
 
 

  
Abstract—A novel approach to plan an optimum motion of 

redundant robot manipulators for a predefined end-effector 
trajectory using genetic algorithms (GA) is presented. The 
efficiency of the proposed approach, without loss of generality, 
is demonstrated through a simulation carried out on a planar 
6-DOF robot manipulator. The approach benefits from two key 
features. First, the method of data representation which 
guarantees the satisfaction of joints angle limits, and second the 
conversion of considered model’s 6-DOF construction to 4-DOF 
construction along with an additional binary value which 
guarantees the exact placement of the end-effector on the 
predefined trajectory. Comparison with three other approaches 
shows that the result of the presented solution is substantially 
better. In addition the difference of two kinds of Random 
Number Generator (RNG) is addressed. It is shown that using 
RNG with normal distribution leads to faster convergence of 
the proposed algorithm than RNG with uniform distribution. 
 

Index Terms—Genetic Algorithms, Manipulator, Motion 
Planning, Trajectory Tracking 

I. INTRODUCTION 
Recently, there has been an increased research interest in 

the development of efficient procedures to solve the inverse 
kinematics problem of redundant robot manipulators. In 
general, solving the inverse kinematics problem of redundant 
robots is not trivial since the necessary mapping from the task 
coordinates to the joint coordinates is not one to one, and 
yields an infinite of solutions [1, 2]. Redundant robot 
manipulators can provide a better ability to avoid singular 
configuration and the excessive velocities and accelerations 
encountered at singularities [3]. 

Generally, there are three main approaches for trajectory 
planning for redundant manipulators, pseudo-inverse of 
Jacobian matrix, variational approach, and optimization 
techniques based on the direct kinematics [4]. 

Davidor [5] applied a GA to generate the robot trajectory 
by finding the inverse kinematics for predefined end-effector 
robot paths. A trajectory of a 3-link planar redundant robot is 
simulated by minimizing the sum of the position errors at 
each of the knot points along the path. Yun and Xi [6] 
presented a new method for optimum motion planning based 
on an improved genetic algorithm. This approach 
incorporates kinematics constraints, dynamics constraints as 
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well as control constraints. Simulation results for two and 
three DOF robots were presented. Hirakawa and Kawamura 
[7] proposed a combination of B-spline trajectory generation 
and steepest gradient optimization to design an optimal 
motion planning for redundant manipulators. However, the 
proposed optimization approach needs to determine the 
gradients of the objective function. McAvoy et al. [2] 
proposed an approach utilizing genetic algorithms for 
optimal point-to-point motion planning for kinematically 
redundant manipulators to satisfy both the initial conditions 
and some other specified criteria. Their approach combines 
B-spline curves for the generation of smooth trajectories with 
genetic algorithms for optimal solution. Ata and Myo [4] has 
proposed an optimal point-to-point trajectory planning for 
planar redundant manipulator. Their main objective was to 
minimize the sum of the position error of the end-effector at 
each intermediate point along the trajectory so that the 
end-effector can track the prescribed trajectory accurately. 
They introduced an algorithm combining Genetic Algorithm 
and Pattern Search as a Generalized Pattern Search GPS to 
design the optimal trajectory. To verify the proposed 
algorithm, simulations for a 3-DOF planar manipulator with 
different end-effector trajectories have been carried out.  

Our proposed GA optimization mechanism differs from 
the mentioned methods in a number of ways. The first 
difference lies on robot’s model alternation in order to 
computationally track the end-effector trajectory without any 
evolution, so the end-effector would be exactly placed on the 
predefined trajectory. Therefore, there would be no tracking 
error. The second difference is that the joints angle are not 
manipulated directly, rather they are accessed through a 
mapping function, (8), which maps real values [..] ∞+∞−  to 
lower and upper boundaries of joints angle. Thus the joints 
angle limits are satisfied without any conditioning statement. 
Moreover it is shown that in this special type of problem, 
selecting a special kind of Random Number Generator 
(RNG) can improve the optimization process. 

The remainder of the paper is organized as following: 
Section  0 II gives the robot’s model and the method of model 
manipulation. Section  III gives a brief overview of the 
concept of GA in each building block of the algorithm and 
presents the proposed GA solution. Section  IV demonstrates 
and discusses the efficiency of the proposed GA through an 
experiment. In the same section, the performance of the 
proposed solution is compared to that of three previous 
approaches. Finally, Section  V summarizes the contribution 
of the paper. 
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II. THE MANIPULATOR’S MODEL 
A 6-DOF robot manipulator is considered throughout the 

simulation. The model and the end-effector trajectory is 
adopted from human body during weightlifting task, Fig. 1, 
in which the end-effector trajectory is the trajectory of barbell 
in a sample snatch lift. Table I shows the links length along 
with the links mass. It is supposed that center of mass of each 
link is placed on the geometric center of itself. 

