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Abstract—Linearly distributed-lag models as a time
series tool have very useful applications in many dis-
ciplines. In these models, the dependent variable de-
pends on one independent variable and its lags. The
specification of the lag coefficients is a crucial ques-
tion to the efficacy of a model. A new approach is
proposed for the estimation of lag coefficients sub-
ject to the condition that the sequence of the coeffi-
cient estimates consists of a certain number of mono-
tonic sections, where the positions of the extrema are
also unknowns. The underlying algorithm is itera-
tive, each iteration taking a descent direction, then
forming an estimate of the coefficients and finally ad-
justing this estimate to satisfy the given constraints.
An immediate advantage of this approach is that the
algorithm avoids inverting an ill-conditioned matrix
that frequently occurs in practice. Moreover, the con-
straints provide a realistic representation of the prior
knowledge and the calculation results in a highly ef-
ficient time series estimation. The algorithm is de-
scribed, a proof of convergence is given and an appli-
cation of the algorithm on real annual macroeconomic
data concerning the personal consumption expendi-
tures against the GDP for the U.S.A. during 1929 -
2006 is presented.
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1 Introduction

The purpose of distributed-lag models is to estimate,
from time series data, values y that incorporate prior in-
formation of the independent variable x. These models
have useful applications in many fields such as economet-
rics (see, for instance, [18], [21]), engineering (see, for
instance, [7], [13], [8]) etc. For example, in econometrics,
if yt denotes consumption expenditures and xt income, at
time period t, a change in xt will affect not only current
consumer expenditures yt, but also future expenditures
yt+1, yt+2, etc. Therefore we assume that yt depends not
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only on xt but also on q past values of xt, giving the
linearly distributed-lag model

yt =
q∑

i=0

βixt−i + εt, (1)

where q is a prescribed positive number representing the
lag length, {βi : i = 0, 1, . . . , q} are the unknown lag co-
efficients and εt is a random variable with zero mean and
constant variance. The issue of the q selection depends on
the data and may be decided with statistical means (see,
for example, [15]:p.119). Adopting matrix notation, the
unconstrained lag-distribution problem is to determine a
vector β = (β0, β1, . . . , βq)T that minimizes

F (β) = (y −Xβ)T (y −Xβ), (2)

where y = (yq+1, yq+2, . . . , yq+n)T is the n-vector whose
components are time series observations and the n×(q+1)
matrix X of current and lagged values of xt is defined as

X =




xq+1 xq xq−1 · · · x1

xq+2 xq+1 xq · · · x2

xq+3 xq+2 xq+1 · · · x3

...
...

...
. . .

...
xq+n xq+n−1 xq+n−2 · · · xn




.

Note that the components of y in (2) correspond to
the last n observations of the time series data yt, t =
1, 2, . . . , q, q + 1, . . . , yq+n, because we lose q degrees of
freedom due to (1).

The unconstrained estimate of β, for a full rank X, is

β̃ = (XT X)−1XT y. (3)

The main drawback with this direct least-squares esti-
mation of β is that often there is high multicollinearity
among the xt’s giving a notoriously ill-posed inverse prob-
lem, which results in imprecise estimation for the β. If,
however, avoid severe distortions in the calculation of the
true lag distribution, then there appear discernible pat-
terns in the unconstrained estimate, which are affected
by the nature of the observations.

So far there have been several suggestions in the litera-
ture to put some structure on the βi’s in (1). They all
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impose some a priori structure on the form of the lag,
in order to combine prior and sample information in the
estimation of the regression coefficients. A popular ap-
proach is the Almon polynomial lag distribution [1]. In
this technique the q + 1 coefficients of the lagged vari-
ables are assumed to lie on a polynomial whose order is
predetermined. Shiller’s method [19], as a variant of this
model, assumes that the coefficients of the lagged vari-
able lie close to, rather than on, a polynomial. An alter-
native approach, as for example the Koyck’s geometric
distributed lag [16], represents the lag operator (1) by
the ratio of two polynomials. Here, the coefficients are
constrained to decline exponentially as the length of the
lag increases. More models are found in [5], [17], [20],
[12], [11], [18] etc. All these models assume rather arbi-
trarily that the underlying function of the lag coefficients
can be approximated closely by a form that depends on
a few parameters. However, over the years, literature on
the subject agrees that some weak representation of the
lag coefficients is a sensible requirement for a satisfac-
tory model estimation (see, for example, [11], [18] and
references therein).

