
 
 

  
Abstract— The paper presents a novel regularization 

approach to the hedging of Collateralized Mortgage Obligations 
(CMO). Our method is related to well known Option-Adjusted 
Spread (OAS) methodology, but provides a better way to 
account for embedded optionality. In this method, the 
construction of the optimal hedging portfolio of liquid 
benchmark instruments is considered as an essential part of the 
valuation procedure. To ensure the uniqueness of the solution of 
the resulting ill-conditioned optimization problem, the standard 
Tikhonov type regularization technique is applied. The 
developed numerical optimization technique is based on the 
combination of the the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) and Newton methods. The numerical results on the 
hedging of the portfolios of CMO and European swaptions 
based on Monte Carlo simulation are presented. 
 

Index Terms—Collateralized Mortgage Obligations (CMO), 
Option-Adjusted Spread (OAS), Monte-Carlo simulation, 
Tikhonov regularization.  
 

I. INTRODUCTION 

      Collateralized Mortgage Obligations (CMO) can have a 
high degree of variability in cash flows. Because of this, it is 
generally recognized that a yield to maturity of static spread 
calculation is not a suitable valuation methodology. Since the 
1980’s Option-Adjusted Spread (OAS) has become a 
ubiquitous valuation metric in the CMO market.  There have 
been many criticisms of OAS methodology, and some 
interesting modifications have focused on the prepayment 
side of the analysis, e.g., [2, 3].  One of the problems with 
using OAS analysis is the lack of information about the 
distribution of the individual spreads, which in turn leads to 
the difficulties in the construction of the hedging portfolio for 
CMO.   
     To improve the CMO valuation methodology and to 
develop a robust procedure for the construction of the 
optimal hedge for CMO, we introduce a combination of two 
new metrics. We start with the term-structure/prepayment 
model approach of OAS and go on to use the path-by-path 
structure of the cash flows of a CMO in much more detail.  
Our methodology is to design a portfolio of swaptions which 
minimizes the variance in the individual spreads as much as 
possible, i.e., we are minimizing the spread variance.  In 
doing so, we design an optimal hedge; at least it is optimal 
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from the standpoint of the probability distribution more or 
less implied by swap rates and swaption prices.  It should be 
emphasized that when calculating spreads we are doing so on 
the portfolio of CMO and swaptions, thus we are including 
the cost of hedging in our valuation.  Our two main outputs 
are the mean and the standard deviation of the individual 
spreads. 
    This new spread variance minimization (SVM) 
methodology can lead to quite different conclusions about 
CMO than OAS does.  In particular, in comparing two bonds, 
the more negatively convex bond may look cheaper on an 
OAS basis, but richer according to our analysis.  This is not 
simply a difference in opinion: In contrast to OAS analysis, 
we fully value embedded options.  
    The main difficulty in implementing our new methodology 
is in the minimization of our spread-variance functional. The 
difficulty is partly because the optimization problem is 
ill-conditioned, and in many situations, this can be overcome 
by introducing a regularization term.  Our approach is to use 
the standard Tikhonov regularization Tikhonov [4], which 
has the strong intuitive appeal of limiting the sizes used in 
hedging. 
    A word about static versus dynamic hedging may be in 
order. Our methodology is to set up a static hedge. It may be 
argued that an essentially perfect hedge may be created 
dynamically. However, even if one is dynamically hedging, 
then one can’t lock in a positive OAS. For a typical CMO 
dynamic hedging will cost money. Those costs should be 
discounted flat and thus will decrease a positive spread. . A 
dynamically-hedged portfolio will not have the OAS as a 
spread.  Moreover, ones hedging costs will be related to the 
amount of volatility in the future so can be quite uncertain.  
Our methodology greatly reduces dynamic hedging costs by 
setting up an optimized static hedge, and thus reduces the 
uncertainty in dynamic hedging costs. 
    The rest of the paper is organized as follows.  In the second 
section we briefly review OAS and point out in more detail 
the problems we see with it.  In the third section we explicitly 
define our hedging methodology. In the forth section we give 
a brief description of the regularized numerical method. In 
the fifth section we present some details on the term-structure 
model used; on our prepayment assumptions and summarize 
numerical results from our analysis.  

