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Abstract— The signal-to-noise ratio (SNR) is a commonly 

used measure of system fidelity estimated as the ratio of the 
variance of a signal to the variance of the noise.  Although 
widely used in analyses of physical systems, this estimator is not 
appropriate for point process models of neural systems or other 
non-Gaussian and/or non-additive signal and noise systems. We 
show that the extension of the standard estimator to the class of 
generalized linear models (GLM) yields a new SNR estimator 
that is ratio of two estimated prediction errors. Each prediction 
error estimate is an approximate chi-squared random variable 
whose expected value is given by its number of degrees of 
freedom. This allows us to compute a new bias-corrected SNR 
estimator. We illustrate its application in a study of simulated 
neural spike trains from a point process model in which the 
signal is task-specific modulation across multiple trials of a 
neurophysiological experiment. The new estimator 
characterizes the SNR of a neural system in terms commonly 
used for physical systems. It can be further extended to analyze 
any system in which modulation of the system’s response by 
distinct signal components can be expressed as separate 
components of a likelihood function. 
 

Index Terms—signal-to-noise ratio, generalized linear model, 
neural spike trains, deviance, point process, Kullback-Leibler 
distance. 

I. INTRODUCTION 
 The signal-to-noise ratio (SNR), defined as the ratio of the 
signal variance to the variance of the system noise, or in 
decibels as 10log10(SNR), is a broadly accepted measure for 
characterizing system fidelity and for comparing 
performance characteristics between different systems [1]. 
The higher the ratio, the less distorted the signal is by the 
noise. This SNR definition is most appropriate for 
deterministic or stochastic signal plus Gaussian noise 

systems. In the latter case, it can be easily computed in the 
time domain or in specific bands in the frequency domain. 
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Neural spiking activity is a non-Gaussian system for which 
the concept of SNR has not been clearly defined. First, 
neuronal responses are point processes [2]-[4] because 
neurons represent and transmit information through their 
sequences of action potentials or spikes (Fig. 1). Second, 
defining what is the signal and what is the noise in the spiking 
activity of a neuron is a challenge. This is because the nature 
of the putative signal or stimulus for a given neuron differs 
appreciably between brain regions. For example, neurons in 
the visual cortex and the auditory cortex respond to features 
of light [5] and sound stimuli respectively [6]. In contrast, 
neurons in the rat hippocampus respond robustly to the 
animal’s position in its environment [7], while their 
counterparts in the monkey hippocampus respond to the 
process of task learning [8]. Third, in addition to responding 
to a putative stimulus, a neuron’s spiking activity is also 
modulated by biophysical factors such as its absolute and 
relative refractory periods, its bursting propensity, and local 
network and rhythm dynamics [9]. Hence, the definition of 
SNR must take account of the extent to which a neuron’s 
spiking responses are due to the signal or to these intrinsic 
biophysical factors.  

500 Time (ms) 0 
 

Fig. 1. The times of spikes (vertical bars) plotted on a time axis  
from a spike train.  

 
Coefficients-of-variation [10], [11] and Fano factors [12] 

based on spike counts and information-theoretic measures 
[13], [14] and Gaussian approximations [14] have been used 
to analyze neuronal SNR. Most of these approaches do not 
consider the point process nature of the neural spiking 
activity. Moreover, these measures and the Gaussian 
approximations are less accurate for neurons with low spike 
rates or when information is contained in precise spike times. 

Generalized linear models (GLM) have been used to 
relate neural spiking activity represented as a point process to 
a putative stimulus (signal) and biophysical factors in a single 
statistical model [2], [15], [16]. We show that the extension 
of the standard SNR estimator to the class of GLMs yields a 
new estimator as a ratio of two prediction errors. Each 
prediction error estimator is an approximate chi-squared 
random variable whose bias correction is given by its number 
of degrees of freedom. We show how the new estimator can 
be used to characterize the SNR of single neurons by taking 
account of both the signal and biophysical factors. We apply 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



 
 

 

the new estimator in simulation studies of a linear Gaussian 
system and neural spike trains.  

