
 
 

  
Abstract—In this paper, we present a method to detect the 

early stages of Alzheimer’s disease (AD) based on 
electroencephalogram (EEG) feature extraction. We used a 
multiway analysis to extract the spatial-frequency 
characteristics for classification of subjects. The filters obtained 
from a parallel factor analysis (PARAFAC) model were used to 
describe the groups and reduce their description to meaningful 
features in frequency and space, helping the identification of 
subjects developing Alzheimer’s disease. We analyzed 
20-second steady state, artifact free EEG time series recorded 
over 21 leads from age-matched subjects. The subject database 
included 38 controls, 22 mild cognitive impairment subjects 
(MCI) and 23 Alzheimer’s disease patients (AD). We applied a 
multiway analysis based on the PARAFAC model to extract the 
multilinear interactions between groups, frequency, and space. 
In a divide and conquer scheme, we obtained a classification 
accuracy of 74.7% comparing the control subjects to the 
demented subjects, and we obtained a classification accuracy of 
75.6% comparing MCI subjects to AD patients. This approach 
combined the multilinear interaction within the tensor formed 
by subjects X frequency power X regions and provided an 
interesting interpretation and characterization of Alzheimer’s 
disease in the early stages from a simple set of features. The 
multiway modeling of EEG recordings applied to the 
characterization and classification of Alzheimer’s disease 
patients in the early stages has not been employed as yet. Even 
though the classification results are modest compared with the 
available literature, this method could help extract more 
interesting features as well as summarize information for 
classification or diagnosis at a higher level than 
subject-by-subject EEG analysis. This method, if combined 
with other features, could reveal itself to be very promising for 
diagnosing Alzheimer’s patients in the early stages. Moreover, 
it can be easily generalized as well as improved by numerous 
linear and nonlinear features of EEGs. 
 

Index Terms—Multiway analysis, PARAFAC, classification 
of Alzheimer’s patients, EEG.  

 
Manuscript submitted March 20, 2008. The first author would like to 

thank the Minister of Information and Technology of South Korea, and the 
Institute for Information and Technology Advancement (IITA) for the 
financial support given. 

C.-F. V. Latchoumane is with Korea Advanced Institute of Science and 
Technology (KAIST), Bio and Brain Engineering Dept., South Korea 
305-701 (e-mail: hsj@raphe.kaist.ac.kr).  

F. Vialatte is with BSI RIKEN, Lab. for Advanced Brain Signal 
Processing, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198 (e-mail: 
fvialatte@brain.riken.jp). 

A. Cichocki is with BSI RIKEN, Lab. for Advanced Brain Signal 
Processing, 2-1 Hirosawa, Wako-shi, Saitama, Japan 351-0198 (e-mail: 
a.cichocki@riken.jp). 

J. Jeong is with Korea Advanced Institute of Science and Technology 
(KAIST), Bio and Brain Engineering Dept., South Korea 305-701 (tel.: 
82-42-869-4319; fax: 82-42-864-5318; e-mail: jsjeong@ kaist.ac.kr). 

 

I. INTRODUCTION 
 Alzheimer’s disease is the most prevalent form of 

neuropathology leading to dementia; it affects approximately 
25 million people worldwide and is expected to have a fast 
recrudescence in the near future [1]. The numerous clinical 
methods that are now available to detect this disease 
including imaging [2]-[3], genetic studies [4], and other 
physiological markers [5], however, do not allow a mass 
screening of the population. Whereas psychological tests 
such as MMSE in combination with an electrophysiological 
analysis (e.g. electroencephalograms or EEG) would be a 
much more efficient and inexpensive screening approach to 
detect subjects affected by the disease. 

EEG recordings are now used more and more as a method 
to assess the susceptibility a patient to Alzheimer’s disease, 
but are often obtained during steady states where temporal 
information does not easily reveal the relevant features for 
subject differentiation, however it could obtain the excellent 
reported classification results [6]. In those cases, the 
spatial-frequency information includes simple indexes that 
might summarize information  valuable in detecting 
demented subjects, however, the inter-subject variability, 
especially considering the differences in the progression of 
the disease, might render the study difficult when undertaken 
subject-by-subject. In that manner, a multiway analysis 
would allow the extraction of information that is contained 
across subjects simultaneously considering the 
spatial-frequency information. This methodology has been 
applied to epilepsy detection and has successfully 
characterized the epilepsy foci in a 
temporal-frequency-regional manner [7]-[8]. Classification 
based on multiway modeling has even been performed on a 
continuous EEGs [9] showing the power and versatility of 
multiway analyses. 

Previous two-way analyses combining PCA-like 
techniques [6] have shown very interesting results in the 
classification of subjects and have then assisted in early 
detection. Thus far, no application of a multiway analysis has 
been made in this type of database, dealing with subject 
classification based on EEG characteristics.  