 

II. OPTION-ADJUSTED SPREAD ANALYSIS 
Standard OAS analysis is based on finding a spread at which 
the expected value of the discounted cash flows will be equal 
to the market value of a CMO.  This is encapsulated in eqn. 
(1): 
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MVCMO = E% d(ti , s) ⋅ c(ti )

i =1

L

∑ .                        (1) 

Here MVCMO is the market value of CMO, E% denotes 
expectation with respect to the risk neutral measure, 
d(ti , s) is the discount factors to time ti ,  i = 1,..., L  with a 
spread of s and c(ti )  is the cash flow at time ti . Note that in 
the OAS framework, a single spread term is added to the 
discounted factors to make this formula a true equality, this 
spread, s, is referred to as the OAS. 
     The goal of OAS analysis is to value a CMO relative to 
liquid benchmark interest rate derivatives, and, thus, the 
risk-neutral measure is derived to price those benchmarks 
accurately.  To calculate expected values in practice one uses 
Monte-Carlo simulation of a stochastic term-structure model.  
We use the two-factor Gaussian short-rate model G2++ as in 
Brigo and Mercurio [1] calibrated to U.S. swaption prices, 
but other choices may be suitable.  In terms of numerical 
approximation, it will give us eqn. (2): 
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Here Δti = ti − ti−1,  i = 1,..., L , MVbench

k ,  k = 1,  ... , M  are the 
market values of the benchmarks, 
cfbench

k (n, ti ),  n = 1,  ... , N ,  i = 1,  ... , L,  k = 1,  ... , M are the 
future cash flows of the benchmarks, N is the number of 
generated trajectories, L is the number of time intervals until 
expiration of all benchmarks and CMO, and M is the number 
of benchmarks in the consideration. The last term Err 
represents the error term. Though, the detailed consideration 
of calibration procedure is outside the scope of this 
presentation, it is worth to mention that the absolute value of 
the Err term is bounded in most of our experiments by five 
basis points.  
     The second step in the OAS analysis of CMOs is to find 
the spread term from the eqn. (3): 
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Here cf k (n, ti ),  n = 1,  ... , N ,  i = 1,  ... , L,   are cash flows 
of the CMO.  These cash flows come from the structure of the 
CMO, a perfectly known quantity, and a prepayment model, 
a more subjectively known quantity.  The parameter s, the 
OAS, is an indicator as to whether the CMO is underpriced or 
overpriced: If the OAS is positive then the CMO is 
underpriced, if it is negative then the CMO is overpriced.  
Not only its sign, but also the magnitude of the OAS 
commonly quoted as a measure of cheapness of a CMO. 
     An important issue is managing a portfolio of CMOs is 
how to hedge the portfolio by using actively traded 
benchmarks.  We return to this question little bit later but for 
now let's assume that we somehow have found the list and 
corresponding weights of benchmarks that would provide a 
sufficient hedge for our portfolio.  To evaluate this portfolio, 
we will extend the OAS analysis to the valuation of portfolio 
of CMO and the benchmarks.  The straightforward extension 
of OAS approach will result in eqn. (4): 
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This consideration makes some serious drawbacks and flaws 
of OAS analysis apparent.  Some of them are: 
• It matches a mean to MV, but provides no information on 
the distribution of the individual discounted values. 
• One can use it to calculate some standard risk metrics, but 
it gives no way to design a refined hedge. 
• It is sensitive to positions in your benchmarks.  Suppose 
the OAS on a CMO is positive.  Now suppose you have a 
short position in group of benchmarks.  Then necessarily the 
OAS of your portfolio increases.  This is simply because of 
eqn. (5): 
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and so   
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This shows that OAS is sensitive to leveraging by shorting a 
combination of swaptions to increase the sOAS . 
 

III. THE SPREAD VARIANCE MINIMIZATION(SVM) APPROACH 
In our approach, instead of using the same spread for all 
paths, we are looking at the individual spreads for every path 
of the portfolio of CMO and benchmarks.  We try to find a 
portfolio of benchmarks so that we minimize the variation in 
the individual spreads.  The spread for path n is the value s(n) 
such that eqn. (7) satisfied: 
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where the wk, k=1, … ,M are the weights of the individual 
benchmarks (a negative indicates a short position). The goal 
is to apply an optimization algorithm to find weights so that 
the variance of the s(n) is a minimum. 
     In this form the problem is not well defined; the weights 
may exhibit some instability and tend to drift to infinity: Buy 
larger and larger amounts of the entire portfolio of 
benchmarks and your individual spreads will all approach 
zero, so your spread variance will approach zero.  A common 
approach to the solution of this type of problem is to add 
regularization term to the target functional.  Instead of 
minimizing var(s(n)), minimize var(s(n))+ α [wk ]2

k

∑  

Tikhonov [4], where α is small, on the order of 10-9.  
Tikhonov regularization makes the problem well defined and 
a solution method stable.  From the hedging point of view, 
such regularization provides the bounded vector of optimal 
weights for the benchmarks and so introduces practicalities in 
the implementation of an actual hedge.   
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IV. NUMERICAL METHOD 
As it was mentioned before, we are considering that for every 
interest rate trajectory the individual spread depends on the 
weights for benchmarks in the portfolio. Then the target 
functional is defined in eqn. (8): 
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     (10)        

