
 
 

  
Abstract—Four multi-objective evolutionary optimization 

algorithms are discussed with respect to their efficiency in 
portfolio optimization problems. The assessment of the 
advantages and disadvantages of the considered algorithms is 
based on experimental study where two and three criteria 
portfolio optimization problems were used as tests. The 
performance of considered algorithms are presented and 
compared in different metrics. 
 

Index Terms—heuristic algorithms, multi-objective 
optimization, portfolio selection.  
 

I. INTRODUCTION 
  Optimization methods have a long history in many financial 
domains, because optimization models play an increasingly 
important role in financial decisions. Many computational 
finance problems ranging from asset allocation to risk 
management, from option pricing to model calibration can be 
solved efficiently using modern optimization techniques. The 
question of optimal portfolio allocation has been of 
long-standing interest for academics and practitioners in 
finance. In 1950s Harry Markowitz published his pioneering 
work where he has proposed a simple quadratic program for 
selecting a diversified portfolio of securities [1]. His model 
for portfolio selection can be formulated mathematically 
either as a problem of maximization of expected return where 
risk, defined as variance of return, is (upper) bounded or as a 
problem of minimization of risk where expected return is 
(lower) bounded.  

The classical approach to portfolio selection reduces the 
problem of two criteria optimization to a one criterion 
optimization where the second criterion is converted to a 
constraint. Reduction of a multi-criteria problem to one 
criterion problem not always is the best method to solve 
multi-criteria problems, especially in the case when number 
of criteria is larger than two. In this paper we investigate 
efficiency of evolutionary multi-criteria optimization 
algorithms in problems of portfolio selection. For 
experimental comparison we have chosen four algorithms 
well assessed in recent publications. We were especially 
interested whether rankings of algorithms are different for 
problems with two and three criteria. This paper is organized 
as follows. In section 2 the multi-objective portfolio 
optimization problem is outlined, section 3 describes the 
selected optimization methods and their characteristics. In 
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section 4 and 5 we discuss used performance metrics and 
obtained results. Section 6 draws conclusions.  

 

II. MULTI-OBJECTIVE PORTFOLIO OPTIMIZATION PROBLEM 
Many real world decision making problems have several, 

often conflicting, objectives, and can be reduced to 
multi-criteria optimization. There are many methods to attack 
multi-criteria optimization problems. In most cases the aimed 
result is a set of Pareto optimal solutions. However, the 
theoretical problem to find the whole Pareto set normally 
(e.g.  in case of continuum cardinality of Pareto set) can not 
be solved algorithmically, thus the problem is reformulated to 
algorithmic construction of an appropriate approximation of 
Pareto sets.  

Over the past decades evolutionary algorithms have 
received much attention owing to its intrinsic ability to 
handle optimization problems with both single and multiple 
objectives including problems of financial optimization 
[2-6]. An alternative, known as simulated annealing, was 
discussed in [3]. Tabu search approaches [7] compose the 
third major class of heuristic procedures for multi-objective 
optimization problems. Comparisons of the performance of 
different heuristic techniques applied to solve one criterion 
portfolio choice problems are given by Chang et al. [3]. 
However, to the best knowledge of the authors’ similar 
comparative analysis of performance of recently proposed 
evolutionary multi-criteria algorithms has not been yet 
reported.  

Risk plays an important role in modern finance, including 
risk management, capital asset pricing and portfolio 
optimization. The purpose of portfolio selection is to find an 
optimal strategy for allocating wealth among a number of 
securities (investment) and to obtain an optimal risk-return 
trade-off. The portfolio optimization problem may be 
formulated in various ways depending on the selection of the 
objective functions, the definition of the decision variables, 
and the particular constraints underlying the specific 
situation. Beyond the expected return and variance of return, 
like in Markowitz portfolio model [1], the additional 
objective function can include number of securities in a 
portfolio, turnover, amount of short selling, dividend, 
liquidity, excess return over of a benchmark random variable 
and other [8]. In the bank portfolio management, the 
additional criteria such as the prime rate, processing cost, 
expected default rate, probability of unexpected losses, 
quantity of the long-term and short-term can be considered 
[9]. For example, the multi-objective portfolio selection 
problem can include the following objectives [10]: (to be 
maximized) portfolio return, dividend,  growth in sales,  
liquidity,  portfolio return over that of a benchmark, and (to 
be minimized)  deviations from asset allocation percentages,  
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number of securities in portfolio,  turnover (i.e., costs of 
adjustment),  maximum investment proportion weight,  
amount of short selling. 

