

Abstract — Although genetic algorithm (GA) has been widely
used to address assembly line balancing problems (ALBP), not
much attention has been given to the population initialization
procedure. In this paper, a comparison is made between a
randomly generated initial population and a heuristics-treated
initial population. A heuristics-treated population is a mix of
randomly and heuristics generated individuals in the initial
population. Both populations are tested with a proposed GA
using established test problems from literature. The GA, using
a fitness function based on realized cycle time is capable of
generating good solutions.

 Index Terms — assembly line balancing, genetic algorithms,
manufacturing optimization, realized cycle time.

I. INTRODUCTION
Installing an assembly line is a long-term and a costly

decision. It is therefore imperative that the assembly line
must be well designed and properly balanced to ensure
maximum efficiency.

The classical decision problem of optimally balancing the
assembly line is known as simple assembly line balancing
problem (SALBP). SALBP can be classified by its
objective function where the problem versions include the
SALBP -1, SALBP-2, SALBP-F and SALBP-E [1], [2]. The
objective of the SALBP-1 problem is to minimize the
number of workstations for a given cycle time, whereas
SALBP-2 problem minimizes the cycle time given a
predetermined number of workstations. Unlike the previous
two versions, SALBP-F determines whether or not a feasible
assembly configuration exists for a given combination of
cycle time and number of workstations. Lastly, the SALBP
-E attempts to maximize the line efficiency by minimizing
the number of workstations and cycle time simultaneously.

The SALBP is a combinatorial optimization problem and
extensive research has been conducted to solve this problem

1Kuan Eng Chong is with the Faculty of Manufacturing Engineering,
Technical University of Malaysia, 75450 Malacca, Malaysia (phone:
+60126081966; fax: +6062332414; e-mail: kuaneng@utem.edu.my).

 Mohamed K. Omar is with the Faculty of Engineering and Technology,
Multimedia University, 75450 Malacca, Malaysia (email:
mohamed.k.omar@mmu.edu.my).

Nooh Abu Bakar is with the Business & Advanced Technology Centre,
University Technology Malaysia-City Campus, 54100 Selangor, Malaysia
(email: noohab@citycampus.utm.my)

and its variants. Exact methods proposed are able to
generate optimum solution(s). Some exact procedures found
in literature include the application of dynamic and integer
programming formulations and branch and bound
procedures [1]. Since SALBP is classified as NP-hard,
solving it optimally by total enumeration is not practical
with real-world or large-sized problems. Researchers shift
their focus towards heuristics approaches as a popular way
to address hard problems. Heuristics are efficient as they are
fast and simple to implement. Heuristics cannot guarantee
optimality, but are able to seek good solutions at a
reasonable computational cost [3]. Maximum numbers of
immediate followers, [4], largest candidate rule [5],
COMSOAL, [6] Hoffman's enumeration method, [7],
MALB [8], are some of the many examples of heuristics
reported in literature. Please refer to [9]-[12] for a more
comprehensive reviews and comparative evaluations on
heuristic solutions for SALBP.
 As most heuristics are generally problem specific, their
applications are limited. The focus of research thus shifts
towards the development of powerful metaheuristic
algorithms. A metaheuristic provides a general algorithmic
framework which can be applied to various optimization
problems. Classification of metaheuristics includes
simulated annealing, tabu search, iterated local search and
evolutionary computing. Evolutionary computing in general
refers to several heuristic techniques based on the principles
of natural evolution. One of these heuristics is genetic
algorithms.

II. GENETIC ALGORITHMS
Genetic algorithms are stochastic search techniques that

mimic the natural process of evolution. Since its
introduction in the 1970’s [13], GA has gained wide
acceptance in many different fields of research. GA has
been proven to be a powerful tool to find approximate
solutions to large combinatorial optimization problems. In
recent years the use of GA to solve assembly line balancing
problems has also been increasing in numbers. For more
detailed review on the application of GA in assembly line
balancing, please refer to [14].

