
 
 

 

  
Abstract — Although genetic algorithm (GA) has been widely 
used to address assembly line balancing problems (ALBP), not 
much attention has been given to the population initialization 
procedure.  In this paper, a comparison is made between a 
randomly generated initial population and a heuristics-treated 
initial population.  A heuristics-treated population is a mix of 
randomly and heuristics generated individuals in the initial 
population.  Both populations are tested with a proposed GA 
using established test problems from literature. The GA, using 
a fitness function based on realized cycle time is capable of 
generating good solutions.  
 
 Index Terms — assembly line balancing, genetic algorithms, 
manufacturing optimization, realized cycle time. 
 
 

I. INTRODUCTION 
Installing an assembly line is a long-term and a costly 

decision. It is therefore imperative that the assembly line 
must be well designed and properly balanced to ensure 
maximum efficiency.  

The classical decision problem of optimally balancing the 
assembly line is known as simple assembly line balancing 
problem (SALBP).  SALBP can be classified by its 
objective function where the problem versions include the 
SALBP -1, SALBP-2, SALBP-F and SALBP-E [1], [2]. The 
objective of the SALBP-1 problem is to minimize the 
number of workstations for a given cycle time, whereas 
SALBP-2 problem minimizes the cycle time given a 
predetermined number of workstations. Unlike the previous 
two versions, SALBP-F determines whether or not a feasible 
assembly configuration exists for a given combination of 
cycle time and number of workstations.   Lastly, the SALBP 
-E attempts to maximize the line efficiency by minimizing 
the number of workstations and cycle time simultaneously.  

The SALBP is a combinatorial optimization problem and 
extensive research has been conducted to solve this problem  
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and its variants. Exact methods proposed are able to 
generate optimum solution(s). Some exact procedures found 
in literature include the application of dynamic and integer 
programming formulations and branch and bound 
procedures [1].  Since SALBP is classified as NP-hard, 
solving it optimally by total enumeration is not practical 
with real-world or large-sized problems. Researchers shift 
their focus towards heuristics approaches as a popular way 
to address hard problems. Heuristics are efficient as they are 
fast and simple to implement. Heuristics cannot guarantee 
optimality, but are able to seek good solutions at a 
reasonable computational cost [3].  Maximum numbers of 
immediate followers, [4], largest candidate rule [5], 
COMSOAL, [6] Hoffman's enumeration method, [7], 
MALB [8], are some of the many examples of heuristics 
reported in literature. Please refer to [9]-[12] for a more 
comprehensive reviews and comparative evaluations on 
heuristic solutions for SALBP.  
 As most heuristics are generally problem specific, their 
applications are limited. The focus of research thus shifts 
towards the development of powerful metaheuristic 
algorithms. A metaheuristic provides a general algorithmic 
framework which can be applied to various optimization 
problems. Classification of metaheuristics includes 
simulated annealing, tabu search, iterated local search and 
evolutionary computing. Evolutionary computing in general 
refers to several heuristic techniques based on the principles 
of natural evolution. One of these heuristics is genetic 
algorithms.  
 
 

II. GENETIC ALGORITHMS 
Genetic algorithms are stochastic search techniques that 

mimic the natural process of evolution. Since its 
introduction in the 1970’s [13], GA has gained wide 
acceptance in many different fields of research. GA has 
been proven to be a powerful tool to find approximate 
solutions to large combinatorial optimization problems.  In 
recent years the use of GA to solve assembly line balancing 
problems has also been increasing in numbers. For more 
detailed review on the application of GA in assembly line 
balancing, please refer to [14]. 

The main sequence of the GA procedure is as simplified 
below: 
Step 1: Generate initial population 
Step 2: Evaluate fitness of each individual in the population 
Step 3: Select individuals for reproduction 
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Step 4: Apply genetic operators to create the next generation 
Step 5: If terminate criteria are met, end GA. If the criteria 

are not met, go to Step 3 
In this paper, a GA procedure is proposed to solve 

SALBP-1. The following section describes the features and 
parameters of the proposed GA. 
  

