
 
 

  
Abstract— This paper deals with the necessary conditions to 
achieve a torque balance construction and requirements for 
equal load sharing among the armoring wires. Among the 
several mathematical model for predicting the mechanical 
response of a helical wire strand to axisymmetric loading 
derived in the literature over five decades, the linear elastic 
symmetrical model which considered correct generalized 
strains and depicted the origin of deviation in the earlier works 
was extensively applied to accurately describe the physical 
behavior of the cable. 
 

Index Terms— Cable mechanics, helical strand mechanics, 
wire rope mechanics.  
 

I. INTRODUCTION 
In the world today helical wires strands, cables and ropes are 
in abundant use as structural members, as electrical or optical 
communications links and for transmitting power. Yet, it is 
only within the last decade that a series of attempt has been 
made to develop engineering models to accurately predict the 
mechanical behavior of such cables. 
 
In many applications where such cables are axially loaded in 
tension, there will be a torsional coupling that causes twisting 
of the cable. To prevent any cable twist, when found 
undesirable, external torque needs to be applied. However if 
the layer are designed adjusting suitably the lay angles, 
number, diameter and material of the wires in a layer, the 
axial twist could be avoided without any external torque. 
 
The present effort introduces a simple technique to determine 
the torque characteristics as well as stress distribution among 
the wires. A procedure is suggested to achieve torque balance 
and stress balance. An example of two opposing layers of 
helical wires wound over an elastic core of different 
diameters and materials is elaborately dealt. In light of 
availability of the computers and of the more accurate 
symmetric stiffness matrix, an analysis for the two balances 
is attempted in this paper. 
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II. BRIEF REVIEW OF THE PREVIOUS LITERATURE  
In the recent years, various mathematical models are 
available for predicting mechanical behavior of helical wire 
strands. They are classified into four categories: 

a) Models based on purely tensile wires 
b) Models additionally with wire bending and 

torsional stiffness. 
c) Models additionally with core radius 

variation 
d) Models additionally with Poisson’s effect 

in core and layer wires. 
e) Orthotropic sheet model considering the 

Hertzian contact stress between the layer 
wires and associated elastic wire flattening 
and elastic slip. 

f) Model considers the layers as an 
orthotropic tube classified the models(a) to 
(d) as ‘packing geometry models’, the 
orthotropic model with line contacts as the 
‘wire rope geometry model’ and that the 
Hertzian contact as the ‘wedge geometry 
model’.  

 
In a paper Raoof and Kraincanic [1] have critically 

examined some typical thin rod models with the orthotropic 
sheet model. Of the six models only model (a) and the 
orthotropic models are found to yield strict symmetry. In all 
the other models , there is a asymmetry, though small. It 
should be noted, however, that all of them assumed linearity 
to be valid, on the basis of small deformation, friction less 
contacts, no slip when friction exists etc. It is well established 
that the response of a linear elastic strand system has the 
following form of stiffness equation for axisymmetric 
loading 
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An accurate formulation of a linear elastic model should 
possess the symmetry of stiffness matrix so that 

εφ MF =                                                                (2)  
It is necessary at this stage to recall what has been stated in 
earlier works on symmetry or lack of it. Typical linear 
mathematical models of cables subjected to axisymmetrical 
loading have been compared. The equations are rewritten 
with same notations, similarities and differences in the 
various models have been highlighted [10]. 
In the model developed by Hurska [2,3], the bending and 
torsional constituent wires are neglected. Existing models are 
linear, variation of the lay angle neglected and the stiffness 
matrix is a constant. In a more rigorous way Machida and 
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Durelli [4] studied the effects of bending and torsion stiffness 
of individual wires on the cable rigidity matrix, but failed to 
consider the effect of binormal forces N’. Paper by Costello 
and Phillips [5] presented a general non linear theory for a 
layer of helically wound wires, without a core, which 
included the effects of radius and helix angle variations , as 
well as wire bending and torsion moments. The linear 
analysis presented by Sathikh et al[6] which includes wire 
shear forces and couples with their correct relationship and 
ensures symmetry of stiffness matrix. The validation of these 
stiffness constants were compared with those of experimental 
findings of Utting [7,8] and FEM analysis performed by  
Ghoreishi et al [9] and used if for prediction of response in 
this paper. 
 
Sathikh et al have derived the symmetric matrix for the case 
of radially core in terms of helix angle as 
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III. PRESENT WORK  
These stiffness matrices are used to describe the torsion 

response of the cables and the internal stress distribution is 
derived. The following assumptions have been made in 
deriving the torque and stress balance equations. 

 
The geometry of deformation of a helical wire can be 

described by its centroid axis; i.e the diameter of the wire is 
small in comparison with the pitch length of the helix. 

Plane section of the cable cross section remain plane 
before and after deformation 

The helically wound wires in any layer are equally spaced 
around  the circumference of the cable. 

The helical wires are homogenous, isotropic and linearly 
elastic. 

The core element is a linearly elastic element and can be 
represented as a structure which is allowed to elongate with 
the cable while being either rigid or incompressible in the 
radial direction. 

Reduction of wire diameter due to inter-wire contact is 
neglected. 

Cable elongation and rotation strain parameters are 
considerably less than unity ( 1, <<ii γε ) 

The stiffness equation were been used to evaluate the 
design of a two layer, contra helically armored KEVLAR EM 
cable used as a segment link between a surface support ship 
and a deep sea unmanned work system[5]. A representative 
model is shown in Fig.1.  This cable has selected for this 
comparative study since it was rigorously designed, 
manufactured and tested. As built- geometrical and material 

properties have been accurately determined. 
The properties of Table 1 were used in stiffness equation to 

produce the curves shown in Fig. 2. These curves represent 
the relationship between the inner and outer helix angles to 
achieve torque and stress balance.  
    

