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Abstract - This paper describes the state 
reconstruction of nonlinear chaotic systems with 
uncertainty having unknown bounds. The new 
observer presents simple structures that contain 
a sliding mode term which is established from the 
available output measurements. To the best of 
authors’ knowledge, in iteration such classes of 
observer have not been used in synchronization 
problem. The convergence of the proposed 
observer has been proved by Lyapunov 
inequality equation; LMI; while the performance 
of the system has been verified by famous chaotic 
systems such as Lorenz and Rossler . A design 
procedure for the proposed technique is 
described and simulation results are presented to 
show that the proposed chaos observer is vary 
efficient with regards to the class of chaotic 
systems. 

Keywords: sliding mode Observer, chaotic system, 
nonlinear system1.  

Introduction 

Chaotic synchronization has received the attention of 
researches in many fields since the 1980[1-5] and is still 
an area of active research [6-10]. Recently information 
theories and concepts were applied to analyze and to 
quantify synchronization [11–15]. Mutual information 
measures have been introduced in the past for evaluating 
the degree of chaotic synchronization[12,13].  The 
methods of symbolic dynamics have also been  used to 
relate synchronization precision to capacity of the 
information channel and to the entropy of the drive 
system[11-14]. It is well known that the study of the 
synchronization problem for nonlinear systems has been 
very important for sciences, in particular the applications 
to biology, medicine, cryptography, secure data 
transmission and so on. In general, the synchronization 
research has been focused onto two areas.  
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The first one relates to the employment of state 
observers, where the main applications lie on the 
synchronization of nonlinear oscillators. The second 
one is the use of control laws, which allows achieving 
the synchronization with different structure/ order 
among nonlinear oscillators [16]. A particular interest is 
the connection between the observers for nonlinear 
systems and chaos synchronization, which is also 
known as master–slave configuration. Thus, chaos 
synchronization problem can be regarded as observer 
design procedure, where the coupling noise is viewed 
as an output and the slave system is the observer [17]. 
The main approaches, which are related to the 
construction of asymptotic observers for nonlinear 
processes, use geometric differential methods. The idea 
is to find a state transformation to represent the system 
as a linear equation plus a nonlinear term, which is a 
function of the system output. However, finding a 
nonlinear transformation that places a system of order n 
into the so-called observer canonical form requires the 
integration of n coupled partial differential equations. 
Furthermore, this approach needs an accurate 
knowledge of the nonlinear dynamics of the system. 

The early works dealing with sliding mode observers 
which consider measurement noise were proposed by 
Utkin and Drakunov [18]. They discussed the state 
estimation using sliding mode technique. Anulova [19] 
treated an analysis of systems with sliding mode in the 
presence of noises. Slotine et. al. [20], successfully 
designed, so named, sliding-mode approach to construct 
observers which are highly robust with respect to noises 
in the input of the system. But, it turns out that the 
corresponding stability analysis can not be directly 
applied in the situations with the output noise (or, 
mixed uncertainty) presence. So, it is still a challenge to 
suggest a workable technique to analyze the stability of 
identification error generated by sliding-mode 
(discontinuous non-linearity) type observers [20-24].  

In this paper we propose a new model-free observer: a 
sliding mode observer for the synchronization problem. 
The intention of choosing two examples as the Lorenz 
system, and Rössler system is to clarify the proposed 
methodology.  
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2. Problem formulation and assumption 
Consider the nonlinear system and a measurement 
model of the form 

Cxy
xfx

=
= ),(&       (1) 

Where: nx ℜ∈  is the state to be estimated from, 
py ℜ∈ is the measured output, f(x) is bounded 

unknown and C is the constant matrix. We can write 
Eq.( 1) in the following form: 

Cxy
uxFAxx

=
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Where: nnA ×ℜ∈  is a linear time inverting matrix, 
pair of (A,C) are observable and ℜ→ℜnF : is the 
nonlinear function that may have perturbations. 

2.1 Theorem 1  

Suppose a chaotic system having the form as Eq.(2) and 
for nuxux ℜ∈∀ ),(),,( 2211 , the function F(x,u) 

satisfies the Lipschitz condition on nℜ , that is 

),(),(),(),( 22112211 uxuxLuxFuxF −≤−     (3) 

Where: 0〉L  is Lipschitz constant and . is the 

standard Euclidean norm in nℜ . 

We consider  

)()( 1 xhCPAxxf T−=−                 (4) 

Where: ),( tt uxh  is bounded as ),( uxhh 〉  
 

3. Sliding mode observer design  
 
For the above system, the following sliding mode 
observer is designed: 

 
 

(5) 
 

Where e is the state reconstruction error, defined as 
xxe ˆ−=  and  ey is output error defined as 

ey= yy ˆ− =CΔ=C ( xx ˆ− ) = Ce 
 

),ˆ( exS  is selected   as 

)(),ˆ( yy esign
C

CexS Γ−=
Δ

ΔΓ
−= ρρ      (6) 

Now we can reconstruct the observer in the following 
form: 
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Where the gain matrix H and the switching gain ρ are 
chosen such that the stability of the observer system 
is preserved. The discontinuous feedback input is 
defined as: 
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Since the sliding mode observer is not dependent on 
nonlinear plant, only the output y is needed. The 
derivative of the observer error is: 

e& = Ae − HCe + F(x, u) − ρΓ sgn(Ce)  (9) 
= (A − HC)e + F(x, u) − ρΓ sgn(Ce) 

The feedforward gain matrix H can be obtained in 
two ways; pole assignment method and LQ method. 
For the latter method, it is easier to derive the gain 
matrix H using Riccati equation as: 
 

AP + PAT − PCTR−1CP = −Q             (10) 
 

Where Q and R are arbitrary semi-positive definite 
and positive definite matrices, respectively. Equation 
(10) has a positive definite solution for P. Then AT 
−CTHT is stable assuming: 

HT = R−1CP                      (11) 

xCy

exSeHxAx y
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Which is equivalent to the stability of Aَ0= A−HC. In 
fact, H is the observer gain matrix for the system Eq. 
(2). 
 
