
 
 

 

  
Abstract— Power systems stabilizers (PSS) are very effective 

for damping oscillation due to occurring disturbances and 
keeping synchronism in excitation circuits of synchronous 
generators. Design and tuning of PSS are crucial issues for 
researchers involved in the development of  power systems 
control . It is because of inaccurate setting of PSS that not only 
it causes damping  oscillations but it also contributes to the 
amplification of instability leading to the loss of synchronism. In 
this paper, an optimum PSS is designed using a novel method 
called combinatorial discrete and continuous action 
reinforcement learning automata (CDCARLA).  The proposed 
method is implemented for a single machine-infinite bus 
(SMIB) and it is compared with an IEEE standard PSS. 
Simulation results show that the proposed PSS has a 
significantly better performance as well as satisfactory 
robustness compared to the standard PSS. The advantage of 
CDCARLA is that it does not need system dynamics or any 
other information on power system. It can be said that, this 
method utlizes nonlinear features of power system. The 
CDCARLA method can be considered as one of the automatic 
design techniques using PSS. 
 

Index Terms— Power system stabilizer, Reinforcement 
learning automata, SMIB, Transient stability 
 
1. INTRODUCTION 
 
Due to increasing complexity of electric power systems, there 
is significant interests in the stabilization of such systems. 
Power system stabilizers(pss) are  the most effective devices 
for stabilizing and damping low frequency oscillations, while 
increasing the stability margin of power systems [1]. A PSS 
prepares a supplementary input signal in-phase with the 
synchronous rotor speed deviations to excitation systems 
resulting in generator stability.  
In the last two decades, various types of PSS have been 
designed. For example, conventional power system 
stabilizers (CPSS) are composed of fixed lag-lead 
compensators and they are widely used in power systems [2]. 
Adaptive controller-based PSS have been used in many 
applications [3-4]. However, most of these controllers are 
based on system identification and parameter estimation; 
therefore from computational point of view they are time 
consuming. It is evident from the various publications that 
interest in applications of Fuzzy logic based PSS (FLPSS) 
has also grown in recent years [5-8].  
Low computation burden, simplicity and robustness make 
FLPSS suitable for stabilization purposes. Different methods 
for designing such devices are proposed using genetic 
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algorithm (GA) [9] and artificial neural networks (ANN) 
[10].  

In this paper, a novel design method based on Reinforcement Learning 
Automata (RLA) is proposed. The methodology employed for designing PSS 
involves two major stages. In the first stage, the best variation limits of 
controller parameters are obtained using discrete action reinforcement 
learning automata (DARLA). In the second stage, the best value of these 
parameters in a pre-specified limit is determined. In fact, the second stage 
was proposed originally by Howell et. al. [11] for a vehicle suspension 
control application in 1997 and named as the combinatorial discrete and 
continuous  action reinforcement  learning automata 
(CARLA). One of the major advantages of CARLA is high 
speed convergence; while it requires pre-specified decision 
variables variation limits. These limits can be obtained by 
using any simple method such as local linearization. CARLA 
requires system dynamics in the initial step which can be 
considered as one of its main disadvantage. Moreover, 
system equations can not be achieved easily for any 
application. DARLA has similar properties as CARLA such 
as fast convergence, system dynamics independency and 
nonlinear characteristic. The proposed method is based on 
combination of both  DARLA and CARLA and it is called 
combined discrete and continuous action reinforcement 
learning automata (CDCARLA) with the all of above 
desirable properties. For evaluating the performance of 
CDCARLA design, a PSS is designed and its stabilization 
behavior is simulated and compared with IEEE standard PSS 
for a single machine infinite bus. Simulation results show that 
the proposed method has a better performance in comparison 
with standard PSS for various electromechanical 
disturbances. 
In the following sections, power system modeling techniques 
used is first described. The coverage of the design 
methodology and the two major stages involved are then 
dealt with in section 3. Simulation and related results are 
described in section 4 and finally the paper ends with 
conclusion in section 5. 
 
2. POWER SYSTEM MODELING 
 
The block diagram for the designed conventional PSS is 
shown in Fig. 1. 

