
 
 

 

  
Abstract—iterative control methodologies nowadays are 

represented as powerful tools to control of complex dynamics. 
Our new controller which based on particular case of iterative 
learning control attempts to find the best control value in each 
time step by trying virtually in index domain to reach the 
desired value of that time in regards to fixed final value.  ILC’s 
methods needed to have desired trajectory at any time to reach 
fixed final state value but this assumption always not 
reasonable, so in our algorithm this problem is solved. 
 

Index Terms— Iterative learning control, Differential 
Equations, Optimal Control. 

I. INTRODUCTION 
In last ten years, many researchers have begun to focus their 
effort on learning control systems (LCS’s) because this type 
of control technique is capable of progressively improving 
system performance. 
Many researchers have purposed various learning control 
scheme. An interesting approach among these schemes for 
tracking control is the iterative learning control (ILC), which 
was originally, introduced n 1984 by “Arimito”. The 
objective of “ILC” is to determine a control input iteratively, 
resulting in the plants’ ability to track the given reference 
signal or output trajectory over a finite time interval. “ILC” 
uses the repetitive nature of the process to progressively 
improve the tracking performance. The control inputs are 
iteratively after each operation using the error measurements 
in the previous cycle. These controllers are able to deal with 
dynamic systems with imperfect knowledge of dynamic 
structures and/or parameter operating repetitively over a 
fixed time interval. ILC has been further explored and is now 
one of the appealing fields of research in control systems. 
Section II presents our new iterative control Scheme and 
conclusion is included in section III. 

II. ITERATIVE CONTROLLER DESIGN 
In this paper, a new type of learning method has been 
introduced as expressed below: 
 

iii eqUU Δ+=+1                                                                           (1) 
 
Where q is called learning factor and iterative index or i 
indicates a movement in a virtual axis called index axis while 
a system is considered to be fixed at a specific time t. this 
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virtual movement continues until the appropriate controller 
would be achieved (the controller when implementing to the 
system at the fixed time t, causing the state variables to reach 
their desired values )1( +txd  at time t+1. 
If there would be stability problem, the system has a tendency 
to lead the state variables to the origin. Of course this is 
possible (we show that our controller has ability to reach the 
desired values of states in the first time transient step with a 
large amount of iteration), but by applying a large amount of 
control and the controller shows behavior like as impulsive. 
It is obvious that this kind of controller is not feasible. To 
obtain a feasible controller for our new iterative learning 
method, we limit the movement in the index axis in each time 
transient step. For example consider stabilization problem in 
the linear following system: 
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At first time we run our algorithm with no bounds on 
controller and as mentioned before this algorithm try to lead 
the dynamic with one step of time to the desired fixed final 
state which is with high magnitude (impulse shape).  
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Fig.1- Iterative Controller with no Bounds 
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Fig. 2- State Trajectory 
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To get ride of impulsive behavior of system, our proposed 
controller is bounded in iterations and its behavior is 
compared with optimal controller designed for fixed final 
state and minimum energy cost function. The results show 
that our algorithm will be much closed to final value (up to 
computer accuracy) with less effort compare to optimal 
solution. The results as below: 
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Fig. 3- Optimal / Iterative Controller (which is bounded on  32 ) 
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Fig. 4- Optimal / Iterative State Trajectory 

 
It is noticeable that in relation (1), the error, ieΔ , in each 
iteration is being defined in accordance with the control 
problem. In a tracking problem, the error is defined as  
difference between the states and their desired values as 
stated in the following relation: 
     

)()()( txtxte i
d

ii −=Δ                                              (3) 
 
If there would be stability problem, the error is defined in a 
way that satisfies an inequality related to the Lyapunov 
theorem condition. If there exist a fixed final state optimal 
control problem for a linear system, the error might be 
defined as below: 
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Where, T in the above relation represents the total time 
interval. 
The new error definitions mentioned in the above problems 
are considered in the rest of this paper. 
 
 

3-1-Error in Optimal Control Problem 
 
Consider again the fixed final state optimal control problem 
shown in relation (2). The error needed for updating the 
controller is defined as relation (4). We evaluate the value of 
cost function for both our and optimal control methods as 
below: 
 
Cost function with learning controller = 48.3226; 
Cost function with optimal controller = 54.7614; 
 
It seems that our learning controller shows better 
performance. It is noticeable that the state trajectory with our 
control methodology never reaches desired final value 
exactly and it is the main reason that the minimum energy 
cost function is more minimized with our control scheme 
rather than optimal control. 
We also can reach very fast to desired value if the bound of 
controller increases, as results have been shown in below: 
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Fig. 5- Optimal / Iterative Controller (which is bounded on 40) 
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Fig. 6- Optimal / Iterative State Trajectory 
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Fig. 7- Optimal/ Iterative Controller (with no bound on controller) 
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Fig. 8- Optimal / Iterative State Trajectory 

 
Let us once more applied our algorithm in simpler equation 
as follow: 
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Fig. 9- Optimal / Iterative Controller (with bound on controller u < 0.01) 
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Fig. 10- Optimal / Iterative State Trajectory 

 
Fig. 9 clearly shows the capability of our controller to 
improve of minimum energy cost function in comparison 
with optimal controller. 
Our control scheme is also applicable to apply on nonlinear 
systems. We implement our algorithm on the famous chaotic 
systems as follow: 
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where α  is a variable parameter and ]1,0[∈α . Variation of 
α , makes three chaotic system with different properties. 
When )8.0,0[∈α the chaotic system is called LORENZ, 
for 8.0=α  it is defined as LU and ]1,8.0(∈α  is expressed 
as CHEN [2]. 
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Fig. 11- State Trajectory for LORENZ system with no bounds on controller 
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Fig. 12- Iterative Controller (with no bound on controller) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-10

-8

-6

-4

-2

0

2

x1
x2
x3

 
Fig. 13- State Trajectory for LORENZ system with bounds on controller 
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Fig. 14- Iterative Controller with bound on controller u < 52 

III. CONCLUSION 
The new iterative control method is introduced in this paper. 
Movement through index axis and updating the controller 
while the system is assumed to have static behavior between 
two time steps are principles of our control scheme in this 
paper.  
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