Table I. Links name along with Links length and mass 

Link Length (cm) Mass (kg)
1l , foot 13.20 3.04 

2l , shank 38.57 9.76 

3l , thigh 31.10 21 

4l , trunk 50.10 59.85 

5l , upper-arm 26.89 5.88 

6l , lower-arm 42.01 4.62 

The proposed model is shown in Fig. 2. jθ , 6..1=j , are 
joints angle based on Denavit-Hartenberg (DH) 
representation. Table II shows the joints angle limits based on 
DH representation for the sample proposed manipulator. 
Values exceeding 360° indicate the portion of the unit circle 
between min,jθ  and max,jθ , positive horizontal axis, as shown 
in Fig. 3.  

Table II. Joints angle limits based on Denavit-Hartenberg representation 

 1θ  
toe 

2θ  
ankle 

3θ  
knee 

4θ  
hip 

5θ  
shoulder 

6θ  
elbow 

Min 90° 287° 5° 224° 191° 280° 
Max 150° 348° 134° 378° 377° 390° 

As mentioned, one of the key features of our approach lies 
on the method of model conversion, in which, to ensure the 
trajectory tracking task, two degrees of freedom of the model 
are replaced with a single binary alternation and as a 
consequence the problem is reduced to define four real value 

joints angle along with a single binary value. The definition 
of model’s control parameters is converted from 6 rotary 
parameters to 4 rotary parameters and one binary value to 
fulfill the trajectory tracking task. The other two undefined 
joints angle are calculated geometrically in the sense to place 
the end-effector on the desired position. Fig. 4 shows the 
robot with two different configurations as below 
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in which the points ip , 6..1=i , are defined as below, 
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in which jθ  are joints angle based on DH representation as 

shown in Fig. 2. 0p  is the robot’s base point, positioned at 

the position T]0,0[ . 
κτ =

Τ  shows the desired position of 
end-effector on the trajectory in the instance of time κ . 
Predefined trajectory is broken into discrete intervals of time 
denoted by κ , n..0=κ , which n  shows the total number of 

 
Fig. 1. Weightlifter at the initial state. Links are shown in red lines and joints 
are shown in blue circles. 

 
Fig. 2. Manipulator’s model; Joints angle are based on DH representation. 

 
Fig. 3. Unit circle showing (378 – 224) degrees of freedom of a sample joint 
( 4θ ) 
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discrete time steps. jθ , 4..1=j , are know in each frame of 

time, using the GA solution, 0p  is a fixed point and 6p  is 
placed on a predefined position on the trajectory in each 
instance of time, τ . 5p , 5θ  and 6θ  can be calculated using 
the system of equations below, 
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which ix  and iy  shows the horizontal and vertical position 
of joint position ip , respectively. System of equations 5 has 

two pare of solutions if 6564 , llpp +<  , two configurations 

0 and 1, has one pair of solution if 6564 , llpp +=  and has 

no real value solution if 6564 , llpp +> , where mn pp ,  

stands for the Euclidean distance between points np  and mp . 
Joints angle 5θ  and 6θ  must be calculated according to joints 
position 4p , 5p  and 6p  to validate the joints angle limits due 
to Table I. The condition to be met is as following, 
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in which 6..5=j  and 2..1=c  and cj ,θ  is the calculated 

angle. ) mod ( ba  means the remainder, on division of a  by 
b . For the sample configurations shown in Fig. 4, 2,6θ  is 

obviously out of the range °= 280min,6θ  and °= 390max,6θ , 

so the configuration shown in (1b) is not valid. °= 3071,5θ  

and °= 2801,6θ  are both in the valid range defined in Table 

II, so for the predefined trajectory and the at hand values 
},,,{ 4321 θθθθ  or respectively },,,,{ 43210 ppppp , the only 

feasible configuration is (1a). 
In the case of 6564 , llpp +< , two possible positions of 

5p  are named as 1,5p  and 2,5p  and joints angle 5θ  and 6θ  

are denoted as 1,5θ , 1,6θ  and 2,5θ , 2,6θ . For 6564 , llpp += , 

indeed, we have two positions 1,5p  and 2,5p  which 

2,51,5 pp = . 

III. THE GENETIC ALGORITHMS SOLUTION 
Given the manipulator’s model and the predefined 

end-effector trajectory, the GA plans an optimum sequence 
of configurations in the sense of minimizing the total 
consumed energy. In the following the proposed GA solution 
is presented. 

A. The Representation Mechanism 
The first, and perhaps the most critical aspect in designing 

a GA for a specific optimization problem is the basic 
mechanism that links the GA to the solution space of the 
problem [1]. This mechanism consists of choosing a method 
to represent a solution to the real problem as a finite-length 
string over a specific alphabet, the chromosome. The second 
key feature of our approach is the method of data 
representation, the content of each chromosome.  