Using implicit differentiation one can find 
∂s

∂wi

,
∂2s

∂wi∂wl

,     i, l = 1, ..., M .  But this functional in general is 

ill-conditioned. To ensure the convergence of the 
optimization method, we introduce standard Tikhonov 
regularization. The modified target functional could be 
presented as in eqn. (11): 

 
 
%f (w1 , ..., wn ) = f (w1 , ..., wn ) + α w 2

2
.              (11) 

In most situations this guaranties the convergence of the 
numerical method to the unique solution. In our approach we 
are using the optimization technique based on the 
combination of the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) Vogel [5] and Newton methods. The BFGS 
approach is applied on the early iterations. When the 
l2 − norm of the gradient of the target function becomes less 
then 10-10 we apply the Newton method assuming that the 
approximation is already close enough to the solution and the 
quadratic convergence rate of the Newton method can be 
achieved. 
     As we already mentioned, this regularization keeps the 
value of the target functional small and stabilizes the 
optimization method by preventing the weights of the 
benchmarks in the portfolio wi from becoming large through 

the penalty term α w 2
2

. To keep the condition number of 

the Hessian bounded, one has to use fairly large 
regularization parameter. On the other hand, in order to keep 
the regularized problem reasonably close the original one, we 
expect that α needs to be small. In addition to these pure 
mathematical requirements, in the case of managing a 
portfolio, one has to take into consideration the cost of the 
hedging. Since regularization term prevent the optimal 
weights drift to infinity, the regularization parameter 
becomes a desirable tool in keeping hedging cost under 
control. In our experiments we found that the parameter 
α = 10−9  represents a good choice for the regularization in 
most numerical experiments. 

 

V. NUMERICAL RESULTS 
To illustrate our proposed methodology we consider hedging 
an unstructured trust IO (interest only) strip with a basket of 
European swaptions of different strikes and expiration dates, 
all with ten-year tenor. To generate the trajectories of the 
short-rate, we use the two-additive-factor Gaussian model 
G2++ Brigo and Mercurio [1]. The dynamics of the 
instantaneous-short-rate process under the risk-neutral 
measure are given by r(t ) = x(t ) + y(t ) + ϕ(t ),   r(0) = r0 ,  
where the processes {x(t ) : t ≥ 0}  and  {y(t ) : t ≥ 0} satisfy 
(12): 

dx(t ) = −ax(t )dt + σdW1 (t ),   x(0) = 0,

dy(t ) = −by(t )dt + ηdW2 (t ),   y(0) = 0.
            (12) 

Here (W1 ,W2 )  is a two-dimensional Brownian motion with 
instantaneous correlation ρ : dW1 (t )dW2 (t ) = ρdt, . The 
parameters a,b,σ ,η, ρ are defined in the calibration 
procedure to match the prices of a set of actively traded 
European swaptions. The l2 − norm of the difference vector 
of the model swaption prices and the market prices in our 
experiments was bounded by five basis points. 
      In our experiments, we will use the standard deviation of 
the spread as an indicator of the quality of the hedge. The 
bond under consideration has the following parameters: 
WALA = 60 months, WAC = 6%, coupon = 5.5%, and a 
price of $22.519. We are using very simple prepayment 
model defined by linear interpolation of the data from Table 
1. 
 

Table 1: Prepayment rates. 

 
Interest 
rates(%) 

3.0 3.5 4.0 4.5 5.0 

CPR(%
) 

70 50 30 15 10 

Interest 
rates(%) 

5.5 6.0 6.5 7.0 7.5 

CPR(%
) 

8 4 3 3 3 

 
     For optimization we use a basket of 64 payer and receiver 
European swaptions with yearly expiration dates from years 
1 to 16, including at the money (ATM) and +/- 50 out of the 
money. The regularization parameter used is10−9 , and the 
number of trajectories in all experiments was 500. The SVM 
numerical method was implemented in Matlab with using the 
BFGS standard implementation available in the Matlab 
optimization toolbox. The computer time for the Matlab 
optimization routine was 42 sec on the standard PC with 2Hz 
processor frequency. 
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Figure 1: Convergence history. 

 
     The Fig. 1 represents the convergence history of the 
iterations in the optimization method. Fig. 2 shows the square 
root of the target functional, which is approximately the 
standard deviation of the spread distribution.  One can see 
that as a result of the application of the new methodology, the 
standard deviation of the spread distribution reduced 
significantly, which in turn could be considered as reduction 
in risk of the portfolio of CMO and benchmarks.  
 