II. THEORY 

A. SNR for systems with a deterministic signal and 
additive Gaussian noise 

Let  be an random vector and denote Y 1n× .EY η=  We 
approximate ,Xη β where X  is a  matrix of 
non-random, known covariates and 

n× p
β  is an unknown 1p ×  

parameter vector. We express Y  in terms of X β  with the 
linear relation ,Y X β ε+=  where ε  is a  vector of 
independent, identically distributed Gaussian random errors 
with zero mean and variance 

1×n

2.εσ  The signal-to-noise ratio 
for this model is  

2
signalσ

2 ,SNR
εσ

( ) ( ).T X

        (1) 

where the variance of the signal is  

2 1
signal n Xσ β η β η= − −−     (2) 

A usual SNR estimate is computed as the ratio of the 
estimate of the variance of the signal to the variance of the 
noise. If we fit ,Y X β ε= +  by least squares then the 

estimate of β  is 1ˆ ( )T TX X X yβ −=  and the estimated SNR 
is 

  
ˆ ˆ) ( 1
ˆ( ) (

T

T
y X y X
y X y X

( 1 )ˆ ,
ˆ)

SNR β β
β β

− −

− −
=      (3)  

where 1 (1, ... ,1)Ty y=  and 1

1
.

J

j
j

y n y−

=

= ∑   

Although we are unaware of studies of the statistical 
properties of this SNR estimator, work on a related statistic, 
the pseudo R-squared, has been reported and is discussed in 
IIE [17]. 

B. The SNR estimator in terms of the residual sums of 
squares 
Under the linear model we define 

 to be the expected 
squared prediction error when using the vector 

( , ) (( ) ( ) | )TEPE Y E Y Y Xη η η= − −
η  to predict 

the random vector Y  and 
2( , ) (( ) ( ) | )TEPE Y X E Y X Y X X n εβ β β σ= − − =  is the 

expected squared prediction error when using X β  to predict 
 Y

2
signal ( ( ) ) ( ( ) )

( ) ( ( ) ( )
( , ) ( , ).

T

T T

n E Y X E Y X

E Y Y Y X Y X
EPE Y EPE Y X

σ β β

[18]. It follows that  

 ) Eη η β β
η β

= − −

= − − − −
= −

.

−  (4) 

We interpret (4) as the improvement in the prediction error 
obtained by using the covariate X  We rewrite the true SNR 
in (1) as 

  
2
signal

2
( , ) ( , ) .

( , )
EPE Y EPE Y XSNR

EPE Y Xε

σ η β
βσ

−
= =

( , )EPE Y X

  (5) 

β  can be estimated by  The term 
ˆ ˆ( ) ( )Ty X y Xβ β− − ( , )EPE Y and η  can be estimated by 

( ) ( ),Ty y y y− − ˆ ( )T TXwhere X X yβ =
.

is the minimum 
mean square (least-squares) estimate of β  For the two 
prediction squared-error estimates the following relation 
holds 

ˆ ˆ( 1 ) ( 1 )
ˆ ˆ( ) ( ) ( ) ( ),

T

T T

y X y X

y y y y y X y X

β β
 

β β

− −

= − − − − −

ˆModel( , , )
ˆTotal( ) Residual( , , ),

SS y X

SS y SS y X

β

    (6) 

or  

  
β= −

Total( )SS y
ˆModel( , , )SS y X

     (7) 

where  is the total variability in the data, 

β  is the variability in data explained by the 

signal estimate β̂  and SS ˆResidual( , , )y XX β  is the residual 
sum of squares which summarizes the variability in the data 
that is not explained by the signal estimate [19]. We rewrite 
the SNR estimate in (3) as 

ˆ ˆ( ) ( ) ( ) ( )ˆ ,
ˆ ˆ( ) ( )

T T

T
y y y y y X y XSNR

y X y X
β β

β β
− − − − −

=
− −

    (8) 

or equivalently as   

0

ˆModel , ,ˆ
ˆResidual , ,

ˆ ˆResidual ,1, Residual , ,
,ˆResidual , ,

SS (y X )SNR
SS (y X )

SS (y ) - SS (y X )
SS (y X )

β
β

β β
β

=

=

  (9) 

0
ˆwhere y.=   β

C. Generalization of SNR to simultaneous signal and 
non-signal modulation of the mean  
As above, we assume that Y X .β ε= +

1 1 2 2 ,X X X
 However, now we 

assume that we can write β β= + 1 1X where β β  
is the component of the mean unrelated to the signal and 

