
 
 

 

  
Abstract— Taguchi method is a widely used approach for 
parameter design to achieve quality and yield 
improvements for many business applications. 
Nevertheless, there has been much discussion in 
literature about the invalidity of the statistical techniques 
adopted in this method. This research proposes an 
extension to ongoing research by investigating the alpha 
risk of Taguchi method with L18 (21×37) array for the 
nominal-the-best (NTB) type quality characteristic (QCH) 
using simulation. It is assumed that all QCH values are 
normally distributed with the same mean and standard 
deviation. Then the null hypothesis, that all factors 
should be identified as insignificant, is true. Simulation 
results however, showed that the alpha risk is very high 
and hence Taguchi method may provide a misleading 
parameter design. This research, therefore, recommends 
relying on more efficient alternatives. 
 

Index   Terms—Alpha risk, Nominal-the-best, Simulation, 
Taguchi method.  

I. INTRODUCTION 
   Taguchi [1] considers three stages in product’s or process’s 
development: system design, parameter design, and tolerance 
design. In system design, the engineer uses scientific and 
engineering principles to determine the basic configuration. 
In the parameter design stage, the specific values for the 
system parameters are determined. Finally, tolerance design 
is used to determine the best tolerances for parameters.  
    In most literature review, the parameter design, or 
so-called Taguchi method [2], received the most attention. 
Parameter design is an off-line production technique for 
reducing variation and improving quality by using the 
product array. In parameter design, Taguchi focuses on 
determining the effects of the control factors on the 
robustness of the product’s function. Instead of assuming that 
the variance of the response remains constant, it capitalizes 
on the change in variance and looks for opportunities to 
reduce the variance by changing the levels of the control 
factors. In Taguchi method, orthogonal arrays (OAs) are 
employed to optimize the amount of information obtained 
from a limited number of experiments. The signal-to-noise 
(S/N) ratio is then used as a quality measure to decide optimal 
factor levels. Analysis of variance (ANOVA) for S/N ratio 
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follows to determine significant factor effects. In ANOVA, 
Taguchi obtains an approximate estimate of error variance by 
pooling-up technique [3]. Then, he adopts F value of four to 
decide significant factor effects. According to Taguchi, the 
application of the above procedure provides a robust design. 
Taguchi method has been adopted for parameter design in 
many business applications [4-5].  
   Nevertheless, the statistical techniques of Taguchi method 
have been the subject of debate and much discussion in 
different platforms. For example, Leon et al. [6] introduced 
the concept of performance measure independent of 
adjustment as a replacement for S/N ratio. Box [7] used 
sampling experiments with random numbers to illustrate the 
bias produced by pooling. Tsui [8] mentioned that Taguchi’s 
analysis approach of modelling the S/N ratio leads to 
non-optimal factor settings due to unnecessary biased effect 
estimates. Ben-Gal [9] suggested the use of data compression 
measures combined with S/N ratio to assess noise factor 
effects.  
    Failure to select the best conditions for process or product 
parameters is a costly mistake in today’s highly competitive 
markets. Li and Al-Refaie [10] investigated the alpha risk of 
Taguchi method, or the probability of identifying 
insignificant factors as significant, with L16 array for the 
larger-the-better type quality characteristic (QCH) using 
simulation. The L16 array contains 15 two-level factors. 
Occasionally, there is interest in using an OA that has some 
factors at two levels and some factors at three levels. The 
most-widely used mixed-levels OA is the L18 (21×37) array 
[11]. To extend the above research for another QCH type, the 
research investigates the alpha risk of Taguchi method with 
L18 (21×37) array for the nominal-the-best (NTB) type QCH 
using simulation. Further, Dabade et al. [12] employed 
Taguchi method using QCH values instead of S/N ratio. 
Furthermore, Sun et al. [13] tested factor’s significance at           
5 % significance level instead of four. In these regards, the 
alpha risk of Taguchi method will be also investigated at 5 % 
significance level and for QCH. The remainder of this paper 
is organized as follows. Section II outlines research 
methodology. Section III provides analysis and discussion of 
alpha risk. Section IV summarizes conclusions.  

