
 
 

 

  
Abstract— Dimensional and form deviations that arise in 

CNC turned components due to cutting forces and thermal 
effects have been traditionally compensated by on-line 
corrections even when they were not strictly necessary. 
Machine-tools equipped with multiple sensors must be utilized 
in order to carry out these compensations what in turn leads to 
an increment in production costs, the occurrence of undesirable 
effects such as chatter as well as moving away from optimal 
conditions. A new approach is proposed in this work for 
prediction and compensation of deviations in turning by taking 
them into account at the planning stages prior to machining 
operations. The proposed model determines the admissible 
value of deviations in accordance to tolerance limits within the 
workpiece and utilizes them for setting up the appropriate 
operation conditions. Initial experimental steps for validating 
these deviation models are also described. 
 

Index Terms— CAPP, Machining error, Tolerance, 
Turning. 
 

I. INTRODUCTION 
The action of cutting forces in turning results in a 

deflection of the machine-workpiece-tool system and, in 
turn, in a difference between the real and the theoretical 
workpiece diameters. 

Most of researchers focused on the prediction and 
compensation of workpiece dimensional deviations by means 
of different techniques. In this way, some of them [1] 
implemented functions to modify the programmed depth of 
cut in the machine-tool numerical control. Others [2], [3] 
made predictions of part deflection based on FEM analysis. 
Only in a few cases the stiffness influence of the whole 
machine-part-tool system was considered [4]–[7]. Ignoring 
the effect of cutting forces, some authors [8]–[10] proposed 
models for compensation of deviations due to the 
machine-tool thermal drift. 

Although numerous contributions have been made for 
error prediction and compensation, none of them analyzes 
whether error compensation enables to meet workpiece 
tolerances or even if it results really necessary to do any 
compensation when tolerances are not specified.  
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Fig. 1. Form errors in turning and facing due to deflections. 
 
A new approach is proposed in this work for prediction of 

deviations in turning and their compensation at the planning 
stages only when really necessary, according to tolerances. 
Quantitative relationships between the different types of 
machining errors and the different types of tolerances are 
determined and proposed as constraints for setting up the 
optimal cutting conditions prior to machining. The models 
were developed for workpieces with both external and 
internal features and variable section along its axis of 
rotation. Main clamping methods in turning (on a chuck, 
between-centre and chuck-tailstock) were also considered. 

 

II.  RADIAL DEVIATIONS IN TURNED PARTS 

A. Characterization of form errors in turning 
Once finished machining operations, the deflection due to 

cutting forces disappears and the elastic recovery of material 
causes the workpiece axis to return to its original position, 
but this entails a defect of form in the workpiece surfaces 
equivalent to the deflection that the axis had undergone. In 
this sense,  turning of cylindrical or conical surfaces leads, in 
fact, to surfaces with a third-order polynomial profile [4] 
(Fig. 1a). Similarly, facing of front surfaces leads to conical 
surfaces with a lack of perpendicularity with regard to the 
symmetry axis (Fig. 1b). The conicity of real front faces is 
directly related to the turn θ (z) of the section and to the total 
elastic deflection δT (z). For the section in which the cutting 
tool is applied (z = a) this relation will be: 
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B. Characterization of radial deviations 
The total deviation in the radial direction δT (z) of a turned 
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Fig. 2. Cutting force and deflection components. 

 
component at a distance z from the chuck is composed by 
simultaneous factors related to deformations caused by 
cutting forces, such as the spindle-chuck system δsc (z), the 
toolpost δtp (z), the workpiece deflection δp (z) and the 
thermal effects δth (z) [5], [11]. This can be expressed as: 

 
( ) ( ) ( ) ( ) ( )T sc tp p thz z z z zδ δ δ δ δ= + + +  (2) 
 
Deviations can be obtained for the tangencial (Z) and 

radial (X) directions (Fig. 2). 
The contribution of the spindle-chuck system can be 

expressed for these directions [5] as: 
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In these expressions, sub-indices r and t refer to radial and 

tangential directions respectively; Fr, Ft and Fa are the cutting 
force components in the radial, tangential and feed directions 
(Fig. 2); D is the machining diameter; k1, k2 and k3 are the 
stiffness constants for the spring-model of the system [5], [6]. 