2 2X β  is the signal component of the mean. We have the 

partitions 1 2[ , ],X X X=   where 1 2( , ) ,Tβ β β= 1X  is a 

1n p 2X  is 2n p×  matrix of non-signal covariates, ×  matrix 
of signal covariates, 1β  is vector of non-signal 
parameters and 

1 1p ×

2 2 1pβ  is ×  vector of signal parameters. We 
have 1 2 .p p p+ =

*
1

  

β  be the vector that gives the minimum Let 

1 1).X( ,EPE Y β  It is defined as 1 1 1[ | ].X E Y Xβ ∗ =
*

 The 

vector 1β  can also be viewed as the probability limit of its 
least squares estimator [18]. To treat the case in which only a 
part of the variability in the data is explained by the signal, 
we generalize the SNR definition in (5) to 
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  1 1( , ) ( , )
,

( , )
EPE Y X EPE Y X

SNR
EPE Y X

β β
β

∗ −
=     (10)  

where the numerator can be interpreted as the improvement 
in the expected prediction error of the signal, 2 2 ,X β when 

controlling for the component of the mean X *
1 1β  which is 

unrelated to the signal. The denominator is the expected 
prediction error due to the noise. By analogy with (9) we can 
estimate the SNR in (10) as 

1 1̂Residual( , , ) Residual( , , )ˆ ,ˆResidual( , , )
SS y X SS y X

SNR
SS y X

ˆβ β
β

−
=  (11) 

where the numerator can now be interpreted as the variability 
in  explained by the signal estimateY 2 2

ˆX β  while 

controlling for the estimated effect of 1 1̂X β  and the 
denominator is the variability in Y  due to noise. The 
estimates β̂  and 1̂β  are obtained by computing separately 
the respective least-squares estimates of β  and 1β  [19]. 

D. The SNR for generalized linear model systems  
We extend the SNR definitions presented in the previous 

sections to Generalized Linear Model (GLM) systems. GLM 
is an established statistical framework for performing 
regression analyses when the measured or observed data are 
not necessarily Gaussian [20]. GLM makes it possible to 
perform regression analyses to relate observations from any 
model in the exponential family to a set of covariates. This 
family includes well-known probability models such as the 
Gaussian, Bernoulli, binomial, Poisson, gamma and inverse 
Gaussian. GLM also provides an efficient way to compute 
the maximum likelihood (ML) estimates of the parameters 
for these models using iteratively re-weighted least squares. 
GLM methods are available in nearly every statistical 
package, and have the optimality properties and statistical 
inference framework common to all likelihood-based 
techniques [20]. We discuss here GLM systems in which the 
covariates may be partitioned into signal and non-signal 
components. All of the findings and statements below are 
valid for the linear Gaussian models in IIA-C, because they 
are GLMs.  

We assume that fβ  is a GLM probability model for a 

vector of observations Y  and that in addition to  we 
record  observations from  covariates that are 
summarized in the  matrix 

,Y
n p

.n× p X  We further assume that 
given a link function ()g we can express the expected value 
of  given Y X as 1 1 2| )X X X 2( (g E Y X β β β= = +  where 

1X , 1,β 2X  and 2β  are defined in IIC. Let 
1

fβ  be a GLM 

with the covariate matrix 1X  and the parameter vector 1.β  

We also assume that *
1 1| ,Y X X1))( (g E β=  where *

1β  is the 
vector that gives the minimum KL distance from the data to 
the model .fβ  The vector *

1β  can also be viewed as the 

probability limit of its ML estimator. 
The generalization of the residual sum of squares for the 

linear model to GLM is the deviance defined as [20] 

  
ˆ( | )ˆ( , , ) 2 log ,

( | )
f y

Dev y X
f y y
β β

β = −

ˆ

     (12) 

fβ  is the ML estimate of β  and where ( | )y y

y

 is the 
saturated model. The saturated model is the largest possible 
maximized likelihood. It is obtained by evaluating the 
parameters at the data  [20]. The deviance is a measure of 
the distance between the model fβ  and the observed data  
or the saturated model. It can be viewed as giving an estimate 
of the “noise or residual sum of squares” for the GLM. The 
difference of deviances 

y

1 1̂
ˆ( , , ) ( , , ),Dev y X Dev y X β−

2 2
ˆX

     (13)   β

gives the reduction in the deviance due to the signal β  
when controlling for the effect of the non-signal component 

1 1̂,X 1̂
ˆβ  where β  and β  are the ML estimates obtained 

from the two separate fits of the models *
1

f fβ  and β  

respectively to  Equation 13 generalizes the numerator in 
(11). The difference of deviances in (13) is a likelihood ratio 
test statistic and an estimate of the improvement in 
Kullback-Leibler (KL) expected prediction error by the 
signal, 

.y

2 2
ˆX 1 1̂Xβ  when controlling for the effect of β  [18]. 