II. METHODOLOGY 
   It is assumed that QCH, x, is normally distributed with 
mean and standard deviation of μ and σ, respectively. Let y 
be a standardized random variable of  x calculated as (x-μ)/σ; 
or  y ~ NID(0, 1). The L18 (21×37) array is shown in Table 1. 
This array has 18 rows (experiments) and nine columns, 
including a hidden column I which contains A×B interaction. 
Column A has two levels, whereas columns B to I are 
assigned each at three levels. All y values will be generated 
from NID(0, 1). Consequently, the null hypothesis, Ho, that 
all the nine factors are insignificant, is true. The alternative 
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hypothesis, H1, will be that at least one factor is identified as 
significant. Typically, the alpha risk is calculated as the 
probability of rejecting Ho given that Ho is true.  
   Let k represents the number of pooled-up columns into 
error term and αk denotes alpha risk. The L18 (21×37) has 17 
total degrees of freedom; one degree of freedom for column 
A, whereas two degrees of freedom associated with each of 
the eight three-level columns. If each column is assigned to a 
factor, no degrees of freedom will be left for error term. In 
order to test factor’s significance, the sum of squares for the 
bottom five columns; or about half the degrees of freedom of 
L18 (21×37) array as suggested by Taguchi, can be pooled-up 
to obtain an approximate estimate of error term. 
Consequently, at most five columns of L18 (21×37) array will 
be pooled-up as error term as illustrated in Table 2. For 
example, when one column is pooled-up into error term; i.e., 
k equals one, the error sum of squares (SSE) is obtained as 
follows: 

a. If the smallest sum of squares (SS) corresponds to 
column A, the SSE is equal to the SSA. Then, one degree 
of freedom is associated with error term (dfe). The MSE 
is equal to SSE. The mean square (MS) contributed by 
each of three-level factors is obtained from SS divided 
by two.  

b. If the smallest SS corresponds to a three-level factor, the 
SSE is equal to the smallest SS, whereas dfe is equal to 
two.  

The SSE is obtained when two to five columns are pooled-up 
in a similar manner. The methodology adopted to estimate 
the alpha risk of  Taguchi method is outlined in the following 
steps: 
 
Step 1: Start the first simulation cycle by generating                  
two  replicates, y1  and y2, from NID(0, 1) for each 
standardized QCH, yi, in each row i; i = 1, ... , 18.  
 
Step 2: Let iy  be the average of y1 and y2 values and 2

is  
denotes the variance. Calculate the S/N ratio, ηi, using  
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Step 3: Let l represents the number of factors identified as 
significant and p (k, l) denotes the probability of identifying l 
factors as significant when k columns are pooled-up. Let   
p (k, l) represents the average of p (k, l) values, while sp is the 

standard deviation for several simulation cycles. Conduct 
ANOVA by calculating the SS contributed by each factor. 
Then, pool-up one column into error term as shown in            
Table 2. Obtain the F ratio for each remaining factor as MS 
divided by MSE, and then compare it with four. If the F ratio 

for a factor is greater than four, that factor is identified as 
significant. Otherwise, it is identified as insignificant. 
Perform simulation for several cycles each of large enough 
runs to ensure that sp is very small relative to αk. Estimate 
the p (1, l) values then calculate α1 using Eq. (4).    
                8
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1
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The probability of identifying correctly all the (9-k) factors as 
insignificant, p (1, 0), is equal to (1-α1). Hence, the sp of α1 is 
equal to the sp of p (1, 0). 
                                                                    
Step 4:  By similar simulation, repeat steps 1 to 3 to estimate 
the αk  for k equals two to five. Generally, when k columns are 
pooled-up, the SSE is calculated as the sum of the k smallest 
SSs, while dfe is sum of the degrees of freedom associated 
with the k pooled-up columns. Obtain MSE as SSE by dfe. 
Calculate the F ratio associated with each of the (9-k) 
remaining factors as MS divided by MSE. Then, test factor’s 
significance at four. Estimate the p (k, l) values by similar 
simulation for k equals two to five. Finally, calculate αk using     
Eq. (5). 
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Step 5: Repeat steps 1 to 4 by similar simulation to estimate 
the alpha risk at 5 % significance level instead of four, as 
illustrated in Table 2. For example, when one column in 
pooled-up into error term, factor’s significance is tested at       
5 % significance level as follows: 
a. If column A is pooled-up, the F ratio for each of the eight 

remaining three-level factors is compared with F0.05,2,1 of 
199.50. 

b. If a three-level column is pooled-up, then the F ratio for the 
column A is compared with F0.05,1,2 of 18.51, whereas the      
F ratio for each of the eight remaining three-level factors is  
compared with F0.05,2,2 of 19.00. 

 
Step 6: Repeat the above procedure by similar simulation 
while iy  is used instead of S/N ratio in step 2. 
 

III. ANALYSIS AND DISCUSSION 
    Simulation is conducted for ten cycles each of 10000 runs. 
The alpha risk is then estimated for S/N ratio and iy  at both F 
criteria for all k values. 
 
