
 

 

 

  

Abstract—Conventional neural network training methods 

find a single set of values for network weights by minimizing an 

error function using some gradient descent-based technique. In 

contrast, the Bayesian approach infers the posterior distribution 

of weights, and makes predictions by averaging the predictions 

over a sample of networks, weighted by the posterior probability 

of the network given the data. The integrative nature of the 

Bayesian approach allows it to avoid many of the difficulties 

inherent in conventional approaches. This paper reports on the 

application of Bayesian MLP techniques to the problem of 

predicting the direction in the movement of the daily close value 

of the Australian All Ordinaries financial index. Predictions 

made over a 13 year out-of-sample period were tested against 

the null hypothesis that the mean accuracy of the model is no 

greater than the mean accuracy of a coin-flip procedure biased 

to take into account non-stationarity in the data. Results show 

that the null hypothesis can be rejected at the 0.005 level, and 

that the t-test p-values obtained using the Bayesian approach are 

smaller than those obtained using conventional MLPs methods. 

 
Index Terms—Direction-of-change forecasting, Financial 

time series, Markov Chain Monte Carlo, Neural Networks. 

 

I. INTRODUCTION 

Predicting the future value of a time series based on 

historical values is usually approached as an auto-regression 

problem in which the parameters of the model are first 

optimized using in-sample data; the model is then used to 

make forecasts on a set of out-of-sample data; and the 

accuracy of the forecasts is finally measured by comparing the 

forecast values with the realized (i.e., actual) values. In many 

cases, however, correctly predicting the direction of the 

change (i.e., up or down) is a more important measure of 

success. For example, if a trader is to make buy/sell decisions 

on the basis of forecast values, it is more important to be able 

to correctly predict the direction of change than it is to 

achieve, say, a small mean squared error. We call this 

direction-of-change forecasting, and its importance has been 

acknowledged in several recent papers [1]-[4].  

Clearly, if one has made a prediction for the future value of 

a time-series, then that prediction can trivially be converted 

into a direction-of-change prediction by simply predicting 

up/down if the forecast value is greater/smaller than the 

present value. There may, however, be advantages in 

predicting the direction-of-change directly (i.e., without 

explicitly predicting the future value of the series). For 
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example, traders base their decisions primarily on their 

opinion of whether the price of a commodity will rise or fall, 

and to a lesser extent on their opinion of the degree to which it 

will rise or fall. This may create in financial systems an 

underlying dynamic that allows the direction of change to be 

predicted more reliably than the value of the series. In this 

paper, we perform direction-of-change forecasting using 

Multilayer Perceptrons (MLPs) as binary classifiers.  

Conventional MLP training methods attempt to find a 

single set of values for the network weights by minimizing an 

error function using some gradient descent based technique. 

The error function is usually chosen such that the resulting 

network represents the most probable network given the data, 

and following Bishop (1995), we refer to this as the maximum 

likelihood (ML) approach [5]. In order to prevent overfitting, 

and thus achieve good predictive performance on holdout 

data, the network should have an appropriate number of 

hidden layer units, and the error function should usually 

include a regularization term. Model parameters such the 

number of hidden units and the value of the regularization 

coefficients should be determined before the final network is 

trained, and a validation procedure is usually used to 

determine these values. 

In contrast to the ML approach, Bayesian MLP methods 

[6-8] do not attempt to find a single ‘best’ weight vector; but 

rather, they attempt to infer the posterior distribution of the 

weights, given the data. Samples can then be taken from this 

distribution, each sample representing a distinct MLP. Given 

some novel example, each of the sampled networks can be 

applied to the example, with the resulting prediction being the 

average prediction over the sample of networks weighted by 

the posterior probability of the network given the training 

data. Thus, whereas the conventional approach optimizes over 

parameters, the Bayesian approach integrates over 

parameters, and this allows it to avoid many of the difficulties 

that conventional approaches have in avoiding overfitting. 