This likelihood ratio is an estimator of  

 
*
1

*
1

( )
( , ) ( , ) 2 log ,

( )

f Y
EPE Y f EPE Y f E

f Y
β

ββ
β

⎡ ⎤
− = ⎢ ⎥

⎢ ⎥⎣ ⎦
 

 (14) 

[18]. We propose the following SNR measure as a 
generalization of (5 and 10) 

  1
( , ) ( , )

( , )

EPE Y f EPE Y f
SNR

EPE Y f
β

.β

β

∗ −
=

SNR

    (15) 

We estimate the  by the generalization of (11) 

  1 1̂
ˆ( , , ) ( , , )ˆ .ˆ( , , )

Dev y X Dev y X
SNR

Dev y X
β β

β
−

=     (16) 

E. The bias of the SNR estimators 
The SNR estimators in (3), (8) and (11) are positively 

biased [17] and, as we show below, this GLM SNR estimator 
(16) is also biased. The bias arises because the SNR 
numerator in (3), (8) and (11) always gives positive 
estimates. This value increases with inclusion of more 
covariates causing a positive bias. This bias is most critical 
when the true SNR is close to 0 and/or the sample size is 
small [17]. In this case, the SNR estimate may be inflated 
because part of its value arises from modeling pure chance. 
Another reason these SNR estimators are biased is that the 
maximized log likelihood is a biased estimate of its expected 
value because the same data y  are used twice; first to 
compute the ML estimate and then to evaluate the observed 
log-likelihood [21], [22]. This observation suggests that one 
way to reduce the bias in these estimators is to use one data 
set to estimate a parameter and a second, independently 
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obtained data set, to evaluate the log-likelihood. 
Unfortunately, in many applications this approach is not 
feasible. 

The numerator in (16) is a likelihood-ratio statistic 

1 1
ˆ2[log ( , , ) log ( , , )]L y X L y X ˆβ β−  for testing the null 

hypothesis that the parameter vector 2β  is zero. In a GLM 

the likelihood-ratio statistic follows approximately a 2χ  
distribution with  degrees of freedom under this 
null hypothesis 

2 1p p p= −
[20]. The approximate expectation of the 

likelihood-ratio statistic under 0H  is therefore  The 
numerator of (16) is the same as the numerator in the pseudo 
R-squared measure for Poisson regression models. Like the 
R-squared in linear regression analysis, the pseudo 
R-squared approximates the fraction of the structure in the 
data explained by the Poisson regression model 

2.p

[17]. This 
idea led Mittlböck and Waldhör [17] to propose a bias 
correction of  for the numerator of the pseudo 
R-squared for Poisson regression models. They validated use 
of this correction with simulation studies. By the same 
argument, the denominators in the SNR estimators have 
negative biases. It also suggests that the Mittlböck and 
Waldhör bias correction for the pseudo R-squared should 
provide a bias correction for the GLM SNR estimator (16) as 
well as for the other SNR estimators in (3), (8), and (11).  

2 1p p p= −

Therefore, if only one data set is available, we propose 
using the Mittlböck and Waldhör bias correction in the 
numerator and denominator of (16). That is, in (16) we 
correct the difference in the deviance in the numerator and 
the deviance in the denominator by the number of the 
parameters in the corresponding models to obtain the 
bias-corrected SNR estimator  

 1 1 1
ˆ ˆ( , , ) ( , , )ˆ .ˆ( , , )

Dev y X Dev y X p p
SNR

Dev y X p
β β

β
− +

=
+

−
  (17) 

Equation 17 is still a biased estimator because a ratio of 
unbiased estimators is not necessarily and unbiased estimator 
of a ratio. However, our simulations studies in the next 
section suggest that its bias is very small. 