The main sequence of the GA procedure is as simplified
below:
Step 1: Generate initial population
Step 2: Evaluate fitness of each individual in the population
Step 3: Select individuals for reproduction

Solving Assembly Line Balancing Problem
using Genetic Algorithm with Heuristics-

Treated Initial Population
1Kuan Eng Chong, Mohamed K. Omar, and Nooh Abu Bakar

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

Step 4: Apply genetic operators to create the next generation
Step 5: If terminate criteria are met, end GA. If the criteria

are not met, go to Step 3
In this paper, a GA procedure is proposed to solve

SALBP-1. The following section describes the features and
parameters of the proposed GA.

A. Chromosome Representation and Initial Population
The proposed GA adopts the task-based encoding scheme

where a chromosome is represented by a feasible sequence
of tasks. The length of the chromosome is determined by the
number of tasks in the precedence diagram. A typical
population size of 100 chromosomes or individuals makes
up the initial population [14]. A procedure similar to
COMSOAL [6] is employed to generate random individuals
in the initial population. Each individual consist of a feasible
sequence of tasks. A greedy heuristic using the station
oriented approach is then applied to assign these tasks to
workstations. Task assignment by station oriented approach
is reported to perform better than task oriented approach
[15], [16]. Tasks are loaded into a workstation as long as the
total workstation load does not exceed the prescribed cycle
time. If cycle time is exceeded a new workstation will be
opened and the assignment process continues as before. The
above procedure is used to generate the random initial
population.

A heuristics-treated initial population is next generated. A
heuristics-treated population is a mix of randomly and
heuristic generated individuals in the initial population.
Two new individuals are generated by two different
heuristics and introduced into the initial population. The
heuristics employed are the ranked positional weight (RPW)
technique and the largest candidate rule. The RPW
technique was introduced by Helgeson and Bernie [17],
where work elements are ranked according to their
respective positional weight. The largest candidate rule [5]
assigns tasks to workstations in the similar manner as the
RPW approach but tasks are instead ranked based on the
task durations.

The randomly generated initial population and the
heuristics-treated initial populations are then tested with
various test problems (see section IV) and their results are
discussed in section V.

B. Fitness Function
Most of the literature on GA applications in solving

assembly line balancing problems focused on SALBP-1,
[14]. These GA procedures prefer to use the balance delay
and its variants as fitness functions. Balance delay is defined
as:

where

m is the total number of workstations
c is the predetermined cycle time
Sj is the time of workstation j, j=1…m

Driscoll and Thilakawardana [18] introduced a new
performance measure, the line efficiency, which has several
benefits over the balance delay. The line efficiency is
dimensionless and scaled in percentage form, making results
more meaningful and easily interpreted. The new measure is
hence representative of line utilization [18].

We modified this performance measure by using realized
cycle time instead of the predetermined cycle time and
incorporate this as our fitness function. The objective is to
maximize the line efficiency. The fitness function is shown
below:

where
 n is total number of tasks
 ti is duration of task i, i=1,…n
 m is total number of workstations
 cr is the realized cycle time

Realized cycle time is defined as the maximal station time
after the tasks assignment process [2]. Realized cycle time
can be equal to or smaller than the prescribed cycle time.
Although the primary objective of SALBP-1 is the
minimization of workstations, the use of realized cycle time
is more accurate fitness indicator for solutions with the same
number of workstation(s). Fig. 1 below illustrates a
precedence diagram with 6 tasks. Processing time is given
next to each task. To solve SALBP-1 for cycle time of 10
time units, the solution at the top yields 3 workstations and
realized cycle time of 10 time units (from workstation 3)
with line efficiency of 86.67% . The solution at bottom also
yields 3 workstations but with realized cycle time of 9 time
units (from workstations 1 & 2) and 96.3% line efficiency.
Both solutions are feasible but the second configuration is
more superior in terms of better line efficiency.

5

2 4

3

6

1

3
5

4

5

4

5

workstation 1

workstation 3

workstation 2

5

2 4

3

6

1

3
5

4

5

4

5

workstation 2

workstation 3

workstation 1

Fig. 1. Solutions for SALBP-1 with cycle time=10 time units

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

C. Selection and Reproduction
The selection of individuals for reproduction is performed

by the roulette wheel method. This popular approach allows
individuals with greater fitness, a better chance of being
selected for reproducing the next generation [19], [20].
The proposed GA also uses the “elitism” strategy to improve
the GA performance by retaining the best individual in each
generation. This is to ensure that good individuals are not
lost or destroyed by the crossover and mutation operators
[21], [22].

