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Abstract— A fuzzy linear programming approach is taken to 

solve an extended mathematical linear programming model to 
handle two important problems in cellular manufacturing 
systems simultaneously: Cell formation and layout design. We 
seek to minimize the total cost of inter-cell and intra-cell 
(forward and backward) movements and the cost of machines. 
The fuzzy demand and fuzzy machine capacity are also 
considered in the proposed model. The main advantage of the 
proposed model is in its consideration of uncertain conditions, 
batch material handling movements, and sequence operation. To 
illustrate the applicability of the proposed model, an example 
with fuzzy extension in data set is selected and computational 
results are presented. 

 
Index Terms— Cell formation, Layout design, Fuzzy linear 

programming 

I. INTRODUCTION 
Over the past three decades, group technology (GT) has 

emerged as a useful scientific principle in improving the 
productivity of batch-type manufacturing systems in which 
many different types of products having relatively low 
volumes are produced in small lot sizes. Cellular 
manufacturing is a successful application of group technology 
concepts. The design of a cellular manufacturing system 
(CMS) usually begins with two fundamental grouping tasks: 
Part-family formation and machine-cell formation. Several 
authors [1]—[6] adopt either a sequential or a simultaneous 
procedure to group the parts and machines. The sequential 
procedure used in some of these studies determines the part 
families first, followed by machine assignments. On the other 
hand, the simultaneous procedure determines the part families 
and machine groups concurrently. Some newly developed  
models are more realistic and appealing to real-world 
applications [7]—[12] because they take more factors such as 
demands, processing times, space availabilities, material 
handling costs, and machine capacities into consideration. 
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Most CMS models assume that the input parameters are 
deterministic and certain. In practical situations, however, 
many parameters such as processing time, part demand, and 
available machine capacity are uncertain and imprecise.  

Since sufficient data are not always available for predicting 
uncertain parameters, fuzzy logic is introduced as a powerful 
tool for expressing this uncertainty through the expert’s 
knowledge. CMS design problem, as a real life problem, can 
be investigated in a fuzzy environment due to the fuzzy design 
parameters [13]—[15]. 

We propose an effective fuzzy linear programming (FLP) 
approach for solving practical CMS design problems and 
handles cell formation and layout design simultaneously. The 
proposed model considers the fuzziness in part demands and 
machine capacities.  

II. CMS PROBLEM FORMULATION 
Here, we formulate the mathematical model based on 

sequence data in CMS. The problem is considered under the 
following assumptions. 

1- The number of cells is known. 
2- The upper bound and lower bound of the cell size is 

known.  
3- Each part type has a number of operations to be 

processed according to a known sequence. Operations related 
to each part type must be processed in the order they have 
been numbered. 

4- The processing times for all operations of part types on 
different machine types are known and deterministic. 

5- Parts are moved between and within cells in batches. 
Inter and intra-cell (forward and backward) batches have 
different sizes. Inter and intra-cell movement (forward and 
backward) costs are constant for all moves, but in each cell the 
distance travel from machines j  to j′  has been considered. 

6- The demand for each part type is given as a piece-wise 
fuzzy number. 

7- The capability of each machine type is known. Also, the 
capacity of each machine is given as a piece-wise fuzzy 
number. The fuzzy capacity of machine is determined by the 
Decision Maker (DM) in terms of “nominal capacity” and 
“actual capacity”. The actual capacity is more realistic and 
applicable than the nominal capacity. In other words, in 
moving from the actual capacity towards the nominal capacity 
values, the risk related to the decision making process 
increases. 
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8- The costs of each machine type such as constant cost and 
variable cost are known. 

A. Indexing Sets 

i       index for parts (i =1, 2,…, P) 
j       index for machines (j=1,2...,M) 
k      index for cells (k =1, 2,…, C) 
s      index for operations (s =1, 2,…,OP) 
l     index for location of machines ( l =1, 2,…, U).  