 
Fig.1. Conventional .Power System Stabilizer 

 
Note that the PSS excitation signal is the only output variable 
that leads to PSSou. while it has five unknown variables. 
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SMIB MODEL 
A single machine infinite bus (SMIB) model of a power 
system for evaluating the proposed design method is 
considered. Using this model, we consider a typical 
500MVA, 13.8 kV, 50Hz synchronous generator together 
with a 500MVA, 13.8/400kV transformer and a 400kv, 350 
km transmission line connected to an infinite bus. Single line 
diagram of the model is shown in Fig. 2 [15]. 
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Fig. 2. Single line diagram of SMIB model 

 
Fig 3 shows a generation unit consisting of a synchronous 
generator, a turbine, a governor, an excitation system, an 
automatic voltage regulator (AVR) and a PSS.  
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Fig. 3. Generation unit diagram 
 
Next, a transient model of a synchronous machine is 
considered and its mechanical parts are modeled by; 
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Where, ωΔ  is speed variation, ω  is mechanical speed of 
rotor, H  is the inertia constant, MT  / ET  are mechanical / 
electrical torque respectively and dK  is a damping factor. 
Electrical parts of synchronous machine can be described by 
a sixth order state space model. Table 3 in the Appendix 
show the synchronous generator parameters. 
 
A nonlinear model [12] for hydraulic turbine and governor 
shown in Fig 4 is used to for the SMIB power system. 
Hydraulic turbine and governor parameters are presented in 
the Appendix (table 4). 
 

 
Fig. 4. Turbine and Governor model 

 

AVR and excitation system are modeled based upon IEEE 
standard 421.5 [13] and their parameters are reported in the 
Appendix (Table 5). 
 
Mathematical model for the power transformer considers 
core saturation, core and winding losses and leakage flux. 
Equivalent circuit parameters of power transformer are also 
shown in the Appendix (table 6). 
 
Mathematical model for transmission line that implements 
lumped losses is based on Bergeron traveling wave method 
[14].  Open loop response of rotor speed variation is shown in 
Fig. 5. 
 

 
Fig.5. Rotor speed deviation for single earth fault (no control) 

 
 

3. DESIGN METHODOLOGY 
 
The proposed design methodology is based on 
Reinforcement Learning Automata (RLA) and has two 
stages. First stage is based on discrete action and determines 
the best variation limits for each coefficient (DARLA). 
Second stage searches the best value of each parameter that is 
specified at previous stage (CARLA). The key idea of 
DARLA and CARLA is that, if a value of decision variable 
results in a good performance for a system, then closed 
values for decision variable have probably a relative good 
performance. Both methods use probability distribution 
function (PDF) through changing for sufficient time in order 
to obtain an optimal value for decision variables.  
 
Design Stage : DARLA 
 
In DARLA, the variation limits of controller coefficients are 
usually divided into the same length limits. Then a discrete 
probability distribution function (DPDF) for each of those 
limits will be assigned in which DPDFs initially set as a 
uniform type. The probability of selecting each limit is 
performed by DPDF, while after each selection the shape of 
DPDFs is changed in proportion to the fitness of that 
selection. Fig. 6 shows a block diagram of DARLA method. 
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Fig. 6. DARLA workflow 

PSS should be able to turn back this system to stable 
conditions (Δω=0) at a minimum time. A training power 
system is shown in Fig. 7 in which a single earth fault occurs 
at 0.1 sec in phase A and it is cleared at 0.2 sec.  
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Fig. 7. Training power system diagram 
 
 

As it is stated, there are 5 controller coefficients and let 
assume each variable varies between -10 and 10. This limit is 
divided into 20 equal divisions. Number of divisions does not 
severely affect the design performance, yet its selected value 
must be large enough. As a result, we have 6 DPDFs with 20 
elements that initially defined as Eq. (3). 
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Where )()( pf k
i  is the probability of selecting pth limit in ith 

controller coefficients at kth iteration. 
After selecting limits by cumulative probability of DPDFs, 
center of each limit is taken to construct the proposed PSS 
and J cost function is calculated based on Eq. (4). 