In our approach, each member of the GA consists of one 
initial configuration, 0=τ , along with a sequence of 
configurations in which the sequence of movements of the 
manipulator is stored. The mentioned sequence contains the 
configurations from the frame next to the beginning to the 
end of the trajectory, n..1=τ . 

The chromosome encoding the initial configuration 
consists of a single binary value, 

00 =τ
ν  indicating the 

configuration and four elements 
0=τ

ν r , 4..1=r , which each 

element indicates the quantity of 0,jσ  in the function 

)( 0,jjS σ , 4..1=j , (8). The function )( ,κσ jjS  incorporates a 

sigmoid function, ))exp(1/(1 ,κσ j−+ , in order to map the 

random values, κσ ,j , to degree values, 
κτ

θ
=j . The 

configuration here denotes the selection of the position of 
joint number 5, 1,5p  or 2,5p .  

The sequence of chromosomes encoding the sequence of 
configurations throughout the rest of the trajectory contains a 
single binary value indicating the configuration type, 

κτ
ν

=0 , 

and four elements 
κτ

ν
=r , 4..1=r , which each element 

contributes in the calculation of the value κσ ,j  which is used 

in the function )( ,κσ jjS , 4..1=j , as shown below, 
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Fig. 4. Two possible configurations (1a) and (1b) using predefined positions 
},,,,,{ 643210 pppppp  

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



 
 

Using the above formulation has two key benefits. The 
first benefit lies on the manner the joints angle limits are 
served. Using the sigmoid function, (8), guarantees the 
placement of the joint angle value in the boundary 

]..[ max,min, jj θθ . At extremes, +∞→κσ ,j  and −∞→κσ ,j , the 

value of )( ,κσ jjS  would be max,jθ  and min,jθ , respectively. In 
this way, the need for evaluating several if statements, 
validating the joints angle limits is eliminated. 

The following summarizes the notations defined above. A 
member is defined as, 
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in which μM , m..1=μ , stands for the member μ  within a 
generation, and m  is the total number of members in each 
generation. 

κτ =
v  is a chromosome concerning a single 

instance of time κτ = , defining the configuration of the 
robot as shown  below, 

][ 43210 κτκτκτκτκτκτ
ννννν

======
=v  (11) 

where 
κτ

ν
=0  is a binary value, either 0  or 1 , selecting one 

of the configurations (1a) or (1b), and 
κτ

ν
=r , 4..1=r , 

defines a randomly generated value used in the calculation of 
κσ ,j , (7). Finally the values κσ ,j  are applied to the function 

)( ,κσ jjS  to calculate the joints angle in each instance of time 
n..0=τ , (8). 

B. Random Number Generation 
Chromosomes, as noted in (11), consist of 5 random 

numbers defining the random binary configuration, for 0ν , 
and random joint angle variations inputted to equations 
(7)-(9), for  rν , 4..1=r . The Random Number Generator 
(RNG), ℜ , must satisfy the condition below, 

1)( =ℜ∫
+∞

∞−
dpp  (12) 

which )(pℜ  is the probability density function (pdf) of ℜ  at 
point p . 

A threshold value for the assignment of binary 
configuration value 0ν  must be assigned due to )(pℜ  in 
order to satisfy the equation below, 
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to give an equal chance to both sides of binary value. T  is 
the threshold value. 

Two different kinds of ℜ  are proposed. ℜ  are supposed 
to be with uniform pdf and with normal pdf, uℜ  and nℜ  
respectively. The two proposed RNGs, are shown below, 
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where nρ  and uρ  are constant scaling values. Threshold 
values for 0,uℜ  and 0,nℜ  are 5.0=uT  and 0=nT , 

respectively. )(puℜ  and )(pnℜ  are defined as below, 
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where a  and b , ba < , are the minimum and maximum 
values of )(puℜ , respectively and 2σ  and μ  are variance 
and mean values of )(pnℜ , respectively. Two mentioned 
RNGs are compared within a simulation. It is shown that the 
type and the values of the parameters of function ℜ  have a 
critical role in the performance of the GA. Several 
configurations are proposed and compared in chapter  III 
section  F. 

C. The Initial Population 
The initial population and new members in each 

generation are generated randomly. Generating members 
with some criteria applied to the initial configuration can 
drastically reduce the computation time required by the GA. 
It is shown that minimizing the static torque applied to each 
joint at the initial configuration, 0=τ , improves the overall 
performance of the GA. 

The initial population and new members in each 
generation are generated randomly. μM  is generated using a 

proposed ℜ  and the feasibility of μM  is checked against 

two criteria, first 6564 , llpp +≤  and second, joint angle 

limits for 5θ  and 6θ . Both the criteria must be satisfied in 
order to keep the generated member, μM , in the generation. 