B. Parameters 

γ ′ : Material handling cost between cells. 

fγ ′′ : Forward material handling cost within cells. 

bγ ′′ : Backward material handling cost within cells.  

iB′ : Batch size for inter-cell movements of part type i. 

fiB′′
: Batch size for forward intra-cell movements of part 

type i. 

biB′′ : Batch size for backward intra-cell movements of part 
type i. 

Lk: Lower bound of the number of machines in cell k. 
Uk: Upper bound of the number of machines in cell k. 
Nj : Number of machines of type j available for allotment to 

cells. 
tisj: Processing time of  operation s of  part  i with machine j.  

iD% : Demand quantity of part i; iD%  has a piece-wise 

membership function in a general form ),L U
i i iD D D⎡= ⎣
%  as 

shown in Figure 2. The function defined in the interval of 
0, L

iD⎡ ⎤
⎣ ⎦  represents “risk free” value-interval (for each part i) 

and in the interval of ),L U
i iD D⎡

⎣  indicates a tolerance value-

interval (for each part i) and decision making under this 
interval is risky for the DM. 

jT% : The capacity of machine j; jT%  has a piece-wise 

membership function in a general form ),L U
j j jT T T⎡= ⎣
%  as 

shown in Figure 3. L
jT  represents the “actual capacity” of 

machine type j. Also, U
jT  represents the “nominal capacity” 

of machine j. Likewise, according to Section 2 , decision 
making under interval )0, L

jT⎡
⎣  does not have any risk for the 

DM while decision making by U
jT  has the highest risk for the 

DM. 
Cj :  Cost of machine type j. 
fi : Number of operations for part i. 
aisj : 1, if operation s of part i is to be processed on 

machine j; 0, otherwise. 

C. Decision Variables 

Xisk : 1, if operation s of part i is assigned to cell k; 0, 
otherwise. 

Yjkl : 1, if machine j is assigned to cell k in location l; 0, 
otherwise. 

Zik : 1, if part i is assigned to cell k; 0, otherwise. 

, , 1, , , , , , 1, , ,i s s k l l j j isklj i s k l jB O P′ ′ ′ ′+ +=  

isklj isk jklO X Y=  

, 1, , , , 1,i s k l j i s k j klP X Y′ ′ ′ ′+ +=  
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E. Constraints 
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1.5 0isklj isk jklO X Y− − ≤
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, 1, , , , 1, 1.5 0i s k l j i s k j klP X Y′ ′ ′ ′+ +− − + ≥

, , ,  and 1,..., 1i k l j s OP′ ′∀ = −                                             (12) 
, 1, , , , 1,1.5 0i s k l j i s k j klP X Y′ ′ ′ ′+ +− − ≤

          
, , ,  and 1,..., 1i k l j s OP′ ′∀ = −                                             (13) 

, , 1, , , , , , 1, , , 1.5 0i s s k l l j j isklj i s k l jB O P′ ′ ′ ′+ +− − + ≥
           

, , , , , ,i s k l l j j′ ′∀                                                          (14) 
, , 1, , , , , , 1, , ,1.5 0i s s k l l j j isklj i s k l jB O P′ ′ ′ ′+ +− − ≤

              
, , , , , ,i s k l l j j′ ′∀                                                                   (15) 

{ }, 1, , , , , 1, , , , ,, , , , , 0,1isk ik jkl isklj i s k l j i s s k l l j jX Z Y O P B′ ′ ′ ′+ + ∈
 