Standard crossover and mutation operators will generate
infeasible individuals in assembly line balancing problems
because of the precedence constraints. Researches have
developed specialized crossover and mutation operators for
ALBP which ensure chromosome feasibility. Our GA uses a
modified version of the 2-point order crossover operation
and the scrambled mutation operation proposed by Leu,
Matheson and Rees [23]

D. Stopping Criteria
The GA will terminate when either one of the two

following stopping criteria is met: maximum generations or
stalled generations. Maximum generations is maximum
number of iterations the GA will perform (set to 500). Stall
generations is the number of iterations with no improvement
in the best fitness value (set to 300).

III. PROBLEM STATEMENT
 Solving actual industry assembly line balancing problems

is difficult with the many real world constraints. To tackle
more complex problems, GA must be able to produce good
solutions at the shortest possible time. There are many
parameters that can influence the performance of a GA.
Tasan and Tunali [14] in their review on GA applications in
assembly line balancing problems noted that many
researches focused on efficient encoding schemes to handle
difficult constraints and infeasibility. However, there is little
attention given to the influence of population initialization
process in solving SALBP. So far, Leu, Matheson and Rees
[23], suggest that heuristic generated solution should be
included in the initial population to produce better solutions.

The paper hopes to address this issue by comparing the
performance of the proposed GA with randomly generated
initial population and heuristics-treated initial population.

IV. SOLUTION METHODOLOGY AND COMPUTATIONAL
EXPERIENCE

The proposed GA is coded in Matlab 7.0 and executed on
a Windows-based, Intel Pentium M, 1.50GHz computer.
Matlab is chosen as the development platform because the
availability of the Genetic Algorithm toolbox and useful
built-in functions. However, several of the standard genetic
operators and procedures available in the toolbox need to be
modified to meet our problem specifications.

 The proposed GA is tested with established SALBP-1
test problems from literature so that we can make a

comparative evaluation between published results and the
proposed GA’s results. We use the Hoffman’s dataset [24]
as it is provides a wide range of established problems. From
this dataset, seven test problems were selected, based on
task sizes and complexity. The smallest test problem is the
Bowman problem with 8 tasks and the largest is the Arcus
problem with 111 tasks. Each test problem is constructed
using data from [25] and solved for different cycle times,
identical to those cycle times in the Hoffman’s dataset.

The performances of both initial populations are assessed
by 2 criteria: (i) the number of workstations and (ii) realized
cycle time. For each cycle time, the GA is first tested with
the randomly generated initial population and the number of
workstations generated and realized cycle times are
recorded. The same process is repeated for heuristics-treated
initial population.

V. RESULTS AND DISCUSSIONS
Table I shows the results produced by the proposed GA

for the two initial populations. The selected test problems
and their size (number of tasks) are shown in the first and
second columns respectively. This is followed by the cycle
times for each problem in the third column. The next two
columns display the number of workstations and realized
cycle time of the solutions of GA using randomly generated
initial population. The last two columns are the results from
GA with heuristic-treated initial population.

An initial population is considered to perform better if the
GA produces solutions with lesser number of workstations.
If both solutions produce the same number of workstations,
the performance is determined by the realized cycle time.

The results show that for smaller sized problems
(Bowman, Jackson, Mitchell and Sawyer test problems),
there is not much difference in performance for both
populations. The reason is, possibly, for problems with a
few tasks, the search space is small and the GA is able to
quickly locate the best solution, without or without the
heuristics solutions.

The benefit of using heuristics-treated initial population is
only apparent in large-sized test problems (Killbridge,
Tonge, and both Arcus problems) where the search space is
much larger. Heuristics-treated population performed better
by either producing configurations with lower numbers of
workstations or better realized cycle time. For example, the
Tonge test problem with cycle time of 176 time units, the
GA with heuristics-treated population produces lower
number of workstations (21 workstations) compared to the
GA with random population (22 workstations). From the
same test problem but with cycle time of 410 time units, GA
with both initial populations generates the same number of
workstations (9 workstations) but the heuristics-treated
population yields better realized cycle time of 397 time units
compared with 398 time units for the randomly generated
initial population.