IV. TORQUE BALANCE  
The helical armoring wires, which render the cable flexible, 
induce a torque as the helical wires try to “unwind” during 
axial loading.  Induced torque can be undesirable from 
several points of view.  Cable rotation may loosen some 
wires and tighten others depending on the direction of lay.  
This, of course, means that some wire layers will be stressed 
at higher levels than others.  Thus, the efficiency of the cable 
is reduced and the breaking strength may be appreciably 
lowered.  Long cables which are restrained from rotating may 
develop a sufficiently large induced torque that slight 
relaxations of cable tension (momentary slack cable) can 
result in hockling (looping) due to instability.  Upon 
reapplication of the cable load, the hockle radius may be 
decreased sufficiently to fail the armoring wires due to the 
large bending stresses.  Furthermore, there are numerous 
cable applications which require torque-free performance, 
such as in long oceanographic cables used for towed bodies. 
 
The condition of torque balance requires that no external 
torque be developed for a cable pulled in tension and 
restrained from rotating at both ends.  For torque balance 

0=
h

dφ
 and 0=sM   this requires also 0=εM . 

The parameters are given in Table I.  For different helix 
angles 1α  of the inner layer, the suitable helix angle 2α  is 

computed to satisfy 0=εM .  The relationship between 1α  

and 2α  is so obtained is shown in Fig.1.   
 
Table I. As-Built Properties of a KEVLAR-Armored Cable 
 

 
Core 

[ ]mmRc  11.31 

cv  0 (assumed for rigid 
core) 

Where m is number of wires in layer i , 1α  the helix angle, 

ir  the helix radius, im the number of wires, 2
ii RA π= , iR  

is the wire radius, iE  and iG  the elastic and shear modulii 

Wire  Inner Layer Outer Layer 

iA [ ]2mm  4.976 2.965 

[ ]mmr i  12.51 14.78 

[ ]degiα  +69.0 RHL 76.1 LHL 

[ ]GPaE i  75.36 83.74 

[ ]MPaSyi  1,309 1.509 

[ ]WiresNbrmi .  28 44 
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respectively of the wire of layer i.  cE and cG are the elastic 

and shear modulii of core wire and 2
cc RA π= , cR = core 

wire radius. For computational purpose    )1(2/ ν+= EGi  
is used whereν  is Poisson’s ratio = 0.3 

 
 

V. STRESS BALANCE 
For stress balance, the wire axial stress, wire bending stress 
and wire twisting stress are considered together to determine 
the maximum stress.  In a wire in the layer i , assuming that 
the torque is not balanced the stresses are: 
Axial    wiiEfi ε=                                                          (6) 
 
Bending  iiibi REf 2ω=                                                 (7) 
 
Torsional iiis RGf 3ω=                                                    (8) 
 
Where 
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Maximum stress is given by 
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For equal strength, it is not the wire stress in every layer that 
needs to be equal.  What is required is, for all layers 
 

yii Sf =max  or 1/max =yii Sf                                         (14) 

 
where yiS  is the allowable design stress of the wire material 

of layer i .  The relationship between 1α  and 2α  that yields 

the strength balance for 0=γ , not necessarily 0=εM  , is 
given in Fig.2. 

 
 

Fig. 1 Strand geometry and wire forces and couples. 
 

VI. TORQUE AND STRENGTH BALANCE 

 
In addition to strength balance, if torque balance is also 
required, then the conditions 0=εM  with 0=γ , and (14) 
should be satisfied simultaneously.  The point of intersection 
between the two relations shown in Fig.2  yields the desired 
results. 
 

VII. CONCLUSION 

 
A set of equations to determine the conditions of torque 

and stress balance of a multilayered, helically armored cable 
have been derived.   

The improved linear equation should provide a useful 
design tool, particularly in a preliminary design situation, 
capable of revealing the physical characteristics of both 
torque balance and load-sharing among armoring wires.  

The values of ( 1α  and 2α  ) in degrees for torque and 
strength balance from the present  analysis are (  75º   ) and 
(-79º  ) respectively. The torque balance and strength analysis 
carried out has considered the symmetric stiffness matrix and 
included bending and twisting of the wire in addition to the 
wire stretching. It is hoped that this improved torque and 
strength balance model should be helpful to designers of 
cable and wire ropes. 
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        Fig. 2 Torque balance and Stress balance 

 

 

APPENDIX 
A  Area of cross-section of helical wire = πR2 
EC  Area of cross-section of core wire= πRc2    
Ec,E Elastic modulus of core and helical wire 
L  Length of the helical wire 
H  Strand length 
R  Wire helix radius 
φ   Angle of strand rotation 
α, α' Initial and Final Helix angle 
ε   Strand axial strain= δh/h 
εw       Helical wire axial strain 
γ ,γw   Shear strain of strand and helical wire 
F Component of axial wire force in the strand 

axial direction 
Fs  Axial force of the strand 
Gc    Shear modulus of core wire 
G, G’ Wire moment about wire normal and 

binormal axis 
H    Wire axial moment 
Ic Ii  Moment of inertia of core (πRc4/4) and wire 

(πR4/4 )  
Jc, J Polar moment of inertia of core ( πRc4/2) and 

helical wire( πR4/2 ) 
K, K', Components of external moment 
 Θ       per unit length  
m    Number of wires in a layer 
M Component of wire moment about strand axial 

direction 
Ms  Strand axial moment 
T, N, N’ Wire axial, normal and binormal force 
Rc R  Core radius and wire radius 
X, Y, Distributed wire unit force in wire 
Z  normal, binormal and axial direction 
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