A. The Alpha Risk at Four Using S/N Ratio 
    This part corresponds to steps 1 to 4. S/N ratio is used as     
a quality measure. Then, ANOVA for S/N ratio is conducted 
at four. The alpha values at four are estimated for one to five 
pooled-up columns by simulation. Table 3 displays the      
p (k, l) and αk at four for all k values.  

 
    
 
         . 

Table 1. The orthogonal array L18 (21×37). 
 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



 
 

 

Column* Standardized QCH Exp.  
(i) A B C D E F G H Replicates iy  2

is  S/N ratio (ηi) 

1 1 1 1 1 1 1 1 1 y11, y12 1y  2

1s  η1 

2 1 1 2 2 2 2 2 2 y21, y22 2y  2

2s  η2 

3 1 1 3 3 3 3 3 3 y31, y32 3y  2

3s  η3 

4 1 2 1 1 2 2 3 3 y41, y42 4y  2

4s  η4 

5 1 2 2 2 3 3 1 1 y51, y52 5y  2

5s  η5 

6 1 2 3 3 1 1 2 2 y61 , y62 6y  2

6s  η6 

7 1 3 1 2 1 3 2 3 y71, y72 7y  2

7s  η7 

8 1 3 2 3 2 1 3 1 y81, y82 8y  2

8s  η8 

9 1 3 3 1 3 2 1 2 y91, y92 9y  2

9s  η9 

10 2 1 1 3 3 2 2 1 y10,1, y10,2 10y  2

10s  η10 

11 2 1 2 1 1 3 3 2 y11,1, y11,2 11y  2

11s  η11 

12 2 1 3 2 2 1 1 3 y12,1, y12,2 12y  2

12s  η12 

13 2 2 1 2 3 1 3 2 y13,1, y13,2 13y  2

13s  η13 

14 2 2 2 3 1 2 1 3 y14,1, y14,2 14y  2

14s  η14 

15 2 2 3 1 2 3 2 1 y15,1 , y15,2 15y  2

15s  η15 

16 2 3 1 3 2 3 1 2 y16,1, y16,2 16y  2

16s  η16 

17 2 3 2 1 3 1 2 3 y17,1, y17,2 17y  2

17s  η17 

18 2 3 3 2 1 2 3 1 y18,2, y18,2 18y  2

18s  η18 

* A × B Interaction is estimated in a hidden column (I).  
 
 
 

Table 2. Illustration of pooling-up technique and F test.  
 

F value k 
value SSE Pooled-up columns dfe F test 

Taguchi  5 %  significance level 
Column A 1 Eight remaining 3-level factors 4 F0.05,2,1 = 199.50 

Column A 4 F0.05,1,2 = 18.51 k = 1 The smallest SS Three-level column 2 Seven remaining 3-level factors 4 F0.05,2,2 = 19.00 
Column A & 

one three-level column 3 Seven remaining 3-level factors 4 F0.05,2,3 = 9.55 

Column A 4 F0.05,1,4 = 7.71 k = 2 The sum of two smallest 
SSs Two three-level columns 4 

Six remaining 3-level factors 4 F0.05,2,4 = 6.94 
Column A & 

two three-level columns 5 Six remaining 3-level factors 4 F0.05,2,5 = 5.79 

Column A 4 F0.05,1,6 = 5.99 k = 3 The sum of three 
smallest SSs Three three-level columns 6 Five remaining 3-level factors 4 F0.05,2,6 = 5.14 

Column A & 
three three-level columns 7 Five remaining 3-level factors 4 F0.05,2,7 = 4.74 

Column A 4 F0.05,1,8 = 5.32 k = 4 The sum of four smallest 
SSs Four three-level columns 8 

Four remaining 3-level l factors 4 F0.05,2,8 = 4.46 
Column A & 

four three-level columns 9 Four remaining 3-level factors 4 F0.05,2,9 =  4.26 

Column A 4 F0.05,1,10 = 4.70 k = 5 The sum of five smallest 
SSs Five three-level columns 10 Three remaining 3-level l factors 4 F0.05,2,10 =  4.10 
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From Table 3, the following results are obtained: 
1. The ratio of sp relative to αk is very small and considered 

negligible for all k values. Consequently, simulation for ten 
cycles each of 10000 runs is good enough to obtain 
accurate estimates of the alpha mistake.   

 
2. The αk is very high for all k values. Note that the αk slightly 

decreases as k value increases. Nevertheless, the smallest 
αk (= 0.82766), which corresponds to α5, is still 
unacceptable. As a result, Taguchi method using S/N ratio 
at four is concluded a risky approach for parameter design 
for all k values.  