From a total of 44 tests, the heuristics-treated initial
population outperforms the randomly generated population
in 14 instances (31.8 %) and performs equally well in 30
instances (68.2 %), as shown in Table II.

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

It should also be noted that the performance
improvements of heuristics-treated population are
concentrated in large-sized test problems. For example, for
the Arcus problem with 111 tasks, heuristics –treated
population performs better in 5 out of 6 instances whereas in
the Mitchell problem, only 1 out of 6 instances provides
better solution. Hence, if we just focus our test on bigger
size problems, the percentage improvement will be much
larger.

In this preliminary study, the results concur with previous
findings [23] that heuristics-treated initial population can
perform better than randomly generated initial population.
Studies using GA for SALBP are therefore encouraged to
use heuristic generated individuals in their initial population.

TABLE II
RESULTS TO COMPARE PERFORMANCE OF GA WITH HEURISTICS –TREATED
INITIAL POPULATION OVER RANDOMLY GENERATED INITIAL POPULATION

 Performs better Same Performs worst
Instances 14 30 0

Percentage 31.8 % 68.2% 0%

VI. CONCLUSIONS
Although the primary objective of SALBP-1 is to

minimize the number of workstations given a predetermined
cycle time, GA can generate alternative solutions with
different realized cycle time. In this study, we presented a
GA procedure using line efficiency based on realized cycle
time as the fitness function. This GA is capable of producing
good results when solving SALBP-1 using test problems
from literature. We also compared randomly generated
initial population with heuristics-treated initial population.
Test results indicate that heuristics-treated initial population
performs better for large-sized problems. This is
encouraging as in the real world most assembly line
problems are complex. We suggest more research on
developing better initial population to improve the
performance of GAs used in SALBP.

This research is motivated by the assembly line design
problems confronted by a consumer electronics
manufacturer. High demands and short product shelf life
compels the company to operate at short cycle times and at
tight schedules. With the current scenario, any small
reduction in cycle time can translate into big improvements
to production capacity and cost savings. Also, with rapidly
changing product specifications, the company is constantly
creating new assembly lines for the production of new
models. The contribution from this study will provide new
knowledge to develop a better GA tool to solve real world
problems more efficiently at the shortest possible time.

REFERENCES

 [1] I. Baybars, “A survey of exact algorithms for the simple
assembly line balancing problem,”Management Science, 32,
1986, pp. 909-932.

[2] A. Scholl, “Balancing and sequencing of assembly lines,”
Heidelberg:Physica-Verlag, 1999, ch. 2.

[3] C.R. Reeves, “Modern heuristic techniques fro combinatorial
problems,” New York: John Wiley & Sons, 1993, ch. 1.

[4] F. M. Tonge, “A heuristic program of assembly line balancing,”
Prentice-Hall Englewood Cliffs, NJ , 1961.

[5] C. L. Moodie, and H. H. Young, “A heuristic method of
assembly line balancing for assumptions of constant or variable
work element times,” Journal of Industrial Engineering, vol. 16,
1965, pp. 23-29.

[6] A. L. Arcus, “COMSOAL: A computer method of sequencing
operations for assembly lines,” International Journal of
Production Research, vol. 4, 1966, pp. 259-277

[7] T. R. Hoffman, “Assembly line balancing with precedence
matrix,” Management Science, vol. 9, 1963, pp. 551-562.

[8] E. M. Dar-El, “MALB-A heuristic technique for balancing large
single-model assembly lines,” AIIE Transactions, vol. 5, 1973,
pp. 343-356.

[9] F. B. Talbot, J. H. Pattrson, and W. V. Gehrlein, “A comparative
evaluation of heuristic line balancing techniques,” Management
Science, vol. 30, 1986, pp.430-454.

[10] A. Scholl and S. Voβ, “Simple assembly line balancing-
heuristic approaches,” Journal of Heuristics, vol. 2, 1996, pp.
217-244.

[11] E. Erel and S. C. Sarin, “A survey of assembly line balancing
procedures,” Production, Planning and Control, vol. 9, 1998,
pp. 414-434.

