the general case, when the inclusion [T∗, T ∗] ⊂
[t∗, t∗] does not necessarily hold, n ∼ Poisson(λS)
and the estimator λ̂ may be heavily biased, see (2).

As λ̃ = λ̂ for n = 0, 1, 2, 3 , the estimator λ̃ is
biased for n = 0, 1, 2, 3. However, since λ̃ is an
unbiased estimator for λ for n > 4, the estimator
λ̃ has a smaller bias than that of λ̂. For the mean
of λ̃, we have

E(λ̃) =
3∑

n=0

pn(λS)
n

T
+

∞∑
n=4

pn(λS)
n

S
=

∞∑
n=0

pn(λS)
n

S
+

3∑
n=0

npn(λS)
(

1
T
− 1

S

)
=

λ−
(

1
S
− 1

T

) (
λS + (λS)2 +

1
2
(λS)3

)
e−λS .

3 Time length an individual spends
on the panel

3.1 Estimation of the time length

Consider an individual with the sequence of events
(1). Let us estimate t∗ and t∗, the times of arrival
of the individual to the panel and his departure
from the panel, using only this data. Under the
assumption that the sequence of events (1) is a re-
alization of a Poisson process on [t∗, t∗], the distri-
bution of all differences ti+1− ti (i = 0, . . . , n; t0 =
t∗, tn+1 = t∗) is identical. The empirical mean
of the differences ti+1 − ti (i = 1, . . . , n − 1) is
(tn − t1)/(n − 1) and hence MLE estimators of t∗
and t∗ are

t̃∗ = t1−(tn−t1)/(n−1), t̃∗ = tn+(tn−t1)/(n−1).

If t̃∗ < T∗ we conclude that the individual has been
on the panel before the observation period started;
in this case, we cannot use the estimator t̃∗ as we
suspect that there were unregistered events for this
individual prior to T∗. Similarly, if t̃∗ > T ∗, the
individual will most probably have more events at
times tn+j > T ∗, j = 1, 2, . . ..

3.2 Distribution of the time length

Let σ = t∗− t∗ ∼ G be the period of time a partic-
ular individual stays in the panel and let [T∗, T ∗]
be the observation period. We assume that there
is a non-empty intersection of the intervals [t∗, t∗]
and [T∗, T ∗] so that the individual is in the panel
for at least a part of the whole period [T∗, T ∗]. Let

S(σ) denote the period defined by the intersection
of the time intervals [T∗, T ∗] and [t∗, t∗].

Let [t∗, t∗] be fixed and consider the random place-
ment of the observation window [T∗, T ∗] of fixed
length T at a random starting point T∗. Let
ξ = σ/T and define s(t) = S(σ)/T where t =
(t∗−T∗)/T with t ∈ [0, 1+ ξ]. Then, depending on
whether ξ <= 1 or ξ >= 1, we have two possible
laws for the function s(t):

if ξ ≤ 1 : s(t) =





t for 0 ≤ t ≤ ξ
ξ for ξ ≤ t ≤ 1

1+ξ−t for 1 ≤ t ≤ 1 + ξ

if ξ ≥ 1 : s(t) =





t for 0 ≤ t ≤ 1
1 for 1 ≤ t ≤ ξ

1+ξ−t for ξ ≤ t ≤ 1 + ξ

with all values of t being equiprobable.

This implies that for fixed ξ, the random variable
s(t) has the following distribution:

if ξ ≤ 1 : s(t) is

{
= ξ w. p. 1−ξ

1+ξ

uniform on [0, ξ] w. p. 2ξ
1+ξ

if ξ ≥ 1 : s(t) is

{
= 1 w. p. ξ−1

1+ξ

uniform on [0, 1] w. p. 2
1+ξ

To obtain the distribution of the length s(t) we
need to integrate this distribution with respect to
the distribution of ξ; the c.d.f. of ξ is G(x/T ) where
G(·) is the c.d.f. of σ.
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