We considered two multi-objective portfolio problems. 
The first problem was based on a simple two objectives 
portfolio model including the standard deviation of the 
returns and mean of the returns, where the return Ri is one 
month return of stock i; return means percentage change in 
value. The second problem included three objectives; where 
annual dividend yield is added to two above mentioned 
objectives.hen you submit your final version, after your 
paper has been accepted, prepare it in two-column format, 
including figures and tables.  

 

III. JUSTIFICATION OF SELECTION OF ALGORITHM 

A. FastPGA 
Eskandari and Geiger [11] have proposed framework 

named fast Pareto genetic algorithm that incorporates a new 
fitness assignment and solution ranking strategy for 
multi-objective optimization problems where each solution 
evaluation is relatively computationally expensive. The new 
ranking strategy is based on the classification of solution into 
two different categories according to dominance. The fitness 
of non-dominated solutions in the first rank is calculated by 
comparing each non-dominated solution with one another 
and assigning a fitness value computed using crowding 
distance. Each dominated solution in the second rank is 
assigned a fitness value taking into account the number of 
both dominating and dominated solutions. New search 
operators are introduced to improve the proposed algorithm’s 
convergence behaviour and to reduce the required 
computational effort. A population regulation operator is 
introduced to dynamically adapt the population size as 
needed up to a user-specified maximum population size, 
which is the size of the set of non-dominated solutions. 
FastPGA is capable of saving a significant number of 
solution evaluations early in the search and utilizes 
exploitation in a more efficient manner at later generations.  

Characteristics:  
• The regulation operator employed in FastPGA 

improves its performance for fast convergence, 
proximity to the Pareto optimal front, and solution 
diversity maintenance.  

B.  MOCeLL 
Nebro et al [12] presented MOCeLL, a multi-objective 

algorithm based on cellular model of GAs, where the concept 
of small neighborhood is intensively used, i.e., population 
member may only interact with its nearby neighbors in the 
breeding loop. MOCell uses an external archive to store the 
non-dominated solutions found during the execution of the 
algorithm, however, the main feature characterizing MOCell 
is that a number of solutions are moved back into the 
population from the archive, replacing randomly selected 
existing population members. This is carried out with the 
hope of taking advantage of the search experience in order to 
find a Pareto front with good convergence and spread. 

MOCell starts by creating an empty Pareto front. The 
Pareto front is just an additional population (the external 
archive) composed of a number of the non-dominated 

solutions found. Population members are arranged in a 
2-dimensional toroidal grid, and the genetic operators are 
successively applied to them until the termination condition 
is met. Hence, for each population member, the algorithm 
consists of selecting two parents from its neighbourhood, 
recombining them in order to obtain an offspring, mutating it, 
evaluating the resulting population member, and inserting it 
in both the auxiliary population (if it is not dominated by the 
current population member) and the Pareto front. Finally, 
after each generation, the old population is replaced by the 
auxiliary one, and a feedback procedure is invoked to replace 
a fixed number of randomly chosen population members of 
the population by solutions from the archive. In order to 
manage the insertion of solutions in the Pareto front with the 
goal to obtain a diverse set, a density estimator based on the 
crowding distance has been used. This measure is also used 
to remove solutions from the archive when this becomes full.  

Characteristics: 
• The algorithm uses an external archive to store the 

non-dominated population members found during 
the search. 

• The most salient feature of MOCeLL with respect to 
the other cellular approaches for multi-objective 
optimization is the feedback of members from 
archive to population. 