The contribution of the toolpost is mainly due to a 
shortening of the tool and the tool-holder in the radial 
direction. Therefore, it can be expressed as:   
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where Fr is the radial component of the cutting force, lt, At  
and Et  the cantilever length, cross section and elastic 
modulus for the tool respectively, and lh, Ah and Eh the length, 
cross section and elastic modulus for the tool-holder (Fig. 2). 

Based on strain-energy, the contribution of the workpiece 
deflection for the chuck clamping method when a cutting 
force is at z = a (distance between force and chuck) will be: 
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where i represents each zone with constant cross section, E is 
the elastic modulus, G the shear modulus, I the moment of 
inertia and χ is the shear factor. 

For the between-centre clamping method, the expression 
is:  
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And in the case of the chuck-tailstock clamping method, 

the expression becomes: 
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Finally, the contribution of the thermal drift takes place 
mainly in the radial direction and depends on factors such as 
spindle speed, feed rate, machine-tool operation time and 
ambient temperature. Some authors use these parameters as 
input data to a neural network, which output is the radial 
thermal drift [10], [11]. 

 

III. EXPERIMENTAL STIFFNESS CHARACTERIZATION OF THE 
SPINDLE-CHUCK SYSTEM 

The stiffness characterization of the spindle-chuck system 
is based on determining the stiffness constants k1, k2 and k3 
for the spring-model of the system along tjhe tangential and 
radial directions [5]. Since the stiffness of the spindle-chuck 
system is independent of both the part geometry and the 
thermal variations, the value of these constants will be the 
same while the system remains invariable. 

Deviations of the spindle-chuck system must be isolated 
from the rest of deviations for the experimental determination 
of the stiffness constants. For this, a cylindrical part with 
superior order stiffness is machined, so that the influence of 
the other components can be neglected. 

With this purpose, turning tests were performed using a 
low-carbon-steel cylindrical workpiece, with a stiffness of a 
higher order than the rest of the system (∅100x150 mm). A 
Sandvik SCLCR 2020 K09 toolholder with a CCMT 09T308 
MM insert of quality GC2025 was used. Depth of cut was 
d = 0.8 mm, feedrate was f = 0.2 mm/rev, cutting speed 
v = 215 m/min and room temperature T = 18º C. In addition, 
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coolant was used to avoid the effect of temperature in the 
cutting zone. After measuring the workpiece in a CMM, 
radial deviations were obtained at different positions along its 
length and were fitted by means of a third-order polynomial 
(fitting coefficient R2 = 0.99) according to expressions 
(2)–(6) for the total deviation δT (z). The contribution of the 
toolpost shortening and the workpiece deflection was also 
analyzed and it was concluded that any of them were 
significant with respect to the total deviation and, 
consequently, most part of error was due to the lack of 
stiffness of the spindle-chuck system, whose expressions (3) 
and (4) are second-order polynomials of type 
P(z) = A·z2 + B·z + C: 

Therefore, the total deviations previously obtained in the 
CMM can be now fitted by a second-order polynomial and its 
coefficients determined from that experimental results. After 
decomposition of this new polynomial along the radial (X) 
and tangential (Z) directions, the stiffness constants are 
determined by equalizing the experimental coefficients with 
those in (3) and (4). 

As results of the test, the coefficients of the fitted 
polynomial were: A = 5.733 × 10-7, B = 1.226 × 10-4 and 
C = 92.834. And the value of the stiffness constants: 
k1r = -1.6 × 105, k2r = 1.28 × 109, k3r = -1.52 × 1010 and 
k1t = -1.026 × 105, k2t = 1.564 × 109, k3t = 1.317 × 1010. 