II. METHOD 
In this study, we aimed to extract valuable and simple 

features from the frequency-region map of each subject from 
each group (i.e. control, MCI, or Alzheimer’s patients). We 
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then constructed a multivariate tensor, subjects X frequency X 
brain region, extracted the frequency-space map associated 
with each model component. The latter mapping was used as 
a filter to class subjects using linear and nonlinear classifiers. 
The detail of the method is described as follows. 

A. Multivariate Analysis: PARAFAC 
The important concept underlying multiway analyses is the 

extraction of a multilinear structure of the data, which could 
highlight important interactions, invisible at lower 
dimensions. In this study, we used a common modeling 
method for N-way analyses: PARAFAC [10]. 

The parallel factor analysis (PARAFAC) is often referred 
to as a multilinear version of the bilinear factor models. From 

a given tensor, X
I J K× ×∈� , this model is able to extract 

linear decompositions of Rank-1 tensors.  
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where ar, br, and cr are the rth column of the component 

matrices 
I RA ×∈� , B J R×∈� , and C K R×∈� , 

respectively, and E I J K× ×∈�  is the residual error matrix. 
The operator ◦ designates the outer product of the two 
vectors. The PARAFAC model under optimal fitting 
conditions (e.g. core consistency analysis) is able to provide a 
model with the assumption of trilinearity relations between 
the dimensions (also called modes), thus, will provide a 
unique fit for the given data. 

The fitting of the model depends on the number of 
components, R, chosen by the users, and for this approach, 
we opted for validation of the model (i.e. number of 
components) based on the core consistency [11]. However, 
the choice of the correct number of components only 
guarantees that the model does not suffer from overfitting. 
We could observe that for an optimal number of components, 
the classification results returned discrete values, which were 
inversely correlated to the average of the maximum residual 
values. This correlation indicates that overfitting does lead to 
a less meaningful model. In addition to the core consistency 
analysis, we opted for a model with a high average maximum 
of residual. 

 
 

Fig. 1: PARAFAC modeling of a 3-way tensor; each component (R=2) is the 
outer product of Rank-1 tensor a, b, and c, and E is a residual tensor. 

B. From Model to Filter 
The multivariate model, with a sufficient number of 

components and an appropriate fitting (i.e. core consistency 
[11] and component variability), is able to represent a 
trilinear interaction between the modes. The sample mode is 
analogue to the components in the principal component 
decomposition, thus representing the weight of the common 
interactions with the two other modes. In addition, the 
component-wise frequency-region map formed by the 

frequency mode and region mode could be thought of as a 
characteristic filter, which combined with the sample weight, 
would recreate the original data. This same filter could also 
be used in a discriminant comparison to decide the 
membership of each sample. We calculated the filters, FR, as 
described in Eq. (2): 

( )R R RF b c= o ,                               (2) 
where bR and cR are the Rank-1 vector of the frequency and 

region mode in the PARAFAC model, respectively. 

C. Subjects & EEG Recordings 
The subjects analyzed in this study were taken from a 

previously studied database [6, 12, 13] and consisted of eyes 
opened, steady state EEG recordings of duration of 20 s, over 
21 leads disposed according to the 10-20 international system 
and digitalized at 200 Hz. The database contains 38 control 
(71.7±8.3) subjects, 22 mild cognitive impairment (MCI) 
subjects (71.9 ± 10.2) who later contracted Alzheimer’s 
disease, and 23 Alzheimer’s disease patients (72.9±7.5). The 
control subjects had no complaints or history of memory 
problems, and scored over 28 (28.5±1.6) on the mini mental 
state exam (MMSE). The MCI subjects had complaints about 
memory problems and scored over 24 at the MMSE (26±1.8). 
The inclusion criterion was set at 24 as suggested in [13], 
therefore, encompassing MCI subjects with various cognitive 
deficits, but in the early stages of Alzheimer’s disease. The 
Alzheimer’s disease patients scored below 20 on the MMSE 
and had had a full clinical assessment. Thirty-three 
moderately severely demented probable AD patients (mean 
MMSE score = 15.3±6.4, range = 0-23) were recruited from 
the same clinic. After obtaining written informed consent 
from the patients and controls, all subjects underwent EEG 
and SPECT examination within one month of entering the 
study. All subjects were free of acute exacerbations of AD 
related co-morbidities and were not taking medication. The 
medical ethical committee of the Japanese National Center of 
Neurology and Psychiatry approved this study. 

