
 
 

  
Abstract–Transient free convection flow of a viscous and 

incompressible fluid between two infinite vertical parallel plates 
in the presence of constant temperature and mass diffusion has 
been investigated analytically. The method of Laplace 
transform is used to solve the dimensionless governing partial 
differential equations. The velocity, temperature and 
concentration profiles have been presented for different 
parameters like Prandtl number, Schmidt number and for 
multiple buoyancy effects aiding and opposing. The values of 
the skin-friction and volume flux are tabulated. The transient 
solution approaches the steady state when the non-dimensional 
time becomes comparable with the actual Schmidt and Prandtl 
numbers. 

  
Keywords–Transient free convection, Vertical parallel 

plates, Heat transfer, Mass transfer, Asymmetric heating. 
 

I. INTRODUCTION 
Free convection flows in vertical channels have been 

studied extensively because of its importance in many 
engineering applications. Ostrach [1] initiated the study of 
fully developed free convection between two vertical walls 
with constant temperature. The first exact solution for free 
convection in a vertical parallel plate channel with 
asymmetric heating for a fluid with constant properties was 
presented by Aung [2]. Ostrach [3], Bodoia and Osterle [4], 
Aung et al. [5], Miyatake and Fujii [6-8], Miyatake et al. [9], 
Lee and Yan [10], Higuera and Ryazantsev [11], Camp et al. 
[12], Pantokratoras [13] have presented their results for a 
steady free convection flow between vertical parallel plates 
under different conditions on the wall temperature. The 
combined effect of thermal and mass buoyancy forces on 
laminar free convection flows between vertical parallel plate 
channels has received less attention. This effect is found to be 
important in many engineering situations, such as in the 
design of heat exchangers, nuclear reactors, solar energy 
collectors, thermo protection systems and many chemical 
processes. Yan et al. [14] have studied the effect of latent heat 
transfer associated with the liquid films vaporization on the 
heat transfer in the natural convection flows driven by the 
combined buoyancy forces of thermal and mass diffusion. 
Nelson and Wood [15-17] have presented numerical analysis 
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of developing laminar flow between vertical parallel plates 
for combined heat and mass transfer natural convection with  
uniform wall temperature/concentration and uniform 
heat/mass flux boundary conditions. They also have 
presented an analytical solution for the fully developed 
combined heat and mass transfer natural convection between 
vertical parallel plates with asymmetric boundary conditions. 
Lee [18] performed a combined numerical and theoretical 
investigation of laminar natural convection heat and mass 
transfer in open vertical parallel plates with unheated entry 
and unheated exit for various thermal and concentration 
boundary conditions. Desrayaud and Lauriat [19] have 
examined the heat and mass transfer analogy for 
condensation of humid air in a vertical parallel plate channel. 
These papers discuss the steady free convection flows by 
considering different physical situation of transport 
processes.             

However, very few papers deal with unsteady flows in 
vertical parallel plate channel. Transient considerations may 
be important if a cooling arrangement is to be designed using 
parallel plates. Thus the knowledge of the transient and the 
steady-state components is significant to understand the 
exact nature of these situations. Singh et al. [20] have studied 
the transient free convection flow of a viscous 
incompressible fluid in a vertical parallel plate channel when 
the walls are heated asymmetrically. Narahari et al. [21] have 
studied the transient free convection flow between two 
vertical parallel plates with constant heat flux at one 
boundary and the other maintained at a constant temperature. 
Jha et al. [22] have studied the transient free convection flow 
in a vertical channel as a result of symmetric heating of the 
channel walls. Recently, Singh and Paul [23] have presented 
an analysis for the transient free convective flow of a viscous 
and incompressible fluid between two vertical walls as a 
result of asymmetric heating or cooling of the walls. But the 
transient free convection flow between two infinite vertical 
parallel plates with constant temperature and mass diffusion 
at one boundary has not been studied in the literature, hence 
the motivation. In Sect. 2, the mathematical analysis is 
presented and in Sect. 3, the conclusions are summarized. 