In this paper a procedure is suggested for estimating lag
coefficients by minimizing (2) subject to the conditions
that the lag coefficients β0, β1, . . . , βq have at most k
monotonic sections, where k is a prescribed positive num-
ber. An advantage of this approach to lag-coefficient es-
timation is that we are making the least change to the co-
efficients that gives properties that occur to a wide range
of underlying models. The user may try several values
of k if a particular choice does not suggest itself. The
constraints on β0, β1, . . . , βq avoid any parameterization
and provide a rather weak though systematic representa-
tion of the prior knowledge, as we are going to explain in
Section 3.

In the case when k = 1 the constraints on β0, β1, . . . , βq

are all linear, and they are

β0 ≥ β1 ≥ · · · ≥ βq, (4)

if we require monotonically decreasing coefficients, and

β0 ≤ β1 ≤ · · · ≤ βq, (5)

if we require monotonically increasing coefficients. Hence
and in view of the quadratic function (2), the calculation
of β is a convex quadratic programming problem. Thus
several general algorithms are available for obtaining the
solution (see, for example, [6]). It is worth mentioning
that the problem subject to the monotonic decreasing
constraints (4) generalizes the method of [5], where the
coefficients βi are imposed to decline arithmetically.

When k > 1 it is usually quite difficult to develop effi-
cient optimization algorithms for calculating an optimal
β. One of the main difficulties is the combinatorial na-
ture of the constraints that defines a nonconvex calcula-
tion with very many local minima. However, we address

an alternative form of the problem and develop an iter-
ative algorithm that implements a descent method with
piecewise monotonicity constraints on the lag coefficients,
which attempts to minimize (2). The iterative algorithm
and its convergence are presented in Section 2. The piece-
wise monotonicity problem and its use in distributed lag
modelling are discussed in Section 3. An example of an
application of our method on real data is presented in
Section 4. Some concluding remarks are given in Section
5. The Fortran program that implements our algorithm
for distributed-lag estimation consists of about 3000 lines
including comments, which gives an idea of the size of the
required calculation.

2 The algorithm and its convergence

We develop an algorithm that processes the lag coeffi-
cients iteratively. It starts from an initial estimate β(0) of
β that satisfies the constraints and generates a sequence
of estimates {β(j) : j = 1, 2, 3, . . .} to β in two phases. In
the first phase it takes a descent direction from the cur-
rent estimate to a new estimate of β. In the second phase
it conveys “prior knowledge” to the calculation through
the replacement of the new estimate by its best piecewise
monotonic approximation. The contraction mapping the-
orem is used as a basis for establishing convergence.

In the first phase, the algorithm calculates a new estimate
of the form

β(j+1) = β(j) + αjd
(j), (6)

where αj is a step-length and d(j) is the search direction

d(j) = XT (y −Xβ(j)). (7)

It is to be noted that the search direction calculation in-
volves matrix X only multiplicatively, so ill-conditioning
of X is irrelevant here. The step-length αj with exact
line search is calculated to minimize the convex function
of one variable F (β(j) + αd(j)).