[12] A. Scholl and C. Becker, “State-of-the-art exact and heuristic
solution procedures for simple assembly line balancing,”
European Journal of Operation Research, vol. 168, 2006, pp.
666-693.

[13] J. H. Holland, “Adaptation in natural and artificial system,” Ann
Arbor, Michigan:The University of Michigan Press, 1975.

[14] S. O. Tasan and S. Tunali, “A review of the current applications
of genetic algorithms in assembly line balancing,” Journal of
Intelligent Manufacturing, vol. 19, 2008, pp.49-69.

[15] A. Scholl and S. Voβ, “A note on fast, effective heuristics for
simple assembly line balancing,” (working paper), TH
Darmstadt, 1994.

[16] J. F. Gonçalves and J. R. De Almeida, “A hybrid genetic
algorithm for assembly line balancing,” ,” Journal of Heuristics,
vol. 8, 2002, pp. 629-642.

[17] W. B. Helgeson and D. P. Birnie, “Assembly line balancing
using ranked positional weight technique,” Journal of Industrial
Engineering , vol. 12, 1961, pp. 394-398.

[18] J. Driscoll and D. Thilakawardana, ”The definition of assembly
line balancing difficulty and evaluation of balance solution
quality,” Robotics and Computer Integrated Manufacturing ,
vol. 17, 2001, pp. 81-86.

 [19] D. A. Coley, “An introduction to genetic algorithms for
scientists and engineers,” Singapore: World Scientific
Publishing Co., 2001, pp.23-25.

[20] Z. Michalewicz, “Genetic algorithms+data
structures=evolution programs,” Springer-Verlag Berlin
Heidelberg, 1996, ch. 2.

[21] D. E. Goldberg, “Genetic algorithms in search, optimization,
and machine learning,” Addison-Wesley Publishing Company,
Inc. 1989.

[22] M. Mitchell, “An introduction to genetic algorithm,” 1996, The
MIT Press, pp.168

[23] Y. Y. Leu, L. A. Matheson and L. P. Rees, “Assembly line
balancing using genetic algorithm with heuristic generated
initial population and multiple criteria,” Decision Science, vol.
15, pp. 581-606.

[24] T. R. Hoffman, “Assembly line balancing: a set of challenging
problems,” International Journal of Production Research, vol.
28, 1990, 1807-1815.

[25] A. Scholl, “Data of assembly line balancing problems,”
(working paper), TH Darmstadt, 1993.

 Available: http://www.assembly-line-balancing.de/

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

TABLE I
RESULTS COMPARING RANDOM AND HEURISTIC-TREATED INITIAL POPULATION FOR TEST PROBLEMS FROM LITERATURE

Randomly generated population Heuristics-treated population
Test problem No. of tasks Cycle time

workstations
realized cycle

time workstations
realized cycle

time

Bowman 8 20 5 17 5 17
7 8 7 8 7
9 6 9 6 9

10 5 10 5 10
13 4 12 4 12
14 4 12 4 12

Jackson 11

21 3 16 3 16
14 9 13 8 14
15 8 15 8 15
21 5 21 5 21
26 5 23 5 23
35 3 35 3 35

Mitchell 21

39 3 36 3 36
25 14 25 14 25
27 13 26 13 26
30 12 30 12 30
36 10 35 10 35
41 9 40 8 41
54 7 48 7 48

Sawyer 30

75 5 66 5 66
57 10 57 10 57
79 8 71 7 79
92 7 81 7 81
110 6 94 6 94
138 5 117 4 138

Kilbridge 45

184 3 184 3 184
176 22 175 21 176
364 10 357 10 357
410 9 398 9 397
468 8 446 8 446

Tonge 70

527 7 506 7 506
5048 16 4943 16 4943
5833 14 5724 14 5621
6842 12 6659 12 6591
7571 11 7141 11 7141
8412 10 8036 10 7882

8898 9 8528 9 8528

Arcus 83

10816 8 10306 8 10306
5755 28 5689 27 5752
8847 19 8265 18 8689
10027 16 9736 16 9684
10743 15 10323 15 10288
11378 14 11121 14 11121

Arcus 111

17067 9 16885 9 16872

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

