
 
 

 

  
Abstract— The concepts of size and scale are of fundamental 

importance in science, engineering and technology, and occupy a 
central place in human experience and thought. Size and shape 
are crucial properties of physical and abstract objects, while scale 
and dimension are basic descriptive tools that we employ to 
compare them. Understanding the dependence of physical 
phenomena on size and scale allows us to develop predictive tools 
that form the core of design and enable the creation of artefacts 
and technological systems. Of particular interest to us are 
situations when the size dependence turns out to be complex, 
characterized by changes and transitions in behaviour between 
different scales, e.g. laboratory and full scale prototypes, 
nano-scale objects as opposed to macroscopic, etc.  

Scaling transitions and size effects in the fracture and strength 
of materials and structures have particular significance in modern 
science and engineering. The boundaries of scale of the 
mechanical phenomena studied and devices exploited are 
expanding, on the one hand, towards global scale phenomena, and 
on the other towards the nanometre scale processes. These 
circumstances challenge the conventional wisdom acquired over 
many decades, according to which laboratory experiments 
performed at the engineering scale (sub-mm to a few meters) 
provide the source of material property data then used as input 
for modelling at the scale of the real object. When deviations from 
accepted scaling laws are found, new physical deformation 
mechanisms need to be proposed or identified, and new modelling 
approaches to be developed and validated. 

      In this paper I review some examples of non-trivial size 
dependence, and address a fundamental question of the efficient 
description of size effects and scale transitions. The functional 
description of multi-scaling power law regimes is considered, and 
the functional form suitable for the task is identified. This form is 
then applied to a variety of experimental data manifesting size 
effects, including dual failure strength criteria (stress and 
toughness), fatigue crack growth thresholds (Kitagawa-Takahashi 
diagram) and applications in the context of fretting fatigue, Paris 
fatigue crack growth law, hardness of coated systems, etc. 
 

Index Terms— Size effects, scaling, multi-scale description and 
modeling, eigenstrain, diffraction, residual stress.  
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I. INTRODUCTION 
   In most situations in life, size matters. A good quality scaled 
model serves the purpose of representing faithfully the real 
object, by being proportionate, i.e. geometrically similar, but 
differing in size. Though it is easy to assume that the difference 
in size is plainly evident, in fact it can only be discovered 
through comparison with some reference: e.g. the original, or a 
standard, an object of known length. 
    Philosophers like to amuse themselves with hypothetical 
questions, and here is one that is relevant to our theme: what 
would happen if overnight, while we were asleep, everything 
around us were to double in size? How would we know when 
we woke up the next morning?  
     Of course, we must assume that the same fate befalls all of 
our standards and reference tools: rulers, tape measures, etc. 
Clearly therefore, were we to confine our interest to geometric 
dimensions, nothing would reveal this drastic change to us. 
Every attempt to discover the changed dimensions will be 
foiled, because there isn’t an object remaining unaltered.  
     What comes to our rescue is the fact that physical properties 
of objects are not limited to geometric dimensions. Quantum 
physics furnishes us with several length dimensions entirely 
expressible in terms of universal constants. So, unless all of 
universal constants change at the same time, a comparison with 
a quantum standard should reveal what has happened. 
However, even in the macroscopic world we are able to find 
some properties of solids that do not scale in the same way as 
their size. 
     The property that interests us most is strength. A solid body 
that is twice the size of another body will not have the same 
breaking strength. It is for this reason that larger animals have a 
bigger proportion of the body weight taken up by the skeleton. 
The scaling of structural and material strength is our main 
interest in this study. 
     Renaissance engineers like da Vinci were aware of the 
dependence of strength on size. Their studies of design and 
structural strength started an inexorable process of evolutionary 
development in science and technology. The products and 
consequences of this evolution today have permeated the lives 
of most people to the extent unseen in history. Work efficiency, 
comfort, health, and the very lives of people now depend 
directly on the reliable performance of technological devices, 
and this reliance continues to increase in countless ways. 
However, both technological and natural systems are fragile: 
they break. An inalienable function of engineering and 
technology is to predict and control this fragility. 
     Several efficient methods of dealing with fragility of 
systems are known. The first is to increase the strength and 
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durability of systems so much that the time it takes for them to 
fail (lifetime) greatly exceeds the time they are kept in service. 
Although this solution might be preferred in all cases, it is 
unfortunate that sometimes it is not realistic, and often it leads 
to impracticably large, heavy or expensive designs. 
     An alternative approach, known as defect tolerant design, is 
to learn to predict the conditions and the moment of failure, and 
to withdraw, refurbish or replace systems safely prior to failure. 
The defect tolerant approach underpins much of the modern 
advanced mechanical design found in the automotive 
manufacture, aerospace, power generation and numerous other 
industries. 
     Reliable determination or prediction of strength of 
man-made objects and structures is a central task for much of 
the ongoing research. The vast area of science and engineering 
encompasses mechanical engineering, materials science, 
physics and chemistry. In these connected, but disparate fields, 
failure may be defined in different terms and at different 
structural scales. Methods of experimental study and 
theoretical description of physical phenomena differ 
significantly, as do the ways of expressing results. However, in 
all cases key aspects of strength determination are retained. 
These key aspects are associated with concepts of stage and 
scale. 
     Stages of behaviour of physical systems are important for 
several reasons. Firstly, the behaviour of the system within 
each stage may possess certain strong regularities which don’t 
apply outside that stage, but allow the system description to be 
drastically simplified within the stage. Secondly, the transition 
between different stages often represents the critical element of 
information required for the prediction of failure. Finally, 
stages of deformation or damage accumulation can often be 
successfully identified with diminishing strength, or be used to 
evaluate the remaining strength. The ability to assess the 
strength of a structure or an object at any point during its 
lifetime is critical for determining its serviceability. The 
judgment about the remaining strength (or its complement, 
extent of damage) has to rely on the analysis of the structural 
state, and in particular, the stage of defect accumulation. It is 
the general regularities of defect accumulation, identifiable 
stages of this process and the conditions for the transition 
between them that particularly concern us here. 
     The analysis of defects and strength has to be carried out for 
a specific structure and at a specific scale. The scale of analysis 
is often different from the actual scale. The knowledge of the 
scaling behaviour is important because experimental 
techniques often require tests to be conducted on miniature 
specimens. Scaling of strength is a crucial issue whenever these 
laboratory experiments conducted on a model system are used 
to predict the strength of the full scale prototype.  
     It has become a convention to identify ranges of scale with 
decades of characteristic length dimension. We speak of 
macroscopic scale when referring to structures and objects that 
are millimetres to metres in size. The size scale between 1 to 
1000 micrometres is referred to as microscopic, while that 
between smaller than a fraction of a micrometre has become to 
be called nanoscale. Moving in the other direction, one might 
call the scale from about 1 metre to a kilometre the large 