SS
t

T
k GGdtGJ ωωω Δ+Δ+Δ= ∫ 32

0
1

)( sup  (4) 

where J(k) is cost function at kth iteration, T is simulation time 
that must be large enough (for example T=3sec), Δω is rotor 
speed deviation, ΔωSS is steady state error of speed deviation, 
G1, G2 and G3 are cost function weights. After calculating cost 
function, reinforcement signal β  is calculated using Eq. (5). 
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Where β(k) is kth reinforcement signal, and Jmean and Jmin are 
average and minimum of previous costs, respectively. 
Defining reinforcement signal as Eq. (5) gives the average of 
costs with non-increasing behavior that guarantees 
convergence. 
After obtaining reinforcement signal, DPDFs are updated by 
Eq. (6). 
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iα  in Eq. (6) is a normalization factor calculated by Eq.(8). 
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After sufficient iterations, the selection probability of optimal 
limit for each DPDF is maximized. Fig. 8 shows discrete 
convergence surface of one of the controller coefficients for 
100 iterations with the following parameters: 

40
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Fig. 9 shows the cost variations versus number of iterations. 
As it is expected a non-increasing behavior can be seen. The 
limit with highest probability of selection at the end of 
iterations for each of controller coefficient is the optimum 
limit for the corresponding coefficient. These intervals are 
shown in Table 1. 

 

 
Fig 8. Convergence surface for coefficient T1 
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Fig. 9. Cost variation of DARLA design stage 

 
 

Table 1. Optimum interval of coefficients  
Parameter  Optimum Interval  

Ks   [9,10] 
T1  [5,6]  
T2   [2,3]  
T3   [0,1]  
T4   [1,2]  

 
 
 Design Stage 2: CARLA 
 Structure of CARLA is the same as DARLA with slightl 
differences. In this method, selection is performed in a 
continuous space and therefore a continuous probability 
distribution function (CPDF) is used. At this stage of design, 
the CARLA method searches continuously in controller 
coefficients limit obtained from previous stage. The 
workflow of CARLA is the same as DARLA shown in Fig. 5 
except that DPDF must be replaced by CPDF. 
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The mathematical relations for calculating cost and 
reinforcement signal is the same as DARLA and they are 
given by equations (4) and (5). CPDF updating rule is a little 
different and is performed by Eq. (9). 
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Where f(x) is CPDF, Xi is an optimum limit and H is 
exponential function centered on the selected coefficient 
value defined by Eq. (10). 
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Note gh and gw are height and width of exponential function, 
respectively. )(k

iα  in equation (9) is a normalization factor 
calculated as shown in Eq.(11). 
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By carrying out enough iteration of the above steps, the 
CARLA method will converge to an optimum value for each 
controller coefficient in an optimal limit. Fig. 10 shows 
continuous convergence surface of one of the controller 
coefficients for 100 iterations with the following parameters: 
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Fig10. Convergence surface for coefficient T1 

 
The variation of cost versus iterations is shown in Fig. 11. 
The limit with highest probability of selection at the end of 
iterations for each of controller coefficient is the optimum 
limit for the corresponding coefficient. These values are 
shown in Table 2. 
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Fig 11. Variation of CARLA cost function due to iterations 

 
 
 
 
 

Table 2. Optimum Value of coefficients  
Paramete

r  Optimum Value  

Ks 9.6693 
T1 5.988  
T2  2.0541  
T3  0.0561  
T4  1.0902  

 
 

4. SIMULATION AND RESULTS 
 
In this section, performance of designed controller is 
evaluated and compared with IEEE conventional PSS from 
IEEE standard 421.5 [15]. The simulations carried out using 
MATLAB® and SIMULINK® environment for training 
system Fig. 6. For evaluating robustness of proposed PSS 
stabilizations of these PSSs is simulated for other different 
types of disturbances. 
 
4.1 Design Performance Evaluation 
Fig. 12 shows rotor speed deviation of single phase earth 
fault on a generator bus at two situations: proposed PSS 
(Optimum PSS) and conventional PSS. Fig. 13 also shows 
line power variations for different PSS. 