Having calculated β(j+1), the algorithm proceeds to the
second phase, which calculates a (q + 1)-vector β that
minimizes

g(β0, β1, . . . , βq) =
q∑

i=0

(β(j+1)
i − βi)2 (8)

subject to at most k monotonic sections in the compo-
nents of β. Specifically the piecewise monotonicity con-
straints are

βtm−1 ≤ βtm−1+1 ≤ · · · ≤ βtm
, if m is odd

βtm−1 ≥ βtm−1+1 ≥ · · · ≥ βtm , if m is even

}
, (9)

while the integers {tm : m = 0, 1, . . . , k} satisfy the con-
ditions

0 = t0 ≤ t1 ≤ · · · ≤ tk = q. (10)

The integers {tm : m = 1, 2, . . . , k−1}, namely the indices
of the turning points of the estimated components of β,
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are not known in advance and they are variables in the
optimization calculation of the second phase. This raises
the number of combinations of integer variables to about
O(qk), but fortunately the piecewise monotonic problem
is solved by [4] in only O(q2 + kq log2q) computer opera-
tions. The main properties for this excellent complexity
of the calculation are presented in Section 3.

The algorithm finishes if

‖β − β(j)‖2/‖β‖2 ≤ ε (11)

where ε is a small positive tolerance. This test is applied
at every estimate β(j+1) including the first iteration as
well. When the test (11) fails, then the algorithm re-
places β(j+1) by its best piecewise monotonic vector β,
increases j by one and branches to the beginning of the
first phase in order to calculate at least one new vector
in the sequence {β(j) : j = 1, 2, 3, . . .}. This gives the
following algorithm.

Algorithm 1 (k > 1)
Step 0 Set j = 0 and β(0) = 0.
Step 1 Set d(j) = XT (y −Xβ(j)).
Step 2 Calculate αj and set β(j+1) = β(j) + αjd

(j).
Step 3 By employing Algorithm 2 of [4] calculate β,
namely a least squares approximation with k monotonic
sections to β(j+1).
Step 4 If criterion (11) is satisfied then quit, otherwise
replace β(j+1) by β, increase j by one and branch to Step
1. ¥

Theorem 1 Algorithm 1 meets the termination condi-
tion (11) for some finite integer j.

Proof An outline of the proof of the convergence of Al-
gorithm 1 is as follows. At Step 0 the starting vector
β(0) = 0 is not restrictive. If a more appropriate initial
guess to β that satisfies the constraints (9) is available,
then set this guess to β(0). Step 1 calculates the search
direction. Step 2 calculates the step-length and obtains
the estimate β(j+1). Step 3 calculates a least squares ap-
proximation with k monotonic sections to β(j+1). The
algorithm either terminates at Step 4 or it sets this ap-
proximation vector to β(j+1) and then branches to Step 1.
If we drop Step 3, which provides the piecewise monotonic
approximation to current β, the remaining steps provide
an iteration that converges to the minimum norm solu-
tion of (2). Since this problem has already been solved
for an appropriate choice of α (see, for example, [9], [14]),
and since the piecewise monotonicity constraint further
restricts the solution, Algorithm 1 has to converge. ¥

3 The piecewise monotonicity model

In this section we discuss some properties of the piecewise
monotonicity model that is employed by Step 3 of Algo-
rithm 1. Besides that the calculation of the unconstrained
minimum of (2) due to (3) is highly ill-conditioned, the

unconstrained minimum allows so much freedom in the
calculation of β, that model (1) is almost useless in any
estimation process.

We, instead, take the view that the calculation should
make the smallest change to the current estimate of β
that is necessary to satisfy constraints (9). The ratio-
nale for this choice is as follows. The sequence of the
coefficients {β(j)

i : i = 0, 1, . . . , q} may be attended as
measurements of an unknown function. Due to errors of
measurement in the time series data yt, t = 1, 2, . . . , yq+n,
it is possible that the number of turning points in β

(j)
i is

substantially larger than the the number of turning points
in the true function values. Then the number of turning
points in β

(j)
i may suggest that it would be advantageous

to smooth these estimates by requiring a certain number
of monotonic sections. Therefore, given a positive inte-
ger k < q, we seek a (q + 1)-vector β that is closest to
β(j) in the least squares sense, subject to the condition
that the components of β consist of at most k monotonic
sections. By specifying that the first monotonic section
is increasing, we obtain the constraints (9), but the user
may well define it to be decreasing.