structural scale, and that from a kilometre to thousands 
kilometres the global scale.  
     In trying to identify the governing rules for the development 
of damage and the reduction of strength during and between 
stages, and at different scales, we are looking for the most 
general fundamental aspects, with the widest range of 
applicability. We therefore use for this task the most general 
analysis methods available: the principles of dimensional 
analysis, and the considerations of mechanical energy storage 
and transformation. 
     Strength of a solid is often measured by the maximum load it 
can carry, having the units of force, [F], or moment, [F] [L]. 
Once the force or moment reach a critical value, the object 
breaks.  
     An alternative, and more successfully transferable measure 
of strength of a solid is the breaking stress, which has units 
[F]/[L]2. At a critical value of stress that we associate with 
failure a solid might break or deform permanently. 
     With the development of engineered objects subjected to 
large constant or varying tensile stresses it was quickly 
discovered that stress as a measure of strength is not always 
sufficient or appropriate. Stress intensity factor was introduced: 
a parameter that depends on the loading, but also the geometry 
of the specimen and of the defects it contains. Stress intensity 
factor has fractional dimension of [F]/[L]3/2. When a critical 
value of stress intensity factor is attained, defects present in the 
object might initiate or propagate, either in a stable or in a 
catastrophically fast manner.  
     Instead of asking the philosophical question about all 
objects doubling in size overnight, engineers and materials 
scientists are usually much more interested to know what 
happens when certain specific objects or components are scaled 
up or down in size, and how to predict their strength.  

II. ANALYSIS  FRAMEWORK 
Material properties and system parameters are often 

introduced in physical laws as proportionality coefficients 
between measurable quantities, e.g. between (some power of) 
the crack length and the critical failure load, etc. It is important 
to note the logical reason for introducing such parameters: they 
are useful because they remain constant over a certain range of 
system sizes. However, outside this range the parameters show 
a dependence on system size that requires the form of 
descriptive equations to be reviewed and modified, or, 
alternatively, require a description of the scale dependence of 
physical parameters to be introduced.  

If a physical system possesses no inherent length scale, 
functional analysis can be used [1, 2] to demonstrate that the 
dependence of an arbitrary physical parameter of a system on 
its size must obey a power law. If two physical quantities are 
related by a power law, y Cxα= , then the parameter  

C yx α−=  can be thought of as invariant in x . If x  represents a 
measure of the system dimension, then C  is said to be size 
independent, or scale invariant. This parameter is often thought 
of as a property of the system that has a dimension obtained by 
the appropriate combination of the units of quantities x  and y .  