 
Fig 12. Rotor speed deviation for single earth fault 

 

 
Fig. 13. Line power variations for single earth fault 

 
It can be seen in figures 12, 13, the optimum PSS (OPSS) 
designed by the proposed method has better performance 
than that of the conventional PSS in damping low frequency 
oscillation. 
 
4.2. Robustness Evaluation 
For evaluating robustness of proposed PSS other type of 
power disturbances are created and the behavior of the 
system without changing of designed OPSS structure is 
simulated. This disturbance includes the three Phase fault at 
power plant bus at 0.2 (s) that is cleared at 0.5 (s). Rotor 
speed deviations and line power variations for each of the 
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above disturbances for different types of PSSs are drawn in 
Fig. 14 and Fig. 15. 

 
Fig. 14. Rotor speed deviation for Three phase fault 

 

 
Fig. 15. Line power variation for Three phase fault 

 
Note that the proposed PSS is relatively more robust and 
more effective than other PSS types due to various power 
disturbances. For comparing stabilization performance of 
different PSSs the following two properties of rotor speed 
deviation have been considered: 

• Required time for complete system stabilization 
(Δω=0)  

• Maximum magnitude of rotor speed deviation  
 
Both of these properties are measured after transient period 
of synchronous machine and they can be selected as 
stabilization performance index.  
 
5. CONCLUSIONS 
 
In this paper, a novel heuristic design method for a 
conventional power system stabilizer, called CDCARLA, is 
proposed. This method is based upon reinforcement learning 
automata and does not require system dynamics or any 
further information. In comparison with the other heuristic 
search methods such as Genetic Algorithm and Particle 
Swarm Optimization (PSO), CDCARLA converges in very 
little iteration. In addition, the proposed design method does 
not ignore any nonlinear feature of power systems. 
Simulation results prove a better performance and design 
robustness of the proposed algorithm. In summary, 
CDCARLA can be used as a good automatic design method 
for a wide range of applications. 
 

6.  APPENDIX 
Table 3. Synchronous machine parameter 

Parameter Value 
Rotor Type Salient-pole 
Number of Poles 64 
Nominal Power 500 MVA 
Line to Line Voltage (RMS) 13.8 kV 
Frequency 50 Hz 
Reactances (pu)  
   Xd 1.305 
   X’

d 0.296 
   X”

d 0.252 
   Xq 0.474 
   X”

q 0.283 
   XI 0.18 
Time Constants (s)  
   T’

d 1.01 
   T”

d 0.053 
   T”

q0 0.1 
Stator Resistance (pu) 0.0028544 
Inertia Factor 3.7 
Friction Factor 0 

Table 4. Hydraulic turbine and governor parameters 
Parameter Value 
Governor  
   Permanent Droop 0.05 
Servo Motor  
   KA 3.33 
   TA (s) 0.07 
   Speed Limit (pu) [-0.1,0.1] 
PID Regulator  
   KP 1.163 
   KI 0.105 
   KD 0.01 
Hydraulic Turbine  
   Β 0 
   TW (s) 2.67 
   GT 1 

 
Table 5. AVR and excitation system parameters 

Parameter Value 
Low pass Filter Time Constant (TR) 0.002 
Regulator   
   Gain (KA) 200 
   Time Constant (TA) 0.001 
Exciter  
   Gain (KE) 1 
   Time Constant (TE) 0 
Lag-Lead Compensator  
   TB 0 
   TC 0 
Damping Filter  
   Gain (KF) 0.001 
   Time Constant (TF) 0.1 

 
Table 6. Power transformer parameters 

Parameter Value 
Nominal Power 500 MVA 
Frequency 50 Hz 
Winding 1  
   Connection Δ 
   Phase-Phase Voltage (RMS) 13.8 kV 
   Resistance (pu) 0.002 
   Inductance (pu) 0 
Winding 2  
   Connection Y 
   Phase-Phase Voltage (RMS) 400 kV 
   Resistance (pu) 0.002 
   Inductance (pu) 0.12 
Magnetizing Resistance (pu) 500 
Magnetizing Reactance (pu) 500 
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