This approximation process is a projection, because if
β(j) satisfies the constraints then β = β(j). Therefore
if β(j) consists of more than k monotonic sections, as it
is usually expected in practice, then the constraints pre-
vent the equation β = β(j), so {tm : m = 1, 2, . . . , k − 1}
are all different. Further at the turning points of a
best fit, the equations βtm = β

(j)
tm

,m = 1, 2, . . . , k − 1
hold, which allows the search for the tm’s among the
β

(j)
i indices and reduces the amount of required com-

putation. The most important property, however, is
that the monotonic sections in a best piecewise mono-
tonic fit are distinct. Indeed, the components {βi : i =
tm−1, tm−1 + 1, . . . , tm} on [tm−1, tm] minimize the sum
of the squares

∑tm

i=tm−1
(β(j)

i − βi)2 subject to the con-
straints βi ≤ βi+1, i = tm−1, . . . , tm − 1, if m is odd, and
subject to the constraints βi ≥ βi+1, i = tm−1, . . . , tm−1,
if m is even. In the former case the sequence {βi : i =
tm−1, tm−1 + 1, . . . , tm} is the best monotonic increasing
fit to {β(j)

i : i = tm−1, tm−1 + 1, . . . , tm} and on the lat-
ter case the best monotonic decreasing one. Therefore,
provided that {tm : m = 1, 2, . . . , k − 1} are known, the
components of β can be generated by solving a separate
monotonic problem on each section [tm−1, tm] in the cost
of only O(tm − tm−1) computer operations. It follows
that an optimal fit β associated with the integer vari-
ables {tm : m = 1, 2, . . . , k − 1} can split at tk−1 into
two optimal sections. One section that provides a best
fit on [t0, tk−1], which in fact is similar to β with one
monotonic section less, and one section on [tk−1, tk] that
is a single monotonic fit to the remaining data. Hence
the optimization problem can be replaced by a problem,
whose variables are the positions of the turning points
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PCE GDP k = 1 k = 2 k = 4 PCE GDP k = 1 k = 2 k = 4
661.4 865.2 2310.5 3652.7 2382.3 2361.6 2362.5
626.1 790.7 2396.4 3765.4 2486.1 2465.6 2466.2
606.9 739.9 2451.9 3771.9 2560.0 2543.8 2543.6
553.0 643.7 2545.5 3898.6 2656.7 2641.3 2641.7
541.0 635.5 2701.3 4105.0 2770.8 2764.7 2766.3
579.3 704.2 2833.8 4341.5 2893.6 2901.2 2903.7
614.8 766.9 2812.3 4319.6 2952.9 2962.5 2960.2
677.0 866.6 573.5 594.5 594.4 2876.9 4311.2 3008.3 3004.6 3000.8
702.0 911.1 584.8 595.2 594.2 3035.5 4540.9 3111.7 3099.0 3099.5
690.7 879.7 585.2 584.3 583.0 3164.1 4750.5 3218.1 3219.8 3222.8