 

IV. TESTS FOR THE WORKPIECE DEFORMATION MODEL 
Machining tests were carried out to check the validity of 

the predictive deviations model. Several workpieces of 
varied geometry (Fig. 3) were machined following a 
profiling strategy on different zones (a, b, c and d). Deviation 
graphs represented after measuring the workpieces within a 
CMM show discontinuities between 10 and 20 μm located in 
certain zones where the cross section changes. On the other 
hand, dimensional deviation increases as the distance to the 
chuck does. Moreover, this tendency is greater as external 
zones have smaller diameter and lower stiffness. 

The analysis of these results led to guess that 
discontinuities had no relation with the workpiece geometry 
but with a positioning error of the tool-carriage. A 
verification of the lathe confirmed that hypothesis. This is a 

type of systematic error which can be precisely measured in 
the graphs for a uniform and increasing function. After 
applying these corrections for the testing workpieces, the 
deviation graphs could be fitted by a third-order polynomial 
with an adequate precision of R2 = 0.995. Nevertheless, some 
inconveniences appeared in the experimentation mainly due 
to a lack of precision in calibration of tools and in workpiece 
measurement at the lathe. The only reliable measurements 
were obtained within a CMM but they were absolute 
measurements that did not allow for determining the 
contribution of each individual component, especially the 
thermal drift.  

 

V. RELATIONSHIP BETWEEN DEVIATIONS AND TOLERANCES 
Although dimensional and geometrical specifications of a 

part are expressed on drawings by means of dimensional and 
geometrical tolerances, no relationships were found in 
literature between form deviations derived from machining 
process and value of tolerances. Nevertheless, it is essential 
to know these relationships for setting up the appropriate 
machining conditions. Therefore, in the next sections each 
type of tolerance will be analyzed according to ISO standard 
and geometrically related to the feasible deviation types in 
turned parts. 

A. Length tolerance 
Due to the form error, the real distance between two front 
faces depends on the zone in which the measurement is taken. 
Actual measurements will be between the values '

minL and 
'
maxL  (Fig. 4a) and they will be admissible when the 

following expression is satisfied: 
 

'
max n uL L dL≤ +   and  '

min n lL L dL≥ +  (9) 
 
where Ln is the nominal distance and dLu and dLl are the 
upper and lower limits of longitudinal tolerance, 
respectively. Considering distances ei and ej in Fig. 4a, the 
following relation can be established: 
 

' '
max min- i jL L e e= +  (10) 
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Fig. 3. Testing workpieces, conditions and radial deviations 
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Taking into account (9) and (10) and that the tolerance 
zone t is the difference between the upper and lower limits, 
the following is the condition for the measurement to meet 
the tolerance: 

 
-i j u le e dL dL t+ ≤ =  (11) 

 
where distances ei and ej can be expressed in terms of the turn 
of sections θ i and θ j: 

 
-

tan
2

M i mi
i i

D D
e θ= ⋅  and 

-
tan

2
Mj m j

j j

D D
e θ= ⋅  (12) 

B. Diametrical tolerance 
Due to the form error of the cylindrical surfaces, the diameter 
of the workpiece depends on the location of the measurement 

point, varying between a maximum and a minimum value 
( '

MdD  and '
mdD ) (Fig. 4b). The measurement is admissible 

when the following expression is satisfied: 
 
'
Md n uD D dD≤ +   and  '

md n lD D dD≥ +  (13) 
 

where Dn is the nominal diameter and dDu and dDl are the 
upper and lower limits of the diametrical tolerance, 
respectively. 