, , , , .i j s k l∀                                                                           (16) 
The objective function is considered for minimizing the 

total sum of inter-cell and intra-cell (forward and backward) 
movement costs and cost of machines. The first term 
computes the total inter-cell movement costs, where fi-1 
indicates the total number of movements of part i. The second 
term of the objective function computes the total intra-cell 
forward movement cost respectively. The forward distance 
travels from machines j  to j′ , which are located in locations 
l  and l′  , have been shown in the second term by ( )l l′ − . 
The third term of the objective function computes the total 
intra-cell backward movement cost. The backward distance 
travels from machines j  to j′ , which are located in locations 
l  and l′  have been shown in the third term by ( )l l′ − .  The 
fourth term represents the cost of all machines required for 
cells. Inequalities (1) and (2) ensure the lower and upper 
bound considerations for the number of machines to be 
allocated to locations of each cell. Inequality (3) ensures that 
the number of machines available for a given type is not 
bypassed.  Inequality (4) ensures that each machine can be 
allocated at most to one location of each cell. Inequality (5) 
ensures that each location of each cell can be allocated to one 
machine. Equation (6) guarantees that each part must be 
assigned to one cell. Equation (7) guarantees that each 
operation of each part must be allocated to one cell. Inequality 
(8) ensures that each machine workload not exceed its 
capacity. Constrains (10) – (15) have been applied to 
linearization of mathematical model. And relation (16) 
specifies that the decision variables are binary. 

III. IMPLEMENTATION OF THE PROPOSED FLP 
MODEL 

Sometimes, all the coefficients of a linear programming 
problem are imprecise. Such a problem can be formulated as: 

1

1

min

. .

, 1
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n

j j
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ij j i
j

j

c x
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(Denote ( ) ( ),  ,  ,  1£ £ ,  1£ £ij j iA a c c b b i m j n⎡ ⎤= = =⎣ ⎦
%% % .) 

We assume that the interval for possible values of a fuzzy 
parameter is specified by the user as ),L Ua a⎡

⎣
. In general, the 

lower bound, La , represents “risk free” values in such a way 
that a solution obtained under these values must be 
implementable. On the other hand, the upper bound, Ua , 
represents parameter values which are most certainly 
unrealistic and ‘‘impossible’’, and the solution obtained by use 
of these values is not implementable and thus decision making 
based on these values is faced with a high risk level for the 
decision maker (DM). Moving from ‘‘risk-free’’ towards 
‘‘impossible’’ parameter values, is synonymous to moving 
from solutions with a high degree to solutions with a low 
degree of implementability. 
Before going into the solution procedure, we need to require 
that the solution ( )* * , ,Z Z c A b= −  of the non-fuzzy version of 
Equation (1) be an increasing function of the parameters c, -A 
and b. Also, it is assumed that the user is capable of specifying 
the intervals ),L Uc c⎡

⎣ , ),L UA A⎡
⎣  and ),L Ub b⎡

⎣
 for the possible 

values of the parameters. 
Carlsson and Korhonen [16] proposed a relationship between 
a solution in problem (17) and its parameters: The solution 

( )* * , ,Z Z c A b= −  of Equation (17) is an increasing function of 
the parameter c, -A and b. 
 Thus, we can reasonably assume that the membership 
functions are monotonically decreasing functions of the 
parameters ,  andc A b− . The monotonically decreasing 
functions may be linear, piece-wise linear, hyperbolic, 
exponential, etc.. 
After a full trade-off between ,  andc A b− , the solution will 
always exist at: 

c A bμ μ μ μ= = = . 
Therefore, we obtain the following equations: 

( ) ,cc g μ= ( )AA G μ=  and ( ) ,bb g μ=  

where [ ]0,1μ ∈ and cg , AG and bg  are inverse functions of 

cμ , Aμ  and bμ . Then problem (17) turns to: 

( )

( ) ( )

c

A b

min g

. .

G g    and 0.

x

s t

x x

μ

μ μ

⎡ ⎤⎣ ⎦

≤ ≥⎡ ⎤⎣ ⎦

                     (18) 

Obviously, problem (18) is a nonlinear programming problem. 
However, it can be solved by any linear programming 
technique if μ  is given. Thus, we can obtain a set of solutions 
corresponding to a set of μ ’s and then plot the solution pairs 

( )* ,z μ . By referring to this relationship, the decision maker 
can choose his/her preferred solution for the implementation. 