D. The Evaluation Mechanism 
In an optimization problem, the fitness function 

corresponds to the objective function which must be 
optimized. Fitness function plays the role of the environment 
in which during the evolution of the GA, the chromosomes 
must be adapted. Fitness function in our case, )( μMF , is 
applied to the member itself, rather than individual 
chromosomes, in order to optimize whole the sequence of 
configurations. Our fitness function is as following, 
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which 
κτ

θ
=

)( jT  is the value of torque applied to joint j  at 

instance of time κτ = . Torque, )(θT , is calculated using 
recursive Newton-Euler method [8]. 

E. The Genetic Operators 
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Three different genetic operators are used in our algorithm, 
selection, crossover and mutation. 

Reproduction or selection operator selects some of the 
current members to be passed to the next generation. The 
traditional method, proportionate selection or roulette wheel, 
is used in our approach [9]. The selection probability for each 

μM , )( μMR , proportionate to its fitness function, )( μMF , 
in the population of m  individuals is as below, 
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The next operator used in our approach is crossover which 
is a recombination operator that works on a pair of old 
chromosomes. We’ve used single point crossover which is 
introduced originally by Holland [10]. Under this type of 
crossover, each member in a pair is cut at one instance of 
time, τ , and two new members are formed. The first 
offspring receives the first part of the first parent along with 
the second part of the second parent whereas the other 
offspring receives the first part of the second parent and the 
second part of the first parent. 

The last operator is mutation. Mutation is applied to each 
individual member. It randomly selects a member and alerts 
the chromosome at random instance of time κτ = , 

κτ =
v . 

F. The Control Parameters 

The most important control parameters are population size, 
crossover rate, mutation rate, generation gap, elitism [11]. 
Generation gap specifies how many of the members of the 
population will be replaced by the new offspring in each 
generation. Elitism is a selection strategy which guarantees 
the survival of the best member of one generation to the next. 
Without such a guarantee, it is possible for the best 
chromosome of the current generation to be lost due to 
mutation, crossover, or reproduction [12]. These parameters 
are listed in To evaluate the effect of different types of RNG 
ℜ , two different setups are proposed. Table IV shows the 
parameters of the each setup. 

Table III. 

To evaluate the effect of different types of RNG ℜ , two 
different setups are proposed. Table IV shows the parameters 
of the each setup. 

Table III. Control parameters 

Parameter Quantity 
Population Size, m  200 
Generation Gap 50
Proportionate Selection 35 
Elitism 15
Crossover Rate 70 
Mutation Rate 30

Table IV. Parameters of the two simulated setups. 

Random Number Generator Parameters 
Normal Distribution, )(pnℜ  1=nρ , 12 =σ , 0=μ  
Uniform Distribution, )(puℜ  1=uρ , 0=a , 1=b  

IV. RESULTS 
A sample trajectory is proposed. Fig. 5 shows the proposed 

trajectory in dashed line along with a sample robot 
configuration on 14=τ . The proposed trajectory is broken 
into 33 instances of time, 33=n . Each step is passed within 
1/25s. The robot must traverse the predefined trajectory of 
length 1.61m in 1.32s. 

Three other approaches in addition to our approach are 
applied to our sample manipulator and the predefined 
trajectory, [2, 4, 6]. The performance of the four approaches 
are compared, despite that the approaches mentioned in [2, 4, 
6] have drift from the exact predefined trajectory. Fig. 6 
shows the performance of the four approaches in a single task 
on vertical axis versus the generations on horizontal axis. 
Elitism operator is applied in all the 4 approaches. It is shown 
that within an equal number of generations, our approach 
reaches to a better fitness value. RNG with uniform 
distribution is used throughout this simulation. 

To study the role of type of RNG, ℜ , in the overall 
performance of our approach, two setups were considered, 
Table IV. Each setup ran for 100 generations. Fig. 7 shows 
the performance of the algorithm related to each setup. The 
fitness values are normalized for the best fitness value. 

V. CONCLUSION 
A motion planning and trajectory tracking optimization 

problem is solved. Genetic Algorithm (GA) is proposed as 
the optimization method. The introduced approach benefits 
from two key features. One lies on alternating the model of 
the manipulator from 6 degrees of rotary freedom to 4 
degrees of rotary freedom and a single binary value. The 
other advantage of the proposed approach is the manner of 
data representation in each chromosome. Sigmoid function is 
used to infer the joints angle value. The proposed algorithm is 
compared with 3 other approaches in a single optimization 
task. It is shown that the introduced algorithm has a better 
performance. In addition the difference of using Random 
Number Generator (RNG) with uniform distribution and with 
normal distribution is addressed. It is shown that RNG with 

 
Fig. 5. Proposed trajectory along with a sample configuration. 
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normal distribution can achieve better results. 
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Fig. 6. Comparison between 4 different approaches. 

 
Fig. 7. Comparison between two different types of random number generators. 
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