 

III. APPLICATIONS 
We illustrate our proposed SNR estimator in an analysis of 

simulated data from a linear Gaussian model and simulated 
data from GLMs of spiking neurons. 

A. SNR estimation for a linear Gaussian model  
To illustrate the performance of our SNR estimator and its 

bias correction we study first the linear model ,Y X β ε= +  
where X  is an 2n×  matrix whose first column is a vector of 
ones, whose second column is the 1n×  vector  
and 1 2( , )

T(1 2 1 2 ...)
β β β  with 1 1.= β =  The ε  are independent, 

Gaussian random variables with zero mean and unit variance. 
We consider three values for the signal parameter 2 : 0,0.3β  
and 1 which correspond to true SNR values of 0, 0.0225 and 
0.250 respectively. The full model is ,Y X β ε  where 

2p

= +

=  and the reduced model is 1Y β ε= +  with 1 1.p =  For 
400,n =  we simulated 10,000 samples from each model and 

compared the true SNR (1) with the traditional uncorrected 
SNR estimator (3) and our bias-corrected estimator (17). 

For the models with 2 0, 0.3β = and1 , the true values of 
the numerators in the SNR (1) are 0, 9 and 100, respectively. 
These values are overestimated by the numerator in (3) as 
0.994, 1.05 and 1.2 re which are all close to our 
bias correction of 1 1.p p

spectively 
− =  The true value of the 

denominator is 400 for all three models and it is 
underestimated by the denominator in (3) by approximately 
2.025, 1.99 and 2.2 ectively. These are also close to our 
bias correction of 2.p

, resp
=  In this example, the true values of 

the SNRs are consequently overestimated by the uncorrected 
estimators (3) or equivalently (16) by 0.003, 0.0019 and 
0.006 respectively. In contrast, the biases in our corrected 
SNR estimators (17) are 0.00001, 0.0002 and 0.002 

spectively. 
 

Tru

2

re

e 

β  

True 
SNR 

of the 
 

 

of the f the 
 

SNR 

f the 

SNR 

Mean 
uncorrected
SNR
estimates 
(3) 

Mean 
corrected 
SNR 
estimates  
(17) 

Bias o
uncorrected

estimator 

Bias o
corrected 

estimator 

0 0.000 0.003 0.00001  0.003 0.00001

0.3      0.0225 0.0244 0.0227 0.0019 0.0002

1 0.250 0.256 0.252 0.006 0.002 

Table 1. True values of the SNR (1) and SNR estimates for the three 
aussian models. The bias was evaluated in 10,000 simulated samG

m
ples as the 

ean difference between the true value and the estimates. 
 

ates 

 
Fig. 2 The histograms of uncorrected and corrected SNR estimates computed 
using 10,000 simulated samples from the three linear models with additive 
Gaussian noise and SNR=0 (first row), 0.0225 (second row) and 0.250 (third 
row). The uncorrected SNR estimates (first column) were calculated from (3) 
or equivalently (16). The corrected SNR estimates (second column) were 
calculated from (17). The bias corrected estimates improve the uncorrected 
estimates. In panel A the true SNR is zero yet, all of the uncorrected estim
are strictly positive. The bold vertical line is the true SNR value. 
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Figure 2 illustrate the effect of the bias correction by 

showing the histograms of the SNR estimates obtained from 
the 10,000 simulated samples for the three signal plus noise 
models. The bias correction is most important for the data 
with a zero SNR (Fig. 2A, B). For the other two models with 
larger SNRs, the bias corrections do not change appreciably 

pared 

fa estimated by m

the histograms of the SNR estimates (Fig. 2C, E com
with 2D, F). 

B. SNR estimation for GLMs of spiking neurons 
To illustrate our method for a GLM system we consider 

two simulated neural spike trains modeled as point processes 
[1], [15], [3], [23], [24]. A point process is a time-series of 
0-1 random events that occur in continuous time. For a neural 
spike train, the 1s are individual spike times and the 0s are the 
times at which no spikes occur. GLMs have been 
successfully used to formulate point process models that 
relate spiking activity to putative stimuli and biophysical 

ctors with the model parameters aximum 
likelihood [1], [3], [16], [24].  