A. Chromosome Representation and Initial Population 
The proposed GA adopts the task-based encoding scheme 

where a chromosome is represented by a feasible sequence 
of tasks. The length of the chromosome is determined by the 
number of tasks in the precedence diagram. A typical 
population size of 100 chromosomes or individuals makes 
up the initial population [14]. A procedure similar to 
COMSOAL [6] is employed to generate random individuals 
in the initial population. Each individual consist of a feasible 
sequence of tasks. A greedy heuristic using the station 
oriented approach is then applied to assign these tasks to 
workstations. Task assignment by station oriented approach 
is reported to perform better than task oriented approach 
[15], [16]. Tasks are loaded into a workstation as long as the 
total workstation load does not exceed the prescribed cycle 
time. If cycle time is exceeded a new workstation will be 
opened and the assignment process continues as before. The 
above procedure is used to generate the random initial 
population. 

A heuristics-treated initial population is next generated. A 
heuristics-treated population is a mix of randomly and 
heuristic generated individuals in the initial population.  
Two new individuals are generated by two different 
heuristics and introduced into the initial population. The 
heuristics employed are the ranked positional weight (RPW) 
technique and the largest candidate rule.  The RPW 
technique was introduced by Helgeson and Bernie [17], 
where work elements are ranked according to their 
respective positional weight. The largest candidate rule [5] 
assigns tasks to workstations in the similar manner as the 
RPW approach but tasks are instead ranked based on the 
task durations.  

The randomly generated initial population and the 
heuristics-treated initial populations are then tested with 
various test problems (see section IV) and their results are 
discussed in section V. 
 

B. Fitness Function 
Most of the literature on GA applications in solving 

assembly line balancing problems focused on SALBP-1, 
[14]. These GA procedures prefer to use the balance delay 
and its variants as fitness functions. Balance delay is defined 
as: 
 

 
where 

m is the total number of workstations 
c is the predetermined cycle time 
Sj is the time of workstation j, j=1…m 
  

Driscoll and Thilakawardana [18] introduced a new 
performance measure, the line efficiency, which has several 
benefits over the balance delay. The line efficiency is 
dimensionless and scaled in percentage form, making results 
more meaningful and easily interpreted. The new measure is 
hence representative of line utilization [18].  

We modified this performance measure by using realized 
cycle time instead of the predetermined cycle time and 
incorporate this as our fitness function.  The objective is to 
maximize the line efficiency. The fitness function is shown 
below: 
 

 
  
where  
 n is total number of tasks 
 ti is duration of task i, i=1,…n   
 m is total number of workstations 
 cr is the realized cycle time 
 

Realized cycle time is defined as the maximal station time 
after the tasks assignment process [2]. Realized cycle time 
can be equal to or smaller than the prescribed cycle time.  
Although the primary objective of SALBP-1 is the 
minimization of workstations, the use of realized cycle time 
is more accurate fitness indicator for solutions with the same 
number of workstation(s).  Fig. 1 below illustrates a 
precedence diagram with 6 tasks. Processing time is given 
next to each task. To solve SALBP-1 for cycle time of 10 
time units, the solution at the top  yields 3 workstations and 
realized cycle time of 10 time units (from workstation 3) 
with line efficiency of 86.67% . The solution at bottom also 
yields 3 workstations but with realized cycle time of 9 time 
units (from workstations 1 & 2) and 96.3% line efficiency. 
Both solutions are feasible but the second configuration is 
more superior in terms of better line efficiency. 
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Fig. 1. Solutions for SALBP-1 with cycle time=10 time units 
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C. Selection and Reproduction 
The selection of individuals for reproduction is performed 

by the roulette wheel method. This popular approach allows 
individuals with greater fitness, a better chance of being 
selected for reproducing the next generation [19], [20]. 
The proposed GA also uses the “elitism” strategy to improve 
the GA performance by retaining the best individual in each 
generation. This is to ensure that good individuals are not 
lost or destroyed by the crossover and mutation operators 
[21], [22].   