Once the machining of the cylindrical surface is finished, 
the maximum error is given by the difference between the 
maximum δ T Md and the minimum δ T md deflections. The 
following relation can be deduced from geometry (Fig. 4b): 

 
' '- 2 -Md md T Md T mdD D δ δ=  (14) 
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Fig. 4. Accepting conditions for deflections according to tolerance values 
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By considering (13) and (14) and that the tolerance zone t is 
the difference between the upper and lower deviations, the 
following is the condition to meet the tolerance: 

 
2 - -T Md T md u ldD dD tδ δ ≤ =  (15) 

 

C. Geometrical tolerance of flatness 
Definition of each type of geometrical tolerance has been 

considered based on ISO standard (ISO 1101:1983). 
According to that, the flatness tolerance establishes a zone of 
acceptance t with respect to the nominal orientation of the 
controlled face, within which the real machined surface must 
stand. In order to satisfy this condition, the form error must 
be lower than the width of the tolerance zone (Fig. 4c). 
Considering this and being distance ei calculated as in (12), 
the condition will be: 

 
ie t≤  (16) 

 

D. Geometrical tolerance of cylindricity 
The cylindricity tolerance establishes a volume between 

two coaxial cylinders whose difference of radii is the value of 
the tolerance zone t. The machined surface must lie between 
these two cylinders.  

The maximum error obtained when machining the 
cylindrical surface is given by the difference between the 
maximum δT Md and minimum δT md deviations. Being '

MdD  

and '
mdD  the maximum and minimum surface diameters, the 

following relations can be deduced from geometry (Fig. 4d): 
 
' ' 2Md mdD D t− ≤ ⋅  (17) 

 
' ' 2Md md T Md T mdD D δ δ− = ⋅ −  (18) 

 
And, considering (17) and (18), it is obtained: 
 

T Md T md tδ δ− ≤  (19) 

 

E. Geometrical tolerance of profile of a surface 
This tolerance specifies a zone between two surrounding 

spherical surfaces whose diameter difference is the value of 
the tolerance zone t and whose centres are located onto the 
theoretical surface. According to norm ISO 3040:1990, for 
the case of a conical surface, the tolerance zone becomes the 
space between two cones of the same angle than the datum 
and equidistant to that cone the half of the tolerance value.  

All diameters of the real machined surface must lie within 
the tolerance zone, including the diameters in which 
deviation is maximum '

MdD and minimum '
mdD , which will 

satisfy: 
 
'

2 2 cos
Md n MdD D t

α

−
≤

⋅
  and 

'

2 2 cos
md n mdD D t

α

−
≤

⋅
 (20) 

 

where Dn Md and Dn md are respectively the nominal diameters 
of the cone measured in the positions of maximum and 
minimum diametrical deviation (Fig. 4e). 

On the other hand, workpiece deflections in the zones of 
maximum and minimum deviations are denoted as δ T Md and 
δ T md, respectively. Their values can be expressed as: 

 
'

2
Md n Md

T Md

D D
δ

−
=    and   

'

2
md n md

T md

D D
δ

−
=  (21) 

 
The final condition is derived from (20) and (21): 
 

cosT Md T md
tδ δ

α
+ ≤  (22) 

 

F. Geometrical tolerance of parallelism 
Parallelism is applied between front faces in turned parts. 

Let be i the datum and j the related face. According to 
tolerance definition, the related surface must lie within an 
space defined between two planes parallel to the datum and 
distanced one another the value of the tolerance t (Fig. 4f). 
Although even the datum has a form error, according to norm 
ISO 5459:1981, this surface will be considered perpendicular 
to the part axis and, consequently, also the planes which 
define the tolerance zone. Considering this, and calculating ej 
as in (12), the geometrical condition to meet the tolerance 
will be: 

 
je t≤  (23) 

 

G. Geometrical tolerance of perpendicularity 
Perpendicularity is applied between a front face and a 

feature axis in turned parts. Two different situations must be 
considered depending on which of both elements is the datum 
and which the controlled one. 
1) Axis as datum, a face is controlled: 

The tolerance zone is the space between two planes 
perpendicular to the datum axis and distanced one another the 
value of the tolerance t (Fig. 4g). Considering this, and 
calculating ej as in (12), the geometrical condition will be: 

 
je t≤  (24) 

 
2) Face as datum, an axis is controlled: 

The tolerance zone is the space within a cylinder of 
diameter t, and axis perpendicular to the datum face. The 
elastic recovery of the part axis after machining leads to 
affirm that any deviation of this element does not depend 
directly on the cutting action but on other technological 
aspects such as a bad alignment of the workpiece in the lathe. 
For this reason, no relation can be properly established 
between this error and the deviation caused by cutting forces. 