This paper reports on the application of Bayesian MLP 

methods to the financial prediction problem, and expands on 

preliminary results that have been presented in [9]. Section 2 

describes the neural network approach to the problem of 

financial prediction, and highlights some of the problems that 

conventional MLP approaches have in this domain. Section 3 

describes the Bayesian MLP approach, and Section 4 presents 

empirical results of applying Bayesian MLP techniques to 

predicting the direction of change in daily close value of the 

Australian All Ordinaries index. The results are discussed in 

Section 5, and Section 6 concludes the paper. 
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II. MLPS FOR FINANCIAL PREDICTION 

A multilayer perceptron (MLP) is a function of the 

following form: 
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where N0  is the number of inputs (i.e., the dimensionality of 

the input feature vector), N1 is the number of units in a hidden 

layer, wji  is a numerical weight connecting input unit i with 

hidden unit j, wkj  is the weight connecting hidden unit j with 

output unit k,         h(u) = σ(u) ≡ (1 + exp(−u))
−1

 (i.e., a sigmoid 

function), and g(u) is either a sigmoid, or some other 

continuous, differentiable, nonlinear function. Thus, an MLP 

with some given architecture, and weight vector w, provides a 

mapping from an input vector x to a predicted output y given 

by y = f (x, w). Given some data, D, consisting of n 

independent items (x
1
, y

1
), …, (x

N
,  y

N
), the objective is to find 

a suitable w.  

In the case of financial prediction, the raw data usually 

consists of a series of values measured at regular time 

intervals; e.g. the daily close value of a financial index such as 

the Australian All Ordinaries. The input vector, x
N
, 

corresponds to the N
th

 value of the series, and usually consists 

of the current value, in addition to time lagged values, or 

quantities which can be derived from the series, such as 

moving averages.  

One approach is to use the MLP to predict the next value of 

the series. This is a regression problem, as the objective is to 

predict a continuous-valued quantity; i.e., the price of a stock, 

or the close value of an index. In this case, the appropriate 

error function to be minimized is the quadratic error between 

target and predicted outputs. This is justified under the 

assumption that the training examples are normally 

distributed around the target function with zero mean and 

constant variance.  

The other approach, and the approach taken in this paper, is 

to predict only the direction of the change. In order to do this, 

one could simply take the regression approach described 

above, and compare the predicted (continuous) value against 

the current value to determine the direction of change. 

However, an alternative approach is to treat the problem as a 

binary classification problem. In this case, the training 

examples are labelled with binary target values representing 

the direction of change from the previous day’s value. In 

order for the MLP to represent the probability of an upwards 

change (target value of 1), the MLP should be trained so as to 

minimize the cross-entropy error, and is described in greater 

detail in the next section.  

The conventional approach to finding the weight vector w 

is to use a gradient-descent method to find a weight vector that 

minimizes the error between the network output value, f (x, 

w), and the target value, y. This approach is generally referred 

to as the maximum likelihood (ML) approach because it 

attempts to find the most probable weight vector, given the 

training data. This weight vector, wML, is then used to predict 

the output value corresponding to some new input vector x
n+1

.   

One of the main difficulties in applying MLPs to the 

financial prediction domain concerns the very high level of 

noise in the data, and thus the danger of overfitting the 

network. The main issue is how to optimize model 

parameters, such as the number of hidden units and 

regularization coefficient, so as to minimize the degree of 

overfitting on the training data. One approach is to use an 

independent validation set to optimize these parameters. The 

main difficulty here is how to select examples for the 

validation set. For example, if these are chosen to be adjacent 

to, but between, the training and test sets, then any patterns 

found in the training data may have dissipated before the 

model is applied to the test data. Moreover, because the 

validation set is itself noisy, there will be considerable 

uncertainty in whether the parameters values chosen are 

indeed optimal. An alternative approach is to omit the 

validation set, and select parameters that provide the best 

results on the test data, but in this case we can never be sure 

that we have not simply optimized these parameters to the test set. 