Standard crossover and mutation operators will generate 
infeasible individuals in assembly line balancing problems 
because of the precedence constraints. Researches have 
developed specialized crossover and mutation operators for 
ALBP which ensure chromosome feasibility. Our GA uses a 
modified version of the 2-point order crossover operation 
and the scrambled mutation operation proposed by Leu, 
Matheson and Rees [23]  
 

D. Stopping Criteria 
The GA will terminate when either one of the two 

following stopping criteria is met: maximum generations or 
stalled generations.  Maximum generations is maximum 
number of iterations the GA will perform (set to 500). Stall 
generations is the number of iterations with no improvement 
in the best fitness value (set to 300). 
 
 

III. PROBLEM STATEMENT 
 Solving actual industry assembly line balancing problems 

is difficult with the many real world constraints. To tackle 
more complex problems, GA must be able to produce good 
solutions at the shortest possible time. There are many 
parameters that can influence the performance of a GA.  
Tasan and Tunali [14] in their review on GA applications in 
assembly line balancing problems noted that many 
researches focused on efficient encoding schemes to handle 
difficult constraints and infeasibility. However, there is little 
attention given to the influence of population initialization 
process in solving SALBP. So far, Leu, Matheson and Rees 
[23], suggest that heuristic generated solution should be 
included in the initial population to produce better solutions.  

The paper hopes to address this issue by comparing the 
performance of the proposed GA with randomly generated 
initial population and heuristics-treated initial population.   
 
 

IV. SOLUTION METHODOLOGY AND COMPUTATIONAL 
EXPERIENCE 

The proposed GA is coded in Matlab 7.0 and executed on 
a Windows-based, Intel Pentium M, 1.50GHz computer.  
Matlab is chosen as the development platform because the 
availability of the Genetic Algorithm toolbox and useful 
built-in functions. However, several of the standard genetic 
operators and procedures available in the toolbox need to be 
modified to meet our problem specifications.  

 The proposed GA is tested with established SALBP-1 
test problems from literature so that we can make a 

comparative evaluation between published results and the 
proposed GA’s results.  We use the Hoffman’s dataset [24] 
as it is provides a wide range of established problems. From 
this dataset, seven test problems were selected, based on 
task sizes and complexity. The smallest test problem is the 
Bowman problem with 8 tasks and the largest is the Arcus 
problem with 111 tasks.  Each test problem is constructed 
using data from [25] and solved for different cycle times, 
identical to those cycle times in the Hoffman’s dataset. 

The performances of both initial populations are assessed 
by 2 criteria: (i) the number of workstations and (ii) realized 
cycle time. For each cycle time, the GA is first tested with 
the randomly generated initial population and the number of 
workstations generated and realized cycle times are 
recorded. The same process is repeated for heuristics-treated 
initial population.   

 
 

V. RESULTS AND DISCUSSIONS 
Table I shows the results produced by the proposed GA 

for the two initial populations. The selected test problems 
and their size (number of tasks) are shown in the first and 
second columns respectively. This is followed by the cycle 
times for each problem in the third column. The next two 
columns display the number of workstations and realized 
cycle time of the solutions of GA using randomly generated 
initial population. The last two columns are the results from 
GA with heuristic-treated initial population.  

An initial population is considered to perform better if the 
GA produces solutions with lesser number of workstations. 
If both solutions produce the same number of workstations, 
the performance is determined by the realized cycle time. 

The results show that for smaller sized problems 
(Bowman, Jackson, Mitchell and Sawyer test problems), 
there is not much difference in performance for both 
populations. The reason is, possibly, for problems with a 
few tasks, the search space is small and the GA is able to 
quickly locate the best solution, without or without the 
heuristics solutions. 

The benefit of using heuristics-treated initial population is 
only apparent in large-sized test problems (Killbridge, 
Tonge, and both Arcus problems) where the search space is 
much larger. Heuristics-treated population performed better 
by either producing configurations with lower numbers of 
workstations or better realized cycle time. For example, the 
Tonge test problem with cycle time of  176 time units, the 
GA with heuristics-treated population produces  lower  
number of workstations (21 workstations) compared to the 
GA with random population (22 workstations). From the 
same test problem but with cycle time of 410 time units, GA 
with both initial populations generates the same number of 
workstations (9 workstations) but the heuristics-treated 
population yields better realized cycle time of 397 time units 
compared with 398 time units for the randomly generated 
initial population. 