 

II. MATHEMATICAL ANALYSIS 

Here an unsteady flow of a viscous incompressible fluid 
between two vertical parallel plates with constant 
temperature and mass diffusion is considered. The x′ -axis is 
taken along one of the plates in the vertically upward 
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direction and the y ′ -axis is taken normal to the plates. 
Initially, at time 0≤′t , the two plates and the fluid are 
assumed to be at the same temperature dT ′  and concentration 

dC ′ . At time 0>′t , the temperature and concentration of the 

plate at 0=′y  are raised to wT ′  and wC ′  respectively, 
causing the flow of free convection currents. Then the flow 
can be shown to be governed by the following equations 
under usual Boussinesq’s approximations:  
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The initial and boundary conditions are as follows: 
 

dd CCTTut ′=′′=′=′≤′ ,,0:0   for  dy ≤′≤0 , 

ww CCTTut ′=′′=′=′>′ ,,0:0    at  0=′y , 

               dd CCTTu ′=′′=′=′ ,,0     at  dy =′ .           (4) 
 

Here u ′  is the velocity of the fluid, g  the acceleration 
due to gravity,  β  volumetric coefficient of thermal 
expansion, t ′  time, d  the distance between two vertical 
plates, T ′  the temperature of the fluid, dT ′  temperature of 

the plate at dy =′ , *β  volumetric coefficient of 
concentration expansion, C ′  species concentration in the 
fluid, dC ′  species concentration at the plate dy =′ , ν  the 
kinematic viscosity, y ′  the coordinate axis normal to the 

plates, ρ  the density, pC  the specific heat at constant 

pressure, k  the thermal conductivity of the fluid, D  the 
mass diffusion coefficient, wT ′  temperature of the plate at 

0=′y , wC ′  species concentration at the plate 0=′y . 
We now introduce the following non-dimensional 

quantities: 
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Where u  the dimensionless velocity, y  dimensionless 
coordinate axis normal to the plates, t  dimensionless time, 
θ  the dimensionless temperature, C  the dimensionless 
concentration, Gr  thermal Grashof number, Gm  mass 
Grashof number, μ  the coefficient of viscosity, Pr  the 
Prandtl number, Sc  the Schmidt number, and N  is the 
buoyancy ratio parameter. Then in view of equations (5), 
equations (1) – (4) reduce to the following non-dimensional 
form of equations: 
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The initial and boundary conditions are 
 
 0,0,0:0 ===≤ Cut θ     for    10 ≤≤ y , 
 1,1,0:0 ===> Cut θ       at      0=y , 
               0,0,0 === Cu θ      at      1=y .                 (9) 
 
The solutions to Eqs. (6) – (8) satisfying the initial and 
boundary conditions (9) are derived by the usual 
Laplace-transform technique as follows: 
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Where yna += 2 , ynb −+= 22 . 
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Case II: 1Sc =  
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Where ync ++= 22 . 
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The series in Eqs. (10) – (14) can be shown to be absolutely 
convergent because of the presence of standard mathematical 
functions. The numerical values of the velocity, temperature, 
concentration, skin-friction and volume flow rate are 

computed for different parameters like Prandtl number, 
Schmidt number, buoyancy ratio and time. The buoyancy 
ratio parameter N represents the ratio between mass and 
thermal buoyancy forces. When 0=N , there is no mass 
transfer and the buoyancy force is due to the thermal 
diffusion only. 0>N  means that mass buoyancy force acts 
in the same direction of thermal buoyancy force, while 

0<N  means that mass buoyancy force acts in the opposite 
direction. Since the two most commonly occurring fluids are 
atmospheric air and water, the results are limited to Prandtl 
numbers of 0.71 (air) and 7.0 (water). The effect of buoyancy 
ratio N for both aiding and opposing flows are shown in Fig. 
1. It is observed that the velocity increases in the presence of 
aiding flows whereas it decreases in the presence of opposing 
flows. It is also observed that the velocity increases with 
increasing the time. 
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Fig. 1. Velocity profiles for different N and t
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To derive the solutions for steady state, we put 
0/)( =∂∂ t  in Eqs. (6) – (8) which then reduces to 

                           2

2

0
y

u
NC

∂

∂
++= θ                                 (15) 

                            2

2

0
y∂

∂
=

θ
                                                (16) 

                            2

2

0
y

C

∂

∂
=                                                (17) 

 
These are solved using the boundary conditions (9) and these 
steady-state velocity, temperature and concentration profiles 
are computed and shown in Figs. 2 to 4 as dotted lines. When  
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computing steady-state solutions for velocity, temperature 
and concentration from Eqs. (6) – (8), it is observed that for 

500,0.1=t  the values of u  for fixed N , θ  and C  for 
0.7,71.0Pr;500,6.0Sc ==  respectively coincides with 

those derived from the solution of Eqs. (15) – (17). Hence the 
transient solution approaches the steady-state when the 
non-dimensional time becomes comparable with the actual 
Schmidt and Prandtl numbers. 