 

III. BAYESIAN METHODS FOR MLPS 

In contrast to the ML approach, Bayesian methods for 

MLPs do not attempt to find a single ‘best’ weight vector w; 

rather, they infer p(w|D), the posterior distribution of the 

weights given the data. The predicted output corresponding to 

some input vector x
n
 is then obtained by performing a 

weighted sum of the predictions over all possible weight 

vectors, where the weighting coefficient for a particular 

weight vector depends on p(w|D). Thus,   
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where f(x
n
, w) is the MLP output. The fact that p(w|D) is a 

probability density function allows us to express the integral 

in Equation 2 as the expected value of f(x
n
, w) over this 

density: 
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Thus, the integral can be estimated by drawing N samples 

from the density p(w|D), and averaging the predictions due to 

these samples. This process is known as Monte Carlo 

integration.  

The density p(w|D) can be estimated using the fact that 

( ) ( | ) ( )p D p D p∝w | w w , where p(w| D) is the likelihood, 

and p(w) is the prior weight distribution. If the target values 

are binary, then the likelihood can be expressed as  

 

{ }( | ) exp ln ( , ) (1 ) ln(1 ( , ))w x w x wn n n n

n

p D t f t f= + − −∑  
(4) 

 

where, for the financial prediction problem,  t
n
 = 1 if the close 

value for day n+1 is greater than that for day n (i.e., an 

upwards movement) and 0 otherwise (downwards  

movement). 
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The prior weight distribution, p(w), should reflect any prior 

knowledge that we have about the complexity of the MLP. To 

reflect the fact that we want it to be a smooth function, p(w) is 

commonly assumed to be Gaussian with zero mean and 

inverse variance α, giving preference to weights with smaller 

magnitudes; i.e.,  
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where m is the number of weights in the network [12]. 

However, we usually do not know what variance to assume 

for the prior distribution, and for this reason it is common to 

set a distribution of values. As α must be positive, a suitable 

form for its distribution is the gamma distribution [12]. Thus, 
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where the a and µ are respectively the shape and mean of the 

gamma distribution, and are set manually. Note that a single α 

need not be used for all weights and biases. For example, it is 

common to use separate values of α for input-hidden-layer 

weights, input-to-hidden-layer biases, hidden-to-output layer 

weights, and hidden-to-output layer biases, which is the 

approach taken in this paper, and in which we denote the 

respective weight groupings as α1, α2, α3, and α4 respectively. 

Note that each weight grouping will have its own distribution 

parameterised by ai and µi, where ai and µi represent the shape 

and mean for the respective group. We discuss methods for 

selecting appropriate values for a and µ in the next section. 

Because the prior depends on α, Equation 2 should be 

modified such that it includes the posterior distribution over 

the α parameters: 

 

ˆ ( ( , | )n n
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where  
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Monte Carlo integration depends on the ability to obtain 

samples from the posterior distribution. The objective is to 

sample preferentially from the region where p(w,α | D) is large. 

The Metropolis algorithm [10] achieves this by generating a 

sequence of vectors  in such a way that each successive vector 

depends on the previous vector as well as having a random 

component; i.e., wnew = wold + ε, where ε is a small random 

vector. Preferential sampling is then achieved using the criterion: 
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The difficulty in using the Metropolis algorithm to estimate 

the integrals for neural networks stems from the strong 

correlations in the posterior weight distribution; i.e., the great 

majority of the candidate steps generated in the random walk 

will be rejected as they lead to a decrease in p(w|D) [5]. The 

Hybrid Monte Carlo algorithm [11] reduces the random walk 

behaviour by using gradient information, which, in the case of 

MLPs, can be readily calculated. While the Hybrid Monte 

Carlo algorithm allows for the efficient sampling of 

parameters (i.e., weights and biases), the posterior 

distribution for α should also be determined. In this paper we 

use Neal’s (1996) approach, and use Gibbs sampling [12] for 

the α s.  

 

IV. EMPIRICAL RESULTS 

The experimental results reported in this section were 

obtained by applying  the techniques described previously to 

the daily close values of the Australian All Ordinaries Index 

(AORD) for the period from November 1990 to December 

2004. The task is to predict the direction of movement (up or 

down) of the close value on day t+1 from historical close 

values. Specifically, we are interested in the proportion of test 

examples for which the direction in movement is predicted 

correctly, and we refer to this as the sign correctness 

proportion (SCP). The SCP is defined as follows: 
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where N  is the number of test examples in the prediction 

period, tk  and ok are the binary target and network outputs 

respectively, and δij = 1 if i = j, and 0 otherwise. Note that 

because the network output represents the probability of an 

upward movement, the binary output, ok, is obtained by 

thresholding the output at 0.5.  