Given an observation interval (0, ],S  let ( )N t  be the 
number of spikes counted in interval (0, ]t  for (0, ].t S∈  A 
point proces
characterize

s model of a neural 
d by its conditional function, 

spike train can be com
intensity 

pletely 
( | tt H ),λ  

defined

  

 as  

0
( | ) limt

P N t N t H
t Hλ

Δ→

+ Δ − =
=

Δ
( ( ) ( ) 1 | )t   

 (18) 

where tH  denotes the history of spikes up to time t  [3] 
[4][23]. It follows from (18) that the probability of a single 
spike in a small interval ( , ]t t + Δ  is approximately 

( | ) .tt Hλ Δ  The conditional intensity function generalizes 
th

execution 

e definition of the rate function of a Poisson process to a 
rate function that is history dependent. 

 Assume that a multiple-trial neurophysiology experiment 
is conducted with application of the same stimulus or 

of the same task and neural activity is 
simultaneously recorded for K  trials. We index the trials 

1,..., .k K=  To obtain the di crete representation of the 
l intensity fun ion, we choose a large integer L  

and divide the trial interval S  into subintervals of width 
1−  We choose  large so that each subinterval 

contains at m spike. We index he subintervals 
1,.., L=  an ,k  to be 1  if there is a spike in 

subi ]Δ  on trial k  and is 0  otherwi We 
.., }k Ln  be the set of spikes on trial ,k  and 

s
conditiona

.SLΔ =

nterval 
let ,1{k kn n=

1{ ,...,

ct

 
ost on t

L
 
n

e
d define 

(( 1) ,− Δ

,,.

}

 

se. 

Kn n=

=

n  be all of the spikes in the experiment. We let 

1, , , 1{ ,..., }k k p kH n n− −  denote the history of the spikes in 

trial ,k  up to time Δ  and 1p Δ  is the amount of time in the 
past for which the history is relevant.  

To analyze the neural spiking activity with
define the con

 a GLM 
ditional intensity function at trial  at time 

we 
k Δ  

as [16], [24] 

1 2

1 2 ,

1 , 2,
1 0

log ( | , , )

, ( ),

k k
p p

j k j r r
j r

H

n g

λ β β

β β−
= =

Δ

= + Δ∑ ∑

11 1,1 1,( ,..., )T
pβ β β= 1 1p ×

22 2,0 2,( ,..., )Tpβ β β= 2( 1) 1p

     (19) 

where the first term describes the modulation of the spiking 
activity by the neuron’s biophysical properties i.e., the 
dependence of current spiking on recent spiking history, and 
the second term describes modulation of the neuron’s spiking 
activity by the signal or task. We have that 

 is a vector of biophysical 

parameters and  is an + ×

, , 1 2 ,[ | , ] ( | , , ) ,k k k kE n H H

 

vector of signal parameters. In this GLM we 
have β = λ β βΔ Δ

() log().

 and the link 

function is g =  Under the discrete approximation to 
the point process likelihood the log-likelihood for this model 
is [1], [4], [16] 

, , ,
1 1

log ( | )

log[ ( | , ) ] ( | , ) ,
K L

k k k k k
k

f n

n H H

β

λ β λ β
= =

= Δ Δ − Δ Δ∑∑

1 2( , ).

 (20) 

where β β β=  We simulated 20 two-second trials of 
spiking activity from two neurons (Figs. 3A, 3B).  
 

 

 Fig. 3. Two simulated spiking neurons. The spiking activity of the neuron in 
A has spike history dependence (C) and no task-specific (stimulus or signal) 
modulation (dashed horizontal line in D). The true SNR for this neuron is 
zero. The spiking activity of the neuron in B is modulated by spike history 
(C) and by the stimulus (solid curve in D). This neuron has an increased spike 
rate from 0.5-1 sec. The true SNR for this neuron is 0.0289. 

The spiking activity of each neuron is modulated by the 
spike history effects (biophysical factors) described by the 
function in Fig. 3C. We modeled it by assuming a spike 
history dependence going back 50 msec based on [24] and 
represented it by choosing and by picking the 
components of 

1 7p =

1β  to capture the temporal dependence 
shown in Fig 3C. The coefficient 1,1β  represents the absolute 

refractory period (1-2 msec), coefficient 1,2β  models the 

relative refractory period (3-5 msec), coefficient 1,3β  
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represents a period of no effect (6-10 msec) and coefficients 
1,4 1,7β β−  (11-50 msec) represent increased spiking 

propensity. The spiking activity of the first simulated neuron 
is not modulated by the task (Fig. 3A, 3D horizontal dashed 
line), That is, 2,0 log 20β =  and 2, 0rβ =  for 21,..., .r p=  
For this neuron the true value of the SNR is zero. 