In Fig. 2, the velocity profiles are shown for different 
values of Schmidt number and time. It is observed that an 
increase in Schmidt number leads to a fall in the velocity. 
Also, the velocity increases with increasing time. 

The temperature profiles are shown in Fig. 3 for different 
values of Prandtl number and time. From this figure it is 
evident that the temperature increases with increasing time 
but it falls owing to an increase in the Prandtl number. 

The numerical values of the concentration profiles are 
computed from Eqs. (12) and (14) and these values are 
depicted in Fig. 4 for different values of Schmidt number and 
time. The effect of Schmidt number is very important in 
concentration field. It is observed that the concentration 
increases with increasing time but decreases with increasing 
the value of the Schmidt number. 

We now study the skin-friction, which is given in 
non-dimensional form by 
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The numerical values of 0τ  and 1τ  are evaluated and 

these are listed in Table I. From this table, it is observed that 
the skin-friction increases with increasing time but decreases 
with increasing the value of the Schmidt and Prandtl 
numbers. Physically, this is possible because fluids with high 
Schmidt and Prandtl numbers move slowly and hence there is 
less friction at the plates. Moreover, the skin-friction 
increases in the presence of aiding flows and decreases in the 
presence of opposing flows. It is also computed the 
steady-state value of the skin-friction by calculating 0τ  and 

1τ  from Eqs. (18) and (19) for large values of time t  for a 
fixed buoyancy ratio, for example 2.0=N , and it is seen 
that 400000.00 =τ  and 200000.01 =τ  which agree well 
with those computed from their steady-state solution 
obtained from Eq. (15).  
               

Table I. Numerical values of 10 , ττ  and Q  

t  Pr  Sc  N  
0τ  1τ  Q  

0.2 0.71   0.16 0.2 0.32694 0.12707 0.035208 
0.2 0.71   0.6 0.2 0.32183 0.12197 0.034173 
0.2 0.71   2.01 0.2 0.30862 0.10953 0.031574 
0.2 0.71 0.6 -0.2 0.21213 0.07890 0.022293 
0.2 0.71 0.6 0.4 0.37667 0.14350 0.040113 
0.2 0.71 0.6 -0.4 0.15728 0.05737 0.016352 
0.4 0.71 0.6 0.2 0.38655 0.18656 0.047275 
0.2 7.0 500   0.2 0.14265 0.01027 0.006459 
0.2 7.0 500 0.4 0.14697 0.01029 0.006483 
0.4 7.0 500 0.2 0.19922 0.03894 0.014598 
0.2 7.0 500 -0.2 0.13401 0.01022 0.006410 
0.2 7.0 500 -0.4 0.12969 0.01019 0.006386 

Steady state  0.2 0.40000 0.20000 0.050000 
 

Another interesting phenomenon in this study is to 
understand the effects of t , Sc , Pr  and N on the volume 
flow rate which is given by 
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Where Q  is the non-dimensional volume flux. We substitute 
for u  from (10) in Eq. (22), and compute the integral 
numerically using Simpson’s rule. The numerical values of 
Q  are listed in Table I. It is observed from this table that the 
volume flux increases with increasing time and it decreases 
with increasing the value of the Schmidt and Prandtl 
numbers. It is also observed that the volume flux increases in 
the presence of aiding flows and decreases in the presence of 
opposing flows. 
 

III. CONCLUSIONS 

An exact solution of the transient free convection flow 
between two long vertical parallel plates with constant 
temperature and mass diffusion at one boundary is presented. 
The dimensionless governing coupled linear partial 
differential equations are solved by the usual 
Laplace-transform technique. The effect of different 
parameters like buoyancy ratio, Schmidt number, Prandtl 
number and time are studied. Conclusions of the study are as 
follows: 

1. The velocity of the fluid increases in the presence of 
aiding flows )0( >N  and decreases with opposing 
flows )0( <N . 

2. The velocity increases with increasing time and it 
decreases with increasing the value of the Schmidt 
number. 

3. The temperature increases with increasing time but falls 
owing to an increase in the Prandtl number. 

4. The concentration increases with increasing time but 
decreases with increasing the value of the Schmidt 
number. 

5. The skin-friction increases with increasing time but 
decreases with increasing the value of the Schmidt and 
Prandtl numbers. Also, the skin-friction increases in the 
presence of aiding flows and decreases with opposing 
flows. 

6. The volume flux increases with increasing time and it 
decreases with increasing the value of the Schmidt and 
Prandtl numbers. Also, the volume flux increases in the 
presence of aiding flows and decreases with opposing 
flows. 
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