Using the proposed mathematical model, we find that the 
fuzzy technological coefficients in constraint (9) appear 
exactly in the first, second and third terms of the objective 
function.  
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The piece-wise linear membership function for fuzzy 
parameters of part demand, ),L U

i i iD D D⎡= ⎣
%  is defined as 

follows: 

( ) U
i i

i U L
i i

D DD
D D

−=
−

%
μ        i∀  

The inverse functions of ( )iDμ is calculated as follows: 

( )( )U U L
i i i i iD D D D D= − −% μ        i∀  

The convex exponential membership function for fuzzy 
parameters of available capacity for each machine 

),L U
j j jT T T⎡= ⎣
%  is defined as follows: 

( )

( )

( )

1 exp

1 exp

U
c j j

L U
j j

j
c

b T T

T T
T

b

⎡ ⎤−
⎢ ⎥−
⎢ ⎥−
⎣ ⎦=

−

%

μ j∀ , 

where 0cb >  is specified by the DM. 

The inverse functions of ( )jTμ  is calculated as follows: 

( ) ( )( )( )( )1 ln 1 1 exp L U U
j j c j j j

c
T T b T T T

b
⎡ ⎤= − − − +⎣ ⎦

% μ j∀ . 

Then, we input the investment functions of part demand and 
machine capacity in the proposed mathematical model.  

IV. NUMERICAL EXAMPLE 
To verify the behavior of the proposed model, a 

comprehensive numerical example is presented to illustrate the 
applicability of the proposed model in an uncertain 
environment. This example is solved by a branch and bound 
(B&B) method with the LINGO 8.0 software. 

The example is generated according to the information 
given in Table 1. It consists of eight part types (P1, P2,…, P8), 
six machine types (M1, M2,…, M6), where each part type is 
assumed to have a number of operations (OP1,OP2,…,OP4) 
that must be processed respectively as numbered in the order 
and the processing time as shown in the parentheses. For 
simplicity, the capacity range of all the machines in all the 
problems is the same (i.e., the range [ ]1500 . . 1600 ). 

 In Table 1, the last three rows include inter and intra-cell 
(forward and backward) batch size for each part type. The next 
last row presents the fuzzy interval value of demand in each 
part type. In this table, the last three columns indicate the 
number of machines of type j available, the cost of machine 
and fuzzy interval value of machine capacity, respectively. For 
simplicity, the capacity of all the machines in all the problems 
is the same. Table 2 shows the other input parameters for 
solving the above problem. 

 
Table 1. The typical data set for FLP. 

P 
M 1 2 3 4 5 6 7 8 Nj Cj 

1 0 2 (0.44) 0 3 (0.72) 0 0 3 (0,57) 0 2 600 
2 1 (0.31) 1 (0.33) 2 (0.63) 0 2 (0.62) 1 (0.22) 4 (0.5) 2 (0.3) 2 900 
3 0 0 1 (0.52) 0 0 2 (0.52) 0 3 (0.47) 2 750 
4 0 0 0 1 (0.37) 0 0 1 (0.25) 0 2 700 
5 2 (0.51) 0 3 (0.4) 0 1 (0.61) 3 (0.35) 0 1 (0.47) 2 600 
6 0 0 0 2 (0.53) 0 0 2 (0.28) 0 2 800 

iD%  [500, 700] [400, 550] [150, 350] [550, 700] [250, 500] [600, 800] [450, 700] [200, 500] 

iB′  
20 18 15 23 15 25 18 15 

fiB′′
 

8 6 5 7 5 8 6 5 

biB′′  
13 10 9 13 9 14 10 9 

 

 

 
Table 2. Parameter setting model. 

 Parameter Cell I Cell II 
Lk 2 2 
Uk 4 4 
Forward intra-cell movement unit cost 4 
Backward intra-cell movement unit cost 10 
Inter-cell movement cost 30 

 
Obviously, the above problem cannot be solved by any 

standard linear programming method, because it is 
nonlinear.  However, it can be solved if μ  is pre-
determined. That is, for each specified value of μ , one can 
get an optimal solution for the original solution. Therefore, 
one may choose n number of experiments (n different μ  

values) in order to obtain n optimal solutions and then 
present these optimal solutions to the DM. 