The spiking activity of the second simulated neuron (Fig. 
3B) has both task-related dynamics (signal modulation) and 
spike history effects. The signal modulation is shown by an 
increase in spiking activity between at 0.5 to 1sec (Fig. 3D 
solid curve). We modeled this signal modulation by taking 
the rg s  (19) to be orthogonal unit impulse functions 
each 100 msec in length and then defining the task-specific 
effect as a linear combination of these functions with the 
weights given by the 

2 20p =

2,rβ  for  (Fig. 3D, solid 
curve). The true value of the SNR for this neuron is 0.0289. 
We simulated each of the two neural spiking model 100 
times. For each sample we calculated the uncorrected (16) 
and the corrected (17) SNR estimates. The biases of the 
uncorrected SNR estimates were 0.0022 and 0.0029 (Table 
2), whereas the biases of the corrected SNR estimates were 
0.0001 and 0.0003. Each of the means of the corrected SNR 
estimates is closer to the true SNR value.  

1,..., 20.=r

 

Table 2. True values of the SNR and SNR estimates for two models of 
spiking neurons. Bias was computed from 100 simulations as the mean 
difference between the true value and the estimates. 

 
Figure 4 shows the distributions of the corrected and 

uncorrected SNR estimates. The uncorrected SNR estimates 
systematically overestimate the true SNR (Fig. 4, column 
one). For the first neuron (Fig. 4, row one) the true value of 
the SNR is zero. The histogram of the uncorrected SNR 
estimates is completely to the right of the true SNR value 
(Fig. 4A). For the second neuron (Fig. 4, row two) the true 
SNR is 0.0289. Approximately 75% of the uncorrected 
estimates are larger than the true value (Fig. 4C). For both 
neurons the corrected SNR estimates are centered almost 
exactly at their respective true SNR values (Figs. 4B, 4D). In 
summary, the uncorrected SNR estimator can have a large 
positive bias. This error is most critical for low SNR data. 

IV. CONCLUSION 
We have generalized the traditional estimator of the SNR 

to one appropriate for GLM systems. The new estimator uses 
the GLM concept of deviance to generalize the concepts of 
estimated signal variance and estimated noise variance for 
non-Gaussian systems. It also takes account of the effect on 
the SNR of non-signal covariates and the need for a bias 
correction. We applied the new estimator to simulated data 
from linear Gaussian models and to simulated data from point 
process models of neuronal spiking activity.  

Neurons have very strong biophysical properties such as 
the absolute and relative refractory periods and bursting 
propensity. These properties affect how the neuron 
represents and transmits information about a stimulus 
(signal). In most current analyses of neural responses to a 
signal these properties are not considered. Nevertheless, 
these biophysical properties contribute in a structured, 
non-random way to the fluctuations in the neural response. 
Hence, they should not be considered as noise but must be 
taken into account (corrected for) to assess properly the effect 
of the signal on the neural response. By incorporating the bias 
correction our SNR estimator (17) does not increase with the 
addition of unimportant covariates. Our bias-corrected SNR 
estimator can give negative values when the true SNR is at or 
close to zero, suggesting a very low SNR system. The SNR 
for the simulated neuron of 0.0289 (-15.4 dB) is typical of 
preliminary results we have obtained from the analysis of 
actual spiking neurons [25]. 

 

 
Fig. 4 Histograms of the SNR estimates in 100 simulations of the zero 

SNR (first row) and 0.0289 SNR model (second row) of neural spiking 
neuron. The bold vertical line is the true SNR value. 

 
Our new SNR estimator is applicable to any system in 

which the data can be modeled using GLM. We are currently 
working on constructing confidence intervals for the 
estimator and on applying it in analyses of actual neural 
systems. Our SNR estimator may also have important 
implications outside of neuroscience because it can be 
extended to analyze any system in which response 
modulation by distinct signal components can be expressed 
as separate components of a likelihood function.  
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