 
3. Let 

maxp (k, l) be the largest p (k, l) for k pooled-up 
columns. In Table 3, the 

maxp (k, l) for one pooled-up 
column corresponds to the probability, p (1, 8), of 
identifying all the eight remaining factors as significant. 
Whereas, the 

maxp (k, l) for two to five pooled-up columns 
corresponds to identifying as significant all the remaining 
(k, 7-k) factors. Mathematically, 

    
maxp (k, l)  = p (k, 7-k)      k = 2, … , 5                           (6) 

In other words, when k columns are pooled-up into error 
term then factor’s significance is tested at four, Taguchi 
method using S/N ratio tends to misidentify most of the 
remaining factors as significant. 
 

      Table 3. The p (k, l) and αk at four. 
Pooling-up l value k = 1 k = 2 k = 3 k = 4 k = 5 

l = 0 0.01579 0.02028 0.04274 0.08684 0.17234
l = 1 0.02383 0.04416 0.09113 0.16359 0.26217
l = 2 0.03712 0.07520 0.14186 0.22141 0.27766
l = 3 0.05419 0.11270 0.19167 0.23500 0.19485
l = 4 0.07826 0.15826 0.21412 0.19269 0.09298
l = 5 0.11157 0.21406 0.19789 0.10047  
l = 6 0.15074 0.19524 0.12059   
l = 7 0.20878 0.18010    
l = 8 0.31972     
αk 0.98421 0.97972 0.95726 0.91316 0.82766
sp 0.00309 0.00395 0.00504 0.00447 0.00346

sp/αk×100 % 0.31 0.40 0.53 0.49 0.42 

 
 
B. The Alpha Risk at 5 % Significance Level Using S/N Ratio  
   In this part, ANOVA is conducted at 5 % significance level 
instead of four. In step 5, the alpha risk is estimated by similar 
simulation for all k values. The results are displayed in Table 
4, where it is noted that: 
 
1. The αk is very high for all k values. Note that the smallest αk 

(= 0.57454), which corresponds to α1, because the F0.05,2,1, 
F0.05,1,2 , and F0.05,2,2 values in      Table 2 are much larger 
than four. As a result, the probability of identifying 
correctly as insignificant increases, and hence the αk 
decreases. Despite that, the α1 is still unacceptable. As a 
result, Taguchi method at   5 % significance level still 
provides a misleading parameter design for all k values. 

 

2. Observing the 
maxp  (k, l) values, it is noted that when one 

and two columns are pooled-up, the 
maxp  (k, l) corresponds 

to the probability, p  (k, 0), of identifying correctly as 
insignificant all the (9-k) remaining factors. However, 
when three to five columns are pooled-up, the 

maxp  (k, l) 
corresponds to identifying as significant all the remaining 
(k, 6-k) factors, or  

    
maxp (k, l)  = p (k, 6-k)      k = 2, … , 5                           (7) 

  Compares the above result with alpha risk at four, it is noted 
that Taguchi method tends to identify as significant less 
number of factors at 5 % significance level. 

 
3. Comparing the αk at the same k value, it is clear that the αk 

at 5 % significance level is smaller than the αk at four for 
all k values. The reason is that all the values of 5 % 
significance level in Table 2 are larger than four.  

  
   Table 4. The p (k, l) and αk at 5 % significance level. 

Pooling-up l value k = 1 k = 2 k = 3 k = 4 k = 5 
l =  0 0.42546 0.17252 0.13140 0.15294 0.21112
l = 1 0.11364 0.14718 0.16920 0.21207 0.27817
l = 2 0.08613 0.14384 0.18325 0.22899 0.25762
l = 3 0.07311 0.14034 0.18440 0.20271 0.17875
l = 4 0.06524 0.13350 0.16083 0.14191 0.07434
l = 5 0.06089 0.11506 0.11504 0.06138  
l = 6 0.05771 0.09046 0.05588   
l = 7 0.05609 0.05710    
l = 8 0.06173     
αk 0.57454 0.87748 0.86860 0.84706 0.79016
sp 0.00213 0.00425 0.00378 0.00268 0.00412