C. AbYSS 
AbYSS was introduced by Nebro et al [13]. It is based on 

the scatter search using a small population, known as the 
reference set, whose population members are combined to 
construct new solutions. Furthermore, these new population 
members can be improved by applying a local search method. 
For local search the authors proposed to use a simple (1+1) 
Evolution Strategy which is based on a mutation operator and 
a Pareto dominance test. The reference set is initialized from 
an initial population composed of disperse solutions, and it is 
updated by taking into account the solutions resulting from 
the local search improvement.  

AbYSS combines ideas of three state-of-the-art 
evolutionary algorithms for multi criteria optimization. On 
the one hand, an external archive is used to store the 
non-dominated solutions found during the search, following 
the scheme applied by Pareto-archived Evolutionary Strategy 
(PAES) [14], but using the crowding distance of NSGA-II 
[15] as a niching measure instead of the adaptive grid used by 
PAES; on the other hand, the selection of solutions from the 
initial set to build the reference set applies the density 
estimation used by Strength Pareto Evolutionary Algorithm 2 
(SPEA2) [13]. 

Characteristics:  
• It uses an external archive to store the non-dominated 

population members found during the search.  
• Salient features of AbYSS are the feedback of 

population members from the archive to the initial 
set in the restart phase of the scatter search, as well 
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as the combination of two different density 

estimators in different parts of the search.  

D. NSGA-II 
The evolutionary algorithm for multi-criteria optimization 

NGSA-II contains three main operators: a non-dominated 
sorting, density estimation, and a crowded comparison [15]. 
Starting from a random population the mentioned operators 
govern evolution whose aim is uniform covering of Pareto 
set.  
Non-dominated sorting maintains a population of non 
dominated members: if a descendant is dominated, it 
immediately dies, otherwise it becomes a member of 
population; all members of parent generation who are 
dominated by descendants die.  

The density at the particular point is measured as the 
average distance between the considered point and two 
points representing the neighbour (left and right) population 
members.  

The crowded comparison operator ( np ) defines selection 
for crossover oriented to increase the spread of current 
approximation of Pareto front. Population members are 
ranked taking into account “seniority” (generation number) 
and local crowding distance.  

The worst-case complexity of NSGA-II algorithm is 
O(mN2), where N is the population size and m is the number 
of objectives [15]. 

Characteristics:  
• Non-dominated sorting algorithm is of the lower 

computational complexity than that of its 
predecessor NSGA. 

• Elitism is maintained. 
• No sharing parameter needs to be chosen because 

sharing is replaced by crowded-comparison to 
reduce computations. 

 

IV. DESIGN OF EXPERIMENT 
For assessing of the considered algorithms several 

different performance measures can be taken into account: 
the distance between the approximated Pareto front 
generated by the considered algorithm and the true Pareto 
front, the spread of the solutions, and computational time. To 
determine the first measure the true Pareto front should be 
known. In this investigation we didn’t know true Pareto 
fronts. Therefore, the best approximation found by means of 
combining results of all considered algorithms was used 
instead of true Pareto front.  

We compared algorithms according to five performance 
measures:  
1) Generational distance (GD) shows how far the 

approximation is from the true Pareto front [13]. A value 
of GD equal zero indicates that all the generated 
elements are on the true Pareto front. 

2) Inverted generational distance (IGD) [16]. This quality 
indicator is used to measure how far the elements are in 
the Pareto optimal set from those in the set of 
non-dominated vectors found. A value of IGD equal 
zero indicates that all the generated elements are in the 
Pareto front and they cover all the extension of the 
Pareto front. 

3) Hypervolume (HV) [13]. This quality indicator 
calculates the volume (in the objective space) covered by 
members of a non-dominated set of solutions for 
problems where all objectives are to be minimized. 
Algorithms with larger values of HV are desirable. 