The time series is shown in Figure 1, in which days 0 and 

above are those for which prediction were made, and days 

prior to day 0 were used for preprocessing. In total, 3600 

predictions were made. Note that the series is clearly 

non-stationary. 

A. Feature Selection and Preprocessing 

Almost invariably, successful financial forecasting requires 

that some preprocessing be performed on the raw data. This 

usually involves some type of transformation of the data into  
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Fig. 1.  Daily close values of Australian All Ordinaries Index (AORD) from 

January1989 to December 2004. Prediction period begins from day 0. 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



 

 

 

new variables more amenable to learning from. Thus, rather 

than using, for example, the past prices of a stock, 

transformed variables might include the absolute change in 

the price, (pt – pt –1), the rate of change of price, (pt – pt –1) / pt 

–1, or the price or change in price relative to some index or 

other baseline such as a moving average [3]. The advantage of 

using variables based on changes in price (either relative or 

absolute) is that they help to remove non-stationarity from the 

time series. 

In this study, the input variables used are the relative 

change in close value from the previous day to the current day 

(r1), and the 5, 10, 30 and 60 day moving averages (ma5, ma10, 

ma30, ma60). The moving averages are calculated by simply 

averaging the x previous closing values, where x is the period 

of the moving average. Thus, the input to the network is the 

vector ( r1(t), ma5(t), ma10(t), ma30(t), ma60(t) ) where  

 

( )( ) /n t t n tr t p p p−= −  (10) 
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Note that there would almost certainly exist some other 

combination of inputs and preprocessing steps that might lead 

to better performance than that which can be achieved using 

this particular combination. However, in this paper we are not 

concerned with optimizing this choice of inputs; rather, we 

are concerned with comparing the performance of the 

Bayesian approach with that of the ML approach. If the 

Bayesian approach is found to give superior performance, this 

is very unlikely to be due to this particular choice of inputs. 

 

B. Training and Prediction Windows 

A prediction window period of 30 days was used in this 

study, with the training set for each 30-day prediction period 

consisting of data for the 200 trading days immediately 

preceding the test period. A total of 120 30-day predictions 

were made (i.e., 3600  days), with the training and test 

windows advanced by 30 days after each 30-day prediction 

period. This is depicted in Figure 2.  

The choice of 200 days for training was based on the 

assumption that patterns that exist in the training may 

dissipate after some time, and hence that data temporally far 

removed from the prediction period may not be useful. In 

principle, the test window could consist of a single prediction, 

but this would increase the computational cost 30-fold. Also, 

the particular hypothesis testing scheme that we use requires 

that the test window consists of multiple predictions (see below). 

 

C. Hypothesis Testing 

Assuming that a return series is stationary, then a coin-flip 

decision procedure for predicting the direction of change 

would be expected to result in 50% of the predictions being 

correct. We would like to know whether our model can 

produce predictions which are statistically better than 50%.  

 

Training set 
(200 days) 

Test set 
(30 days) 

  
Fig. 2. Training and test windows. Windows are advanced by 30 days after 

each 30-day prediction is made 

 

However, a problem is that many financial return series are 

not stationary, as evidenced by the tendency for commodity 

prices to rise over the long term. This is clearly visible in Fig 

1, where there is a clear upward trend over the period shown, 

suggesting that the total number of upwards movements is 

greater than the number of downward movements.Thus it may 

be possible to achieve an accuracy significantly better than 

50% by simply biasing the model to always predict up.  