 
        Figure 2: Convergence of the target functional. 

 
Fig. 3 presents the evolution of weights in our portfolio. 
                                         

 
      Figure 3: Evolution of weights. 

 

     In the next series of experiments, we illustrate the quality 
of the hedge constructed using different numbers of 
swaptions. Table 2 presents the results of these experiments. 
In our experiments we used the IO strip in combination with 
different numbers of swaptions. For reference we include 
results with no hedge at all; this is the common OAS analysis 
(but we also include the mean spread).  For our SVM 
approach, we first use just two ATM swaptions, one payer 
and one receiver, both with expiration date in one year.  Then 
we use eight swaptions with expiration dates of 1 and 2 years. 
For each of these expirations we include an ATM payer, an 
ATM receiver, an ATM+50 bps payer, and an ATM-50 bps 
receiver. The test with twenty options uses expiration dates 1 
to 5 years, again with four swaptions per expiration date. In 
the last experiment we use swaptions with expiration dates 1 
to 16. In all of these experiments we used one unit of the trust 
IO with the cost of $22.519.  
     As we can see from the first line of the table, the cost of 
the hedge is an increasing function of the number of options. 
But the most importantly, we manage to significantly 
decrease the standard deviation of the spread distribution by 
using spread variance minimization methodology.  

Table 2: Hedging results. 

 
Number of 
Swaptions 

0 2 8 20 64 

Cost of 
hedge($) 

0 -.0020 5.6284 6.0144 11.3618 

σ (basis 
points(bps)) 

870 614 407 224 133 

Mean 
spread (bps) 

-71 -18 37 49 33 

OAS (bps) 127 101 95 68 40 

 
     Notice that, when using just two options, the cost of our 
hedging portfolio is essentially zero, we are buying the ATM 
receiver swaption and selling an equal amount of the ATM 
payer swaption.  This is effectively entering into a forward 
rate agreement, and so this case could be considered as a 
hedging strategy based on only the duration of portfolio. The 
experiments with the larger set of swaptions is a refinement 
this strategy and take into account more detail about the 
structure of the cash flows of the bond. It proves to be a very 
successful approach to the hedging of the path-dependent 
bond.  
     As we can see from the first line of the table, the cost of 
the hedge is an increasing function of the number of options. 
But the most importantly, we manage to significantly 
decrease the standard deviation of the spread distribution by 
using spread variance minimization methodology.  
     Notice that, when using just two options, the cost of our 
hedging portfolio is essentially zero, we are buying the ATM 
receiver swaption and selling an equal amount of the ATM 
payer swaption.  This is effectively entering into a forward 
rate agreement, and so this case could be considered as a 
hedging strategy based on only the duration of portfolio. The 
experiments with the larger set of swaptions is a refinement 
this strategy and take into account more detail about the 
structure of the cash flows of the bond. It proves to be a very 
successful approach to the hedging of the path-dependent 
bond.  
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     The last two rows of the table present two different 
metrics: The mean spread and the OAS of the portfolio of 
bond and hedges. We can see that they become close as 
standard deviation decreases. In fact, they would be the same 
if the standard deviation becomes zero. With no swaptions, or 
with very few of them, these metrics can result in drastically 
different conclusions about the cheapness of the bond.  
Contrary to a common interpretation of OAS, it does not 
represent the mean spread of an unhedged bond.  In fact, it 
can be expected to be close to the mean spread only when 
considering a refined hedging portfolio of swaptions.  
Though the discussion of the advantages of the SVM analysis 
is outside of the scope of this paper, it is worth mentioning 
that it caries significant information about the 
path-dependent bond and is worth taking into account 
alongside the standard OAS parameter.          
          
 

VI. CONCLUSION 
In this paper we presented a regularization approach to the 
construction of an optimal portfolio of CMO and swaptions. 
The standard Tikhonov regularization term serves as an 
important tool for preventing the weights of the benchmarks 
in the optimal portfolio drift to the infinity and so keeps the 
hedging procedure practical. The optimization method 
demonstrates excellent convergent properties and could be 
used in practical applications for hedging a portfolio of 
CMO. The numerical results demonstrate the effectiveness of 
the proposed methodology. The future development may 
include the construction of new target functional based on the 
combination of the spread variance and cost function. This 
modification might improve the efficiency of the developed 
hedging strategy. 
     There appears to be a wide variety of application of our 
SVM approach, and in general of systematic path-by-path 
analysis of securities with stochastic cash flows.  We plan to 
apply our analysis to other CMO structures directly.  In 
addition, our analysis lends itself to comparing structured 
CMO with liquid strip interest only and principal only bonds. 
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