   

D. Classification: Contol vs. Demented and MCI vs. AD 
We classified the three classes (Ctr, MCI, and AD) using 

both a quadratic discriminant analysis (QDA) and an 
artificial neural network (ANN, feedforward two layer 
perceptron with one input bias). We first separated the 
control subjects from demented patients, using the FR filters 
(see Eq. (3)) extracted from the PARAFAC model (three 
components were the largest accepted dimension according 
to the core consistency). For a comparison, we also generated 
three “reference filters”, FA (Eq. (3)), using the averaged 
matrix along the samples of each class (Ctr, MCI, and AD): 

A cF X= ,          (3) 
where Xc is the matrix of all the samples of one class (e.g. 

all Ctr subjects or all AD patients). The filters obtained were 
then applied to the original data, constituting for each subject 
a database of three descriptive features. We validated the 
classification models using a leave-one-out approach. The 
same procedure was applied to a classifier separating the AD 
patients from the MCI patients. In this context, we used a 
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two-component PARAFAC against the two reference filters 
of the AD and MCI classes. Combining the two classifiers in 
cascade (Ctr vs. MCI and AD, then MCI vs. AD, see Fig. 2), 
it is therefore feasible to separate the data into the three 
groups.  

 

 
 

Fig. 2: Classification method – cascade of classifiers. 
 

The filter used for the classification provides additional 
information, which is especially useful for the interpretation 
of the spatial-frequency boundary.  

III. RESULTS 
The best classification results using the ANN and QDA are 

displayed in Table 1.  
 
Table 1: Leave-one-out classification results. ROC curves for the PARAFAC 
and references classification results using ANN as displayed in Figs. 3 and 4. 
 Ctr /  

demented 
(PARAFAC) 

Ctr /  
demented 

(reference) 

AD / MCI 
(PARAFAC) 

AD / MCI 
(reference) 

ANN 25.3% 38.6% 24.4% 35.6% 
QDA 25.3% 38.5% 31.1% 35.6% 

 
Generally, the PARAFAC filters strongly outperformed 

the reference filters (over 10 points for the ANN) for both 
classification methods. 

 
Fig. 3: ROC curve of classification accuracy of control vs. demented 
subjects; classification results obtained using the original data (stars) and 
using the filtered data extracted with a three-component PARAFAC 
(triangle). 
 

 
Fig. 4: ROC curve of classification accuracy of AD vs. MCI subjects; 
classification results obtained using the original data (stars) and using the 
filtered data extracted with a three-component PARAFAC (triangle).  
 

As shown in Figs. 3 and 4, the performance in the 
classification based on the ANN shows better results using 
the information from the extracted filters than using the 
original data. Especially, the best performance was found to 
be 74.7% (75.6% sensitivity, 73.7% specificity) for the Ctr 
vs. demented classification and 75.6% (95.6% sensitivity, 
59.1% specificity) for MCI vs. AD classification. 

 
Fig. 5: Classification of frequency bands characteristics. Dendrograms 
extracted from the clustering of two-components PARAFAC models for (a) 
control subject, (b) MCI patients, and (c) Alzheimer patients. 
 

Using PARAFAC on each separate group, a clustering of 
frequency bands (i.e. frequency band mode) can also be 
obtained [14] in order to study the non linear interactions 
between the frequency ranges (Fig. 5). The most striking 
effect we can observe is the evolutions in the inter-relations 
between the theta range and high frequency (alpha2 and beta) 
ranges: seemingly, for Ctr subjects and AD patients, the theta 
range activity is clustered with high frequencies (distance 1.5 
and 1, respectively); whereas for the MCI patients, the theta 
range activity is much less (distance 2.5). 

IV. CONCLUSION 
In this paper, we presented a novel method applied to the 

classification of subjects based on a multiway analysis of 
their EEG features. This type of application of multiway 
analysis to EEG features has not yet been implemented for 
Alzheimer’s disease diagnosis. We also showed the possible 
interpretability of the fitted model not only based on the 
spatial-frequency filters, but also based on the unimodal 
clustering for each group’s model. 
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The classification results presented here are modestly good 
compared with the classification results using the same 
database in another study [6]. However, this study is the only 
one to provide a three-class classification result with an 
overall accuracy of approximately 74%. It is also of 
important to note that the classification based on the EEG 
features without feature extraction returns (i.e. classification 
results of the reference) did not originally result in high 
accuracy, indicating the originally poor separability of the 
groups.  

Moreover, apart from its crucial uniqueness and its 
resulting easy interpretability [15], the PARAFEC model 
used might not be the best model to use in this analysis, as it 
imposes trilinearity conditions. Future work should include 
the comparison of the accuracy of other models such as 
PARAFAC2 [16], Tucker3 [17], or the nonnegative tensor 
factorization method [15]-[18] and its constrained model on 
sparsity [19]. 
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