A better approach is to compensate for this 

non-stationarity, and this can be done as follows. Let xa 

represent the fraction of days in an out-of-sample test period 

for which the actual movement is up, and let xp represent the 

fraction of days in the test period for which the predicted 

movement is up. Therefore under a coin-flip model the 

expected fraction of days corresponding to a correct upward 

prediction is (xa × xp), and the expected fraction of days 

corresponding to a correct downward prediction is (1−xa) × 

(1−xp). Thus the expected fraction of correct predictions is  

 

aexp  = (xa × xp) + ((1−xa) × (1−xp))   (12) 

 

We wish to test whether amod (the accuracy of the predictions 

of our model) is significantly greater than aexp (the 

compensated coin-flip accuracy). Thus, our null hypothesis 

may be expressed as follows: 

Null Hypothesis:  H0 :   amod ≤ aexp    H1 :   amod > aexp 

The null hypothesis can be tested by performing a paired t-test 

of the samples obtained from each of the 120 30-day 

prediction periods, comparing the means of amod and aexp. 

 

D. Setting the Prior Distribution 

The Bayesian approach requires that we specify the prior 

weight distribution, p(w). Recall that p(w) is assumed to be 

Gaussian, with inverse variance α, and that α is assumed to be 

distributed according to a Gamma distribution with shape a 

and mean µ., which remain to be specified. In order to gain 

some insight into the range of values may be suitable for these 

parameters, we conducted a number of trials using the ML 

approach, with weight optimization performed using the 

scaled conjugate gradients algorithm.  

Table I shows the training and test accuracies 

corresponding to various values of α. Accuracies are 

averaged over the 120 30-day prediction windows. The values 

in the fourth column of the table represent the p-values 
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obtained through performing the t-test. Italics show best 

performance. 

Figure 3 plots training and test set accuracies against the α 

value. Low values for α,  such as 0.01, impose a small penalty 

for large weights, and result in overfitting; i.e., high accuracy 

on training data, but low accuracy on test data. In this case, the 

null hypothesis cannot be rejected at the 0.05 level. In 

contrast, when α is very high (e.g., 10.0), large weights will 

penalised more heavily, leading to weights with small 

magnitudes. In this case the MLP will be operating in its 

linear region and the MLP will display a strong bias towards 

predictions that are in the same direction as the direction of 

the majority of changes on the training data. Thus, if the 

number of upward movements on the training data is greater 

than the number of negative movements, the MLP will be 

biased towards making upwards predictions on the test data;  

however, this is not likely to lead to a rejection of the null 

hypothesis because the null hypothesis takes the 

non-stationarity of the data into account. It can be seen from 

Figure 3 that a local maximum for the test set  accuracy occurs  
 

TABLE   I. 

TRAIN ACCURACY, TEST ACCURACY AND P-VALUE FOR VARIOUS α VALUES 

 

α  value Train. Acc. Test. Acc. p-value (Ho) 

0.010 0.725 0.490 0.402 

0.100 0.701 0.501 0.459 

0.500 0.608 0.516 0.169 

0.750 0.593 0.520 0.070 

1.000 0.585 0.524 0.007 

1.500 0.570 0.521 0.038 

2.000 0.562 0.518 0.587 

5.000 0.549 0.526 0.528 

10.00 0.542 0.525 0.479 
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Fig. 3.  Training and test set accuracy averaged over 120 training/test set 

pairs. A local maximum test accuracy corresponds to an α  value of 

approximately 1.0 
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Fig. 4.  Gamma distribution with mean 1.0 and shape parameter value 10 

for an α value of 1.0, and in this case the null hypothesis can 

clearly be rejected at the 0.01 level.  

The range of α values for which the null hypothesis can be 

rejected is very narrow, and ranges from a lower α value in the 

vicinity of 0.5 to 0.75, to a an upper α value in the vicinity of 

1.5 to 2.0. After visualizing the pdf for Gamma distributions 

with mean 1.0 and various values for the shape parameter, a 

shape parameter of 10 was chosen. The pdf is shown in Figure 

4. Note that the pdf conforms roughly to the α value identified 

in the Table I as leading to a rejection of the null hypothesis. 

 

E. MCMC sampling 

We now describe the application of the Bayesian approach, 

which relies on MCMC sampling to draw weight vectors from 

the posterior weight distribution.  