729.1 950.7 612.8 599.9 600.4 3303.1 5015.0 3352.4 3367.1 3369.8
767.1 1034.1 655.0 644.4 645.9 3383.4 5173.4 3469.3 3482.4 3480.7
821.9 1211.1 727.2 724.0 727.1 3374.1 5161.7 3540.0 3542.3 3538.3
803.1 1435.4 818.8 818.3 821.1 3422.2 5291.7 3629.3 3611.4 3610.5
826.1 1670.9 924.4 921.3 923.8 3470.3 5189.3 3670.4 3656.3 3653.8
850.2 1806.5 1014.1 1000.0 1001.2 3668.6 5423.8 3790.2 3788.0 3789.9
902.7 1786.3 1070.6 1039.3 1038.5 3863.3 5813.6 3949.5 3966.6 3969.8
1012.9 1589.4 1083.3 1040.7 1038.0 4064.0 6053.7 4083.4 4122.1 4123.1
1031.6 1574.5 1123.5 1079.4 1080.0 4228.9 6263.6 4208.0 4233.3 4231.5
1054.4 1643.2 1178.1 1159.6 1162.4 4369.8 6475.1 4336.6 4332.2 4329.4
1083.5 1634.6 1205.7 1220.7 1222.0 4546.9 6742.7 4494.7 4478.4 4479.6
1152.8 1777.3 1255.5 1281.4 1281.4 4675.0 6981.4 4654.9 4634.1 4636.5
1171.2 1915.0 1297.6 1323.1 1322.0 4770.3 7112.5 4811.5 4797.7 4797.4
1208.2 1988.3 1323.6 1341.5 1341.0 4778.4 7100.5 4924.8 4915.0 4911.5
1265.7 2079.5 1360.6 1359.4 1359.1 4934.8 7336.6 5073.1 5060.4 5060.1
1291.4 2065.4 1390.8 1381.0 1379.5 5099.8 7532.7 5211.1 5215.4 5216.0
1385.5 2212.8 1461.9 1448.2 1449.8 5290.7 7835.5 5375.0 5395.9 5397.6
1425.4 2255.8 1512.0 1503.3 1504.0 5433.5 8031.7 5518.3 5544.9 5542.8
1460.7 2301.1 1566.2 1564.6 1564.8 5619.4 8328.9 5682.2 5700.6 5699.1
1472.3 2279.2 1596.7 1595.4 1593.6 5831.8 8703.5 5869.7 5878.1 5878.8
1554.6 2441.3 1662.8 1659.6 1660.4 6125.8 9066.9 6071.1 6073.7 6075.2
1597.4 2501.8 1709.3 1715.2 1715.7 6438.6 9470.3 6308.6 6307.7 6309.4
1630.3 2560.0 1753.1 1759.8 1759.7 6739.4 9817.0 6543.2 6533.8 6534.0
1711.1 2715.2 1826.4 1829.7 1829.6 6910.4 9890.7 6719.1 6704.1 6701.0
1781.6 2834.0 1891.0 1893.6 1893.9 7099.3 10048.8 6900.6 6871.2 6869.0
1888.4 2998.6 1972.5 1973.2 1974.7 7295.3 10301.0 7103.3 7080.5 7080.5
2007.7 3191.1 2069.2 2063.8 2064.9 7577.1 10703.5 7340.9 7345.1 7348.3
2121.8 3399.1 2184.5 2178.7 2180.2 7841.2 11048.6 7565.9 7593.6 7594.4
2185.0 3484.6 2272.1 2261.5 2261.7 8091.4 11415.3 7795.1 7826.0 7824.1

Table 1: The values of GDP and PCE for U.S.A. during the years 1929-2006 and the least squares estimates to PCE
from GDP when the lag coefficients consist of one, two and four monotonic sections.

of the required fit and which is amenable to dynamic
programming. The implementation of this idea includes
several options that are considered by [4] and [2], while a
versatile computer code has been written by [3].