sp/αk×100 % 0.37 0.48 0.44 0.32 0.52 

 
C. The Alpha Risk for A standardized QCH 
   Step 6 is conducted using a standardized QCH instead of 
S/N ratio in step 2. The p (k, l) and αk values are estimated at 
both F criteria by similar simulation and shown in Table 5. It 
is noted that the αk is very high at both F criteria for all k 
values. Comparing the p (k, l) and αk values between S/N 
ratio and a standardized QCH at the same F and k values, it is 
obvious that the p (k, l) and αk are almost the same for both 
quality measures for all k values. The main conclusion made 
is that Taguchi method using a standardized QCH is still 
risky for parameter design at both F criteria for all k values. 
Accordingly, the use of  S/N ratio unnecessary complicates 
the data analysis in parameter design.  
   To verify the robustness of alpha risk to increasing the 
number of replicates for a standardized QCH, four replicates 
are generated from NID(0, 1) for each row. S/N ratio is then 
calculated using Eq. (1). ANOVA for S/N ratio is then 
conducted at both F criteria for all k values.  The p (k, l) and 
αk values are estimated at both F criteria by similar simulation 
for all k values and displayed in Table 6. Clearly, at the same 
F and k values, the αk with four QCH replicates is almost the 
same as the αk with two replicates listed in Tables 3 and 4. 
Consequently, the alpha risk is concluded insensitive to 
increasing the number of QCH replicates.  
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Table 5. p (k, l) and αk values at both F criteria using a standardized QCH. 
 

four 5 % significance level l value 
k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5 

l = 0 0.00973 0.01119 0.02622 0.05915 0.16757 0.39930 0.13469 0.09835 0.11257 0.21152 
l = 1 0.01933 0.0351 0.07542 0.14999 0.26022 0.11507 0.14527 0.15592 0.20214 0.27738 
l = 2 0.03285 0.06521 0.13465 0.21875 0.27124 0.08931 0.13855 0.18926 0.23743 0.25733 
l = 3 0.05186 0.10732 0.18621 0.24802 0.20721 0.07441 0.13576 0.19330 0.21965 0.17883 
l = 4 0.07214 0.15456 0.22333 0.21122 0.09376 0.06952 0.12742 0.17340 0.15853 0.07494 
l = 5 0.10874 0.22778 0.21729 0.11287  0.06392 0.12626 0.12828 0.06968  
l = 6 0.15378 0.20111 0.13688   0.06146 0.10061 0.06149   
l = 7 0.21531 0.19773    0.06163 0.06144    
l = 8 0.33626     0.06538     
αk 0.99027 0.98881 0.97378 0.94085 0.83243 0.60070 0.86531 0.90165 0.88743 0.78848 

 
 

Table 6. The alpha risk at both F criteria using S/N ratio with four QCH replicates. 
 

four 5 % significance level l value k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5 
l = 0 0.01340 0.01855 0.03743 0.07879 0.16825 0.43546 0.16700 0.12604 0.14537 0.21055 
l = 1 0.02328 0.04129 0.08621 0.15980 0.26126 0.10920 0.14703 0.16650 0.20979 0.27766 
l = 2 0.03551 0.07343 0.13944 0.21991 0.27069 0.08150 0.14348 0.18220 0.22829 0.25738 
l = 3 0.05361 0.11082 0.18582 0.23583 0.20612 0.06940 0.14061 0.18380 0.20544 0.17897 
l = 4 0.07861 0.15356 0.21621 0.19839 0.09368 0. 06368 0.13288 0.16237 0.14706 0.07544 
l = 5 0.10768 0.21864 0.20386 0.10728  0.06012 0.11611 0.12064 0.06405  
l = 6 0.14865 0.19540 0.13103   0.05910 0.09370 0.0584   
l = 7 0.21121 0.18831    0.05750 0.05919    
l = 8 0.32805     0.06407     
αk 0.98660 0.98145 0.96257 0.92121 0.83175 0.56454 0.83300 0.87396 0.85463 0.78945 

 
 

IV. CONCLUSIONS 
One may ask ‘does it matter if some insignificant factor 

effects are pronounced significant using the Taguchi 
method?’. It is sometimes argued that for identifying the 
combination of best factor levels it is of no importance 
whether or not a factor effect is statistically significant. 
However, if we are to use statistics to catalyze the creativity 
of engineers and scientists they should know what factors to 
reason about. Trying to argue why insignificant factor effects 
have an effect will merely confuse and lead a process/product 
engineer astray. One interesting aspect of the Taguchi 
method is that it has been quite successful despite its 
shortcomings. Apparently any reasonable systematic 
experimentation, however flawed, may convey important 
information on how to design a new product or process and 
on how to improve existing products and processes. It is our 
belief that the Taguchi strategy is sound and should be 
included in any quality improvement attempts. However, the 
Taguchi method is inefficient to carry out his strategy into 
practice. This research recommends the use of simpler and 
more modern data analytic methods for parameter design.  
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