4) Spread [13]. The Spread indicator is a diversity metric 
that measures the extent of spread achieved among the 
obtained solutions. This metric takes a zero value for an 
ideal distribution, pointing out a perfect spread out of the 
solutions in the Pareto front. 

5) Computational time.   
For the experiment we used a dataset of 10 Lithuanian 

companies’ stock data from Lithuanian market. Before 
evaluating the fitness function, the proportions of stocks in 
the portfolio were normalized as in reference [9]. 

FastPGA, MOCELL, AbYSS, and NSGAII were run with 
different parameters that were recommended by the authors 
[11]–[13], [15]. They are given in Table I. 

TABLE I 
ALGORITHM PARAMETERS 

Algorithm Parameters 
FastPGA Maximum population = 100, initial population 

= 100, crossover probability = 1.0 
MOCeLL Population = 100, archive = 100, crossover 

probability = 0.9 
AbYSS Population = 20, archive = 100, crossover 

probability = 1.0, setref1=10, setref2=10 
NSGAII Population = 100, crossover probability = 0.9 
 

V. DISCUSSION OF EXPERIMENTAL RESULTS 
To evaluate each algorithm, while solving two objectives 

portfolio optimization problem we performed three series of 
experiments. First, we ran all the approaches for 15000 
function evaluations, and then repeated them with the 
execution of 25000 and 35000 function evaluations as the 
stopping condition. In the case of three objectives portfolio, 
two series of experiments with 25000 and 50000 function 
evaluations have been performed. For each problem we have 
executed 50 independent runs. The experimental results of 
two objectives problem, i.e. the averages and standard 
deviations of all metrics, are given in Table II. 

The results of two objectives portfolio optimization 
problem reveals that MOCeLL outperforms other algorithms 
considering when using 15000 and 25000 function 
evaluations according to Spread metric, and it obtains 
competitive fronts concerning both Generational Distance 
and Hypervolume metrics. In the case of 35000 function 
evaluations, there is not one best performer, because 
according to Generational Distance, Inverted Generational 
Distance, and Hypervolume indicators the best optimizer is 
MOCeLL; according Spread metric and consumed time for 
solving the problem the best optimizer is AbYSS. It can be 
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noticed that the differences in average and standard deviation 

values of both the generational distance and inverted 
generational distance are in general noticeable compared to 
the rest of algorithms. In all cases, AbYSS requires less time 
then other algorithms. The Pareto frontier that was formed by 
using all obtained frontiers of bi-objective problem and 
efficient frontiers of each algorithm when using 25000 
function evaluations are presented in Fig. 1-4. 

The results of three objectives problem are given in Table 
III. The obtained results show that the best performer 

according all metrics excluding the computational time is 
MOCeLL. NSGAII is the best algorithm in respect with time 
consumed for computation. It can be noted that in all 
performed experiments FastPGA requires significantly more 
computational time than other algorithms. From these results 
it can be seen that quality of MOCeLL efficient frontier is 
comparably higher than ones of FastPGA and NSGAII. The 
efficient front obtained by MOCeLL with 50000 function 
evaluations is presented in Fig. 5. 

 

TABLE II 
PERFORMANCE METRICS OF TWO OBJECTIVES PORTFOLIO PROBLEM 

GD IGD HV Spread Time, ms Algorithm 
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Maximum number of evaluations is 15000 
AbYSS  5.452E-4 4.09E-4 1.794E-3 2.067E-3 0.8552 0.0331 0.470 0.182 1414.9 90.51 

FastPGA  4.107E-4 2.81E-4 2.197E-3 1.579E-3 0.8563 0.0238 0.597 0.112 6321.5 145.37 
MOCeLL 3.084E-4 2.32E-4 1.181E-3 1.595E-3 0.8696 0.0212 0.439 0.140 2326.9 77.965 
NSGAII 4.156E-4 2.76E-4 1.347E-3 0.001192 0.8694 0.0141 0.560 0.107 1898.2 105.04 

Maximum number of evaluations is 25000 
AbYSS  2.035E-4 5.96E-5 1.55E-4 5.386E-4 0.882 0.0055 0.2553 0.064 2490.3 140.7 