4 An example on consumption data

To illustrate our method we present an application on
real annual macroeconomic data derived from the Bureau
of Economic Analysis of the U.S. Department of Com-
merce for the period 1/1/1929 - 1/1/2006. The depen-

dent variable is the Real Personal Consumption Expen-
ditures (PCE) and the independent variable is the Real
Gross Domestic Product (GDP) for U.S.A., both mea-
sured in billions of chained 2000 dollars. The data of our
application are given explicitly in the relevant columns of
Table 1. We assume that a change in the GDP will affect
not only current consumption, but also future consump-
tion for seven time periods. Therefore we estimate the
coefficients of the distributed-lag model with lag length
q = 7 subject to the piecewise monotonicity constraints
(9) on the components of β by considering separately the
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cases k = 1 and k > 1.

k = 1 k = 2 k = 4 β̃

β0 0.2527 0.2472 0.2606 0.3105
β1 0.0688 0.0981 0.0871 0.0037
β2 0.0688 0.0321 0.0282 0.0862
β3 0.0688 0.0056 0.0019 -0.0455
β4 0.0688 0.0631 0.0713 0.1112
β5 0.0688 0.0938 0.0978 0.0915
β6 0.0688 0.0938 0.0883 0.0707
β7 0.0688 0.1095 0.1068 0.1127

Table 2: The estimated (k = 1, 2 and 4) and the uncon-
strained lag coefficients in Section 4.

0 2 4 6 8

-0.1

0

0.1

0.2

0.3

0.4

Figure 1: The unconstrained (+) and the monotonically
decreasing (o) lag coefficients of Table 1.

a) Monotonic lag coefficients (k = 1)
We require the estimated lag coefficients to be mono-
tonically decreasing, so the problem is to minimize (2)
subject to the constraints (4). We have developed a spe-
cial quadratic programming method for this problem that
takes account of the fact that each of the constraint func-
tions depends on only two adjacent components of β, but
we do not enter into the details of our computation. The
optimal lag coefficients are shown in the second column
(k = 1) of Table 2, while the unconstrained lag coeffi-
cients due to (3) are shown in the fifth column (β̃) of
the table. In Fig. 1 we display all these coefficients. On
the one hand, the first unconstrained coefficient seems
to be more significant than the others, but the fluctua-
tion of the unconstrained coefficients make them inade-
quate to the estimation problem. On the other hand, the
optimal monotonic decreasing estimates follow the main
trend of the unconstrained coefficients and maintain the
importance of the first coefficient. Therefore, with the
monotonicity assumption, the resultant estimated values

of PCE are given in the third column (k = 1) of Table 1
and displayed in Fig. 2 together with the provided GDP
values. It is remarkable that the estimated PCE values
via formula (1), which actually involves the GDP values,
fall close to the observed PCE values. In particular, the
current GDP value rather than past ones affects mainly
the associated PCE value. Indeed, in view of the mono-
tonically decreasing lag coefficients, GDP affects strongly
consumption at the beginning of the lags, while its action
subsequently is reduced and kept at a low level. Thus the
constraints (4) provide a plausible choice for the lag coef-
ficients that leads to a satisfactory estimation of the true
PCE values.

0 20 40 60 80

0

4000

8000

12000

Figure 2: Least squares estimation (grey line) to the PCE
values (+) with the monotonically decreasing lag coeffi-
cients (k = 1) of Table 2 on the GDP values (thin line).

b) Piecewise monotonic lag coefficients (k > 1)
In order to illustrate some features of Algorithm 1 we
performed two experiments. In the first experiment we
calculated the lag coefficients by employing Algorithm 1
with k = 2 and k = 4, while the first monotonic section
was let to be decreasing. The tolerance for the termi-
nation criterion (11) in Step 4 has been set to 10−4 and
the estimated values of β are shown in the third and
fourth column of Table 2 and displayed in Fig. 3 to-
gether with the unconstrained lag coefficients. As can
be seen, not only these estimates are smoother than the
unconstrained lag coefficients, but also they provide sat-
isfactory fits to β̃, although β̃ is not explicitly available.
The k = 2 case has introduced one turning point at β3,
but the extra turning points of the k = 4 case that were
added at the 5th and 6th data point seem to add little
to the fit obtained when k = 2 in combating the uncon-
strained coefficients trend. Therefore it would have been
sensible to require just two monotonic sections for the lag
coefficients estimation, but this was realized only after the
k = 4 case had been considered. The result suggests that
the user may apply Algorithm 1 with increasing values
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of k until a satisfactory estimation is obtained. Further,
the corresponding estimated values of PCE are shown in
columns k = 2 and k = 4 of Table 1 and displayed in Fig.
4 together with the GDP values. Again, it is remarked
that the estimated PCE values fall close to the observed
PCE values providing very satisfactory estimations of the
true PCE values.