Monte Carlo sampling must be allowed to proceed for 

some time before the sampling converges to the posterior 

distribution. This is called the burn-in period. In the results 

presented below, we allowed a burn-in period of 1000 

samples, following which we then saved every tenth sample 

until a set of 100 samples was obtained. Each of the 100 

samples was then applied to predicting the probability of an 

upwards change in the value of the index on the test examples, 

and the probabilities were then averaged over the 100 

samples. The resulting p-values are shown in Table II, 

together with the results from Table I corresponding to an α 

value of 1.0; i.e., the performance of the best network trained 

using the conventional approach. Note that the p-values are 

now much smaller, indicating increased confidence in the 

rejection of the null hypotheses, and that the average test 

accuracy has increased from 52.4% to 52.8%. Also note that 

the average training accuracy for the Bayesian approach is 

less than that for the ML approach, thereby supporting the 

claim that the Bayesian approach is better at avoiding 

overfitting. 

 

V. DISCUSSION 

The superior performance of the Bayesian approach can be 

attributed to its integrative nature: each individual weight 

vector has its own bias, and by integrating over many weight 

vectors, this bias is decreased, thus reducing the likelihood of 

inferior generalization performance resulting from overfitting 

on the training data. 

The Bayesian technique assumes that the MCMC sampling 

has proceeded for a sufficient time such that the convergence 

to the true posterior distribution has been achieved; however, 

there are currently no adequate techniques available for 

testing convergence. We experimented with starting the 

MCMC sampling from various starting weight vectors. 

Specifically, we compared the results of starting the sampling  

 
TABLE   II 

TRAIN ACCURACY, TEST ACCURACY AND P-VALUE FOR CONVENTIONALLY 

TRAINED (SCG) AND BAYESIAN-TRAINED (MCMC) MLPS 

 

Method Train. Acc. Test. Acc. p-value (Ho) 

SCG 0.585 0.524 0.0068 

MCMC 0.571 0.528 0.0011 
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from a random point, with results of sampling from a minima 

found by applying the ML approach, and found that after the 

1000 sample burn-in period there was no significant 

difference in results. While this is not conclusive evidence 

that the sampling has converged, it does indicate that the 1000 

sample burn-in period is sufficient to bring the sampling into 

the region of weight space corresponding to a local minimum, 

and probably close to the global minimum. 

The most important decision to be made in using the 

Bayesian approach is the choice of prior. In this study, we 

used a relatively narrow distribution for α, the parameter 

controlling the degree of regularization present in the error 

function. This choice was made based on experimenting with 

different α values within the ML approach. The criticism 

could be made that this prior distribution was selected based 

on the same data that we had used for testing, and hence that 

the significance of our results may be overstated; however, 

this is unlikely to be the case, as the prior depends on factors 

such as the degree of noise in the data, and this is relatively 

constant over different periods of the same index. 

Consequently, it is very unlikely that using a different set of 

data would have resulted in a significantly prior. Moreover, 

the fact that we need only select parameters describing the 

distribution of α, rather than specific value for α, further 

diminishes the possibility that our prior is biased towards the 

particular dataset that we have used. 

One of the advantages of the Bayesian approach is its 

inherent ability to avoid overfitting, even when using very 

complex models. Thus, although the results presented in this 

paper were based on MLPs with six hidden units, the same 

performance could, in principle, have been achieved using a 

more complex network. It is not clear, however,  whether we 

should expect any coupling between the number of hidden 

layer units and the prior distribution. For this reason, we 

would recommend preliminary analysis using the ML 

approach to ascertain the appropriate range for α and 

selection of priors based on values which lead to significant 

predictive ability. 

 

VI. CONCLUSION 

Bayesian Learning for MLPs has been applied to predicting 

the next day’s close value of the Australian All Ordinaries 

index over a period of approximately 13 years. Predictions 

were tested against the null hypothesis that the mean accuracy 

of the model is no greater than the mean accuracy of a 

coin-flip procedure biased to take into account 

non-stationarity in the data. Results show that the null 

hypothesis can be rejected at the 0.005 level, and that the t-test 

p-values obtained using the Bayesian approach are 

approximately one fifth the value of those obtained using 

MLPs trained using the conventional ML approach. The 

superior performance of the Bayesian approach is due to its 

integrative nature, and its inherent ability to avoid overfitting. 
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