FastPGA  2.241E-4 7.06E-5 4.70E-4 9.419E-4 0.8786 0.0126 0.4291 0.0832 10390 42.48 
MOCeLL 9.02E-5 1.9E-5 1.08E-4 2.802E-4 0.8836 0.0019 0.2501 0.0379 3900.1 61.06 
NSGAII 2.334E-4 2.88E-5 9.7E-5 1.2E-5 0.8823 0.0003 0.4366 0.0286 2965.6 34.22 

Maximum number of evaluations is 35000 
AbYSS  1.609E-4 3.58E-5 7.1E-5 2.4E-6 0.8834 3.2-E4 0.2283 0.0171 3698.1 187.48 

FastPGA  2.087E-4 2.74E-5 1.02E-4 1.106E-4 0.8827 4.7-E4 0.3804 0.0354 15959 1418.5 
MOCeLL 6.06E-5 9E-6 6.6E-5 8E-7 0.8843 8.5-E5 0.2407 0.0168 5505 65.78 
NSGAII 2.396E-4 3.02E-5 9.5E-5 4E-6 0.8824 1.8-E4 0.4344 0.0297 4493.9 247.17 

TABLE III 
PERFORMANCE METRICS OF THREE OBJECTIVES PORTFOLIO PROBLEM 

Algorithm GD IGD HV Spread Time, ms 
 Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. 

Maximum number of evaluations is 25000 
AbYSS  1.091E-3 3.76E-4 3.24E-4 3.7E-4 0.7148 6.3E-3 0.9116 0.0546 5336.9 480.4 

FastPGA  1.052E-3 2.79E-4 2.56E-4 1.8E-5 0.7161 2.1E-3 0.9123 0.0638 19153.98 920.1 
MOCeLL 8.466E-4 3.52E-4 2.43E-4 1.5E-5 0.7181 1.3E-3 0.8824 0.0547 7881.74 414.0 
NSGAII 1.031E-3 2.20E-4 2.65E-4 2E-5 0.7154 1.9E-3 0.9118 0.0610 4720.98 323.9 

Maximum number of evaluations is 50000 
AbYSS  8.476E-4 3E-4 2.46E-4 1.3E-5 0.7188 1.5E-3 0.9291 0.0548 11187.28 691.9 

FastPGA  9.265E-4 2.1E-4 2.46E-4 1.8E-5 0.7177 1.4E-3 0.9089 0.0703 38005.38 2138 
MOCeLL 8.069E-4 1.64E-4 2.39E-4 1.7E-5 0.7194 1.2E-3 0.9045 0.0574 15407.92 682.7 
NSGAII 1.2E-3 3.57E-4 2.64E-4 2.9E-5 0.7163 1.5E-3 0.9201 0.0698 9805.3 556.4 
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Fig. 1. Efficient front of AbYSS. 
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Fig. 2. Efficient front of FastPGA. 
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Fig. 3. Efficient front of MOCeLL 
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Fig. 4. Efficient front of NSGAII 

 
Fig. 5. Efficient front of MOCell. 

VI. CONCLUSIONS 
From the results of three sets of experiments with four 

evolutionary algorithms for two criteria portfolio 
optimization it follows that MOCeLL is the best with respect 
to four of five performance criteria where maximal number 
of function evaluations was set to 15000 and 25000, and is 
the best with respect to three of five performance criteria 
where maximal number of function evaluations was set to 
35000. In all cases AbYSS was the fastest, and in the one 
case it has slightly outperformed MOCeLL with respect to 
the spread criterion.  

The results of two sets of experiments with these 
algorithms for three criteria portfolio optimization reveal that 
MOCeLL provides the best results in convergence to the true 

Pareto fronts, and it also outperforms AbYSS, FastPGA, and 
NSGAII in terms of diversity, although the quality of 
obtained fronts is not very outstanding. In this case the fastest 
algorithm was NSGAII.  
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