H. Geometrical tolerance of coaxiality 
This tolerance limits the relative deviation between two 

zones of the part axis. As in the previous case, the elastic 
recovery of the workpiece axis after machining implies that 
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the possible error is not due to deviations caused by cutting 
forces but to other causes.  

I. Geometrical tolerance of circular runout 
For circular-radial runout, the tolerance zone is the area 

between two concentric circles located into a plane 
perpendicular to the axis, whose radii difference is the 
tolerance t and whose centre is located at datum axis. Since 
form errors derived from cutting forces are completely 
symmetrical with respect to the workpiece rotation axis, the 
error evaluated throughout this tolerance does not depend on 
these forces, but on the workpiece deflection caused by the 
clamping force or by a lack of workpiece alignment. 

A similar situation takes place regarding circular-axial 
runout. 

J. Geometrical tolerance of total runout 
The total-radial runout is used to control cumulative 

variations of circularity and cylindricity of surfaces 
constructed around a datum axis. As in the case of circular- 
radial runout, circularity does not depend on deviations from 
cutting forces but cylindricity does. Therefore, the condition 
to be satisfied in this case is the same than in (19) (Fig. 4h). 

The total-axial runout controls cumulative variations of 
perpendicularity and flatness of front faces at a right angle to 
the datum axis. Therefore, the relation of this error with 
deviations coincides with expressions obtained for flatness 
and perpendicularity in (16) and (24) respectively (Fig. 4i). 

 

VI. MAXIMUM DEVIATION AS OPTIMIZATION CONSTRAINT 
The optimization of cutting conditions in turning is the 

final stage of process planning in which not only 
mathematical considerations about the objective function 
have to be done (e.g., time, cost or benefit) but also there are 
several constraints that restrict the best solution.  

Common constraints are related to ranges of cutting 
parameters (cutting speed, feed-rate and depth of cut), ranges 
of tool-life and other operating limits such as surface finish, 
maximum power consumption and maximum force allowed. 
The cutting force constraint is imposed to limit the deflection 
of the workpiece or cutting tool, which result in dimensional 
error, and to prevent chatter [12]. Traditionally, the value of 
this constraint has not been clearly determined. Nevertheless, 
the relationships between workpiece deviations and 
tolerances described in the previous sections can also be 
considered as relationships between cutting forces and 
maximum deviations allowed and, therefore, all together can 
be used as optimization constraints. 

 

VII. CONCLUSION 
This work provides a mathematical model based on strain 

energies for prediction of deviations in the turning process of 
workpieces with complex external and/or internal geometry 
and which takes into account the main clamping procedures 
in turning. The experimental tests carried out for validating 
these models were successful for stiffness characterization of 
the spindle-chuck system. On the other hand, the tests for 
analysing the workpiece deviation under the cutting forces 

led to qualitative results near the model predictions, although 
it was not possible to confirm the quantitative results yet, due 
to a lack of precision in calibration of tools and in workpiece 
measurement in the lathe.  

Likewise, an analysis of maximum deviations is developed 
according to each tolerance specification and an accepting 
criterion is proposed in each case so that compensation of the 
calculated errors must be carried out only when tolerances 
are not met. This becomes a different approach with regard to 
other works developed up to date which propose to make 
error compensations in all cases, even when they are not 
necessary according to tolerances. Moreover, the results of 
this analysis are utilized by a turning CAPP system as 
constraints for the optimization of cutting conditions and it 
also can be useful for deciding the most suitable clamping 
method for setting up the workpiece on the lathe. 
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