By using appropriate Lyapunov equation, we select a 
Γ such that the reconstruction error system is 
asymptotically stable. Let Pf be the positive definite 
solution of the Lyapunov equation as: 
 

A0Pf + PfA0
T = −Qf                   (12) 

 
Where Qf is an arbitrary positive definite matrix. 
Let set: 

Γ TPf = C                        (13) 
 
3.1 Theorem 2  

If f is bounded, the observer gain satisfies the 
following Equation: 

ρ > h                          (14) 

Then the error between the sliding mode observer 
and the nonlinear system is asymptotically stable 
means that: 0lim =

∞→
e

t
. 

Proof Let consider the a Lyapunov function 
candidate for Eq.(9) as: 

V(e) = eTPf e                    (15) 
Then; 
 

V(e) = ˙eTPf   + eTPf ˙e = eT (A0Pf+  Pf A0
T)e 

 + (F − ρΓ T sign(ce))Pfe 
+ eTPf (F − ρΓ T sign(ce)) 

= −eTQf e + 2(PfeF − ρΓ TPf e sign(ey)) 
= −eTQf e + 2eTPf [S( x̂ ,ey) +F(x,u)] 

By using (5) we have:  

),(),,(),( 1 uxhuxhCPuxF T
f
−= < ρ  

If we select ),ˆ( yexS  and Γ as (6), (13); we have 

V& = - eTQfe+2eTCTh(x,u) 

Δ

ΔΓ
−

C

Cρ2  

= - eTQfe+2eTCTh(x,u)- ΔCρ2  

≤ - eTQfe+ )),((2 ρ−Δ uxhC ≤ 0    (16) 

Since it is assumed that V& ≤ 0, e ∞∈L , from the 

error equation (9) it is also  e& ∞∈L  and V is 
bounded process, e is quadratically inerrable and 
bounded. Using Barbalat , s Lemma we obtain that 
the observer error e is asymptotically stable, 
then 0lim =

∞→
e

t
. 

4. Simulation results 

4.1 Example 1 

In this section we consider Lorenz system, which is 
known to exhibit a chaotic behavior to verify the 
effectiveness of the proposed methods in this paper 
[29]. The dimensionless version of Lorenz system is: 
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With the measurement of equation y=x1, and 
choosing 3/8,28,10 === brσ  then the system 
exhibits chaotic observer. Initial conditions are 
chosen as: 

3)0(ˆ,4)0(ˆ,5)0(ˆ
3)0(,4)0(,5)0(

321

221

−=−=−=
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xxx
xxx

 

In this paper we assume that Q =50eye(3) 
,Qf=100eye(3), 2.0=ρ and R=1. Simulation results 
are given in Figures 1,2 and 3. Fig. 2 shows the state 
error that rapidly converges to zero. Note that we 
assumed that the sampling period is T = 9× 10-3 s and 
we defined the sum squared error (SSE) as: 

2
33

2
22

2
11 )ˆ()ˆ()ˆ( xxxxxxSse −+−+−=  

The SSE is illustrated in fig 3. 
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Fig .1 Drive state for Lorenz system 
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Fig.2 Synchronization state errors of Lorenz system 
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 Fig.3  SSE propagation for Lorenz system  

4.2 Example 2 

In this example we consider Rössler system. Such a 
system can be implemented by a chemical reaction 
scheme[25-27]. It contains only one nonlinear term 
but produces a high-dimensional chaos phenomenon 
with two directions of hyper chaotic instability on the 
attractor. A four-variable Rössler system can be 
described by the following differential equations: 

                     

1

3323
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Where: )/( 12 CC=α  and )/( 2
2 LGC=β . The 

following parameters are assumed 
11,8,05.,8.0 21 ==−=−= βαGG & G=0.7[30]. 

With these parameters, the equations given above 
exhibit a double scroll type chaotic behavior. 
Initial conditions are chosen as: 

4)0(ˆ,5)0(ˆ,5)0(ˆ
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Simulation results are given in Figures 4,5 and 6. 
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Fig.4 Drive state for Rössler system 

From Fig.5 it can be seen that the error of the state 
converges to zero. 
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 Fig.5 Synchronization state errors of Rössler system 

Figure 6 shows the sum squared error (SSE). 
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     Fig.6 SSE propagation for Rössler system 

The results achieved in this paper show that e 
converges to zero more rapidly and the observer 
performance is very efficient.  

5. Conclusions 

In this paper a sliding mode observer is proposed to 
reconstruct the states of uncertain nonlinear systems 
from available output measurements. The proposed 
approach is robust for synchronization despite the 
difference between transmitter and receiver 
parameters and their initial conditions. We have 
applied this approach on three systems, Lorenz, 
Rössler and Chuaיs circuit. With reference to the 
simulation results, it is shown that the correct 
estimation of real system can be obtained. The 
effectiveness of the proposed method is investigated 
through some examples that show a significant 
performance improvement. 
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