Here, in solving the proposed model, we assumed μ =0, 
took n=10, and set 0.1δ = . Moreover, the constant ( )cb  in 
the membership function of machine capacity determined 
by DM was set to 0.7cb = . Table 3 shows the relationship 
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between the optimal profits and the corresponding 
membership grade. According to this   relationship, the DM 

can then get his optimal solution under a pre-determined 
allowable imprecision. 

 
Table 3. The optimal solution for each μ . 

μ  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Inter-cell 

movement cost 0 0 0 0 0 0 1710 1650 1560 1530 1440 

Intra-cell 
forward movement 

cost 
3916 3792 3664 3548 3408 3284 2780 2664 2552 2444 2324 

Intra-cell 
backward 

movement cost 
2810 2685 2550 2440 2330 2180 1600 1510 1380 1276 1170 

Machine cost 5250 5250 5250 5250 5250 5250 4350 4350 4350 4350 4350 

*Z  11976 11727 11464 11238 10988 10714 10240 9974 9642 9400 9084 

 

V. DISCUSSION 

For the first six levels ( )0,0.1,...,0.5μ = , the cell 
configuration for parts and machines are the same as shown 
in Table 4. This table indicates that the value of EE is zero, 
the number of voids is 5 and machine 2 is duplicated in cell 
I and cell II. 

For the next five levels of μ  ( )0.6,0.7,...,1μ = , the cell 
arrangement of parts and machines are the same as shown 
in Table 5. The objective function prefers to eliminate 
machine number 2 from cell II, because of inter-cell 
movement cost for parts 2 and 7 is less than the cost of 
machine 2. Moreover, the value of EE is two and the 
number of voids is 4. We obtain a set of solutions 
corresponding to a set of μ ’s and plot the solution pairs 

( )* ,z μ . By referring to this relationship, the decision 
maker can choose his/her preferred solution for 
implementation. For instance, when the DM considers 0.3 
degree imprecision as acceptable, the corresponding 
optimal solution is * 9974Z = .  

VI. CONCLUSIONS 
This paper proposes a mathematical programming model 

for an extended cell formation problem and layout design 
simultaneously with uncertain conditions. The fuzzy 
demand and fuzzy machine capacity are also considered in 
this proposed model. The proposed model determines the 
optimal cell configuration by minimizing inter-cell 
movement, intra-cell movement (forward and backward) 
and machine costs. The main advantage of the proposed 
model is to consider uncertain conditions, batch material 
handling movements and sequence operation. The model 
has been constructed by use of the trade-off membership 
functions of fuzzy parameters. The solutions of the FLP at 
various levels of μ  provide the DM with alternative 
decision plans at different risk levels. 

 
 
 

 
 

Table 4. The cell configuration of 0,0.1,...,0.5μ = . 
MACHINES  

3 2 5 4 6 1 2 
1 0 1 2 0 0 0 0 
3 1 2 3 0 0 0 0 
5 0 2 1 0 0 0 0 
6 2 1 3 0 0 0 0 
8 3 2 1 0 0 0 0 
2 0 0 0 0 0 2 1
4 0 0 0 1 2 3 0

P 
A 
R 
T 
S 

7 0 0 0 1 2 3 4
 

Table 5. The cell configuration of 0.6,0.7,...,1μ = . 
MACHINES  

3 2 5 4 6 1 
1 0 1 2 0 0 0 
3 1 2 3 0 0 0 
5 0 2 1 0 0 0 
6 2 1 3 0 0 0 
8 3 2 1 0 0 0 
2 0 1 0 0 0 2
4 0 0 0 1 2 3

 
 

P 
A 
R 
T 
S 

7 0 4 0 1 2 3
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