From a total of 44 tests, the heuristics-treated initial 
population outperforms the randomly generated population 
in 14 instances (31.8 %) and performs equally well in 30 
instances (68.2 %), as shown in Table II.   
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It should also be noted that the performance 
improvements of heuristics-treated population are 
concentrated in large-sized test problems. For example, for 
the Arcus problem with 111 tasks, heuristics –treated 
population performs better in 5 out of 6 instances whereas in 
the Mitchell problem, only 1 out of 6 instances provides 
better solution.  Hence, if we just focus our test on bigger 
size problems, the percentage improvement will be much 
larger.  

In this preliminary study, the results concur with previous 
findings [23] that heuristics-treated initial population can 
perform better than randomly generated initial population. 
Studies using GA for SALBP are therefore encouraged to 
use heuristic generated individuals in their initial population. 
 

TABLE II  
RESULTS TO COMPARE PERFORMANCE OF GA WITH HEURISTICS –TREATED 
INITIAL POPULATION OVER RANDOMLY GENERATED INITIAL POPULATION 

 Performs better  Same Performs worst 
Instances 14 30 0 

Percentage 31.8 % 68.2% 0% 
 
 

VI. CONCLUSIONS 
Although the primary objective of SALBP-1 is to 

minimize the number of workstations given a predetermined 
cycle time, GA can generate alternative solutions with 
different realized cycle time. In this study, we presented a 
GA procedure using line efficiency based on realized cycle 
time as the fitness function. This GA is capable of producing 
good results when solving SALBP-1 using test problems 
from literature. We also compared randomly generated 
initial population with heuristics-treated initial population. 
Test results indicate that heuristics-treated initial population 
performs better for large-sized problems. This is 
encouraging as in the real world most assembly line 
problems are complex. We suggest more research on 
developing better initial population to improve the 
performance of GAs used in SALBP. 

This research is motivated by the assembly line design 
problems confronted by a consumer electronics 
manufacturer. High demands and short product shelf life 
compels the company to operate at short cycle times and at 
tight schedules. With the current scenario, any small 
reduction in cycle time can translate into big improvements 
to production capacity and cost savings. Also, with rapidly 
changing product specifications, the company is constantly 
creating new assembly lines for the production of new 
models. The contribution from this study will provide new 
knowledge to develop a better GA tool to solve real world 
problems more efficiently at the shortest possible time. 
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TABLE I 
RESULTS COMPARING RANDOM AND HEURISTIC-TREATED INITIAL POPULATION FOR TEST PROBLEMS FROM LITERATURE 

Randomly generated population Heuristics-treated population 
Test problem No. of tasks Cycle time 

workstations 
realized cycle 

time workstations 
realized cycle 

time 

Bowman  8 20 5 17 5 17 
7 8 7 8 7 
9 6 9 6 9 

10 5 10 5 10 
13 4 12 4 12 
14 4 12 4 12 

Jackson 11 

21 3 16 3 16 
14 9 13 8 14 
15 8 15 8 15 
21 5 21 5 21 
26 5 23 5 23 
35 3 35 3 35 

Mitchell 21 

39 3 36 3 36 
25 14 25 14 25 
27 13 26 13 26 
30 12 30 12 30 
36 10 35 10 35 
41 9 40 8 41 
54 7 48 7 48 

Sawyer 30 

75 5 66 5 66 
57 10 57 10 57 
79 8 71 7 79 
92 7 81 7 81 
110 6 94 6 94 
138 5 117 4 138 

Kilbridge 45 

184 3 184 3 184 
176 22 175 21 176 
364 10 357 10 357 
410 9 398 9 397 
468 8 446 8 446 

Tonge 70 

527 7 506 7 506 
5048 16 4943 16 4943 
5833 14 5724 14 5621 
6842 12 6659 12 6591 
7571 11 7141 11 7141 
8412 10 8036 10 7882 

8898 9 8528 9 8528 

Arcus 83 

10816 8 10306 8 10306 
5755 28 5689 27 5752 
8847 19 8265 18 8689 
10027 16 9736 16 9684 
10743 15 10323 15 10288 
11378 14 11121 14 11121 

Arcus 111 

17067 9 16885 9 16872 
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