In the second experiment we computed successive approx-
imations to the lag coefficients by employing Algorithm
1 with k = 2, for ε = 10−3, 10−4 and 10−5. The cal-
culated values of β are shown in Table 3 and displayed
in Fig. 5. All three approximations capture the pat-
tern of the unconstrained lag coefficients. Moreover, the
smaller the value of ε, the closer the approximation com-
ponents are to the unconstrained coefficients, while these
components cannot be worse than the unconstrained lag
coefficients, due to the employed piecewise monotonicity
constraints. Thus the user may decide to monitor the
smoothing performance of the method by means of the
tolerance magnitude in (11). This is a helpful consider-
ation, because due to degeneracy or near degeneracy of
matrix X, a line search, sometimes, may have to choose
a tiny step-length αj , which implies that the algorithm
may make slow progress to the solution.

0 2 4 6 8

-0.1

0

0.1

0.2

0.3

0.4

Figure 3: The unconstrained (+) and the piecewise mono-
tonic lag coefficients with k = 2 (¦) and k = 4 (◦) of Table
2.

5 Conclusions and future work

We have developed a new method for estimating
distributed-lag coefficients in time series data subject to
the condition that the coefficient estimates are composed
of a certain number of monotonic sections.

The method seems to be both effective in computation
and competent to its modelling task. Three distinctive
features of this process are to be noted: (1) The pro-

0 20 40 60 80

0

4000

8000

12000

Figure 4: Least squares estimations (grey and dashed
line) to the PCE values (+) when the lag coefficients on
the GDP values (thin line) allow k = 2 and k = 4 mono-
tonic sections respectively.

ε = 10−3 ε = 10−4 ε = 10−5

β0 0.2129 0.2472 0.2964
β1 0.1310 0.0981 0.0417
β2 0.0595 0.0321 0.0417
β3 0.0182 0.0056 -0.0096
β4 0.0344 0.0631 0.0893
β5 0.0690 0.0938 0.0893
β6 0.0979 0.0938 0.0893
β7 0.1198 0.1095 0.1030

Table 3: The lag coefficients with k = 2 monotonic sec-
tions, for ε = 10−3, 10−4 and 10−5 in Step 4 of Algorithm
1.

cess is designed to overcome the multicollinearity prob-
lem that frequently occurs in practice, (2) the piecewise
monotonicity model provides a rather weak, nonetheless
realistic representation of the lag coefficients and, (3) the
calculation benefits from the excellent complexity of the
piecewise monotonicity method. In particular, the choice
of the prior knowledge parameter k gives the time series
estimation valuable flexibility.

For the piecewise monotonic model we have used a For-
tran package that has been developed recently [3], which
indeed is a major part of our calculation. For the spe-
cial problem that minimizes (2) subject to the monotonic
constraints (4) we have used Fortran codes developed by
one of the authors (EEV).

The calculations performed so far on real data show that
our method overcomes some severe shortcomings of tra-
ditional lag estimation techniques. Still, there is plenty
of room for much empirical analysis on this method. The
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Figure 5: Successive approximations to lag coefficients
with k = 2 monotonic sections, for ε = 10−3 (M), 10−4 (¦)
and 10−5 (◦). The unconstrained coefficients are denoted
by “+”.

algorithm is sufficiently fast for interactive computation,
but a possible improvement is to introduce some features
of the conjugate gradient technique. It is expected that
the algorithm will find useful applications to real prob-
lems, so work is under way in order to provide a Fortran
package that is suitable for submission to an international
software library.
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