In practice particular interest is attracted to the deviation 
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from simple power law descriptions. The terms 'size effect' or 
'scale dependence' are indeed used when a particular power law 
no longer applies, in the sense that parameter C  that describes 
the system property is no longer constant, and has to be thought 
to be a function of x . 

Of particular interest is the size dependence of material 
strength. Depending on the context, the precise nature of the 
physical parameter y  (here thought to represent strength) may 
vary. It could denote the critical value of stress or stress rate, 
the stress intensity factor or toughness, hardness, etc. Several 
instances of power multi-scaling can be considered in which 
transitions are observed between distinct power laws, each 
persisting within certain limited range of system sizes. To 
describe these transitions, the ‘knee’ function can be introduced 
as an efficient tool for the description of this type of 
multi-scaling. 
    A general result of wide applicability can be established [2] 
according to which in the absence of a characteristic length, the 
strength (or, indeed, any other physical parameter) of a 
structure scales with the size according to a power law, 
                            ( )0 0/ m mY Y D D CD= = , (1) 

where 0,D D and 0,Y Y denote the dimension and strength of 
the prototype and the model respectively. Note that 
introduction of the system parameter C that becomes a 
compound system property describing the scaling behaviour of 
its strength with size. 
     Power law scaling of strength and deformation parameters is 
omnipresent in phenomenological laws describing mechanical 
behaviour of materials – a few are listed in Table 1. 
 
Table 1. Power law scaling in the context of material strength 
 

Ramberg-Osgood 
elasto-plastic constitutive law 

( )/ / mE kε σ σ= +  

Power law creep / nd dt Aε σ=  
Paris law of fatigue crack 
growth 

/ nda dN A K= Δ  

Kachanov’s law of damage 
accumulation 

/d dt Cω ω=  

 
Each of the instances of power law behaviour suggests a 

situation when a characteristic length scale parameter is absent, 
i.e. size independence. In many situations in the science of 
strength of materials simple power law dependencies between 
parameters apply only if certain inequalities between problem 
parameters are satisfied. Regimes of simple power law scaling 
may appear at extremes of parameter values, large or small, or 
may correspond to intermediate asymptotic behaviour. 

If, on the other hand, a characteristic length of some kind is 
present, all structures can no longer be thought of as 
indistinguishable, and strength scaling obeys a more complex 
function. It is convenient to represent the phenomena of the 
type described here in bilogarithmic coordinates, since power 
law functions appear as straight lines, and line slopes indicate 
power exponents. Figure 1 shows, in bi-logarithmic 

coordinates, cartoons of some well-known laws of deformation 
and strength which display the multi-scaling character. 
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Figure 1. (a) Ramberg-Osgood elasto-plastic deformation law, 
(b) creep strain rate dependence on stress, 

(c) Paris’ kinetic fatigue crack growth diagram, (d) high cycle 
fatigue failure under alternating stress. 

 
Co-existence and competition between several power laws 

leads to transitions from regions of dominance of one power 
law to another as some length, size or loading parameter is 
increased. In order to identify a suitable form for the 
description of these transitions the ‘knee’ function approach is 
proposed [3].  

Consider the following formulation of the general 
multi-scaling transition problem: 
 

Let the behaviour of a physical system be described by the 
relationship between two parameters x  and 1y y yΔ = − : 

9 Small x  regime ( 0x x<< ): 0 0/ ( / )y y x x αΔ = .  

9 Large x  regime ( 0x x>> ): 0 0/ ( / )y y x x βΔ = . 

The exact nature of the transition between the two regimes is 
unknown. An approximate functional form is sought for the 
description of system behaviour in the region 0x x≅ . 
 
    Problems of this type are encountered throughout the study 
of size effects and scales and stages of deformation, and in 
other branches of science and engineering. In many cases 
precise description of the transition can be obtained from 
laborious and detailed modelling of the problem in question. 
Here the purpose is different: to extract maximum information 
from the known extremes of behaviour of the physical system, 
and some limited experimental data obtained in the transition 
region. 
    The key assumption made at this point to make further 
progress is as follows. We assume that there exists some 
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dimensionless combination of the system parameters for which 
the two extreme regimes of behaviour are simply additive. This 
assumption gives the result: 

1/ / /
0 0 0( / ) ( / ) ( / )y y x x x xγ α γ β γΔ = + ,   (2)  

or, consequently,  
( ) /

0 0 0( / ) ( / ) 1 ( / )y y x x x x
γα β α γ−⎡ ⎤Δ = +⎣ ⎦ .    (3)  

This is a general functional form for the approximate 
description of transitions between different power law regimes. 
Since on the bi-logarithmic coordinates it appears in the form of 
a kink, or knee, we shall refer to it as the knee function. 
    A particular case often encountered in practice corresponds 
to 0α = , when the power law behaviour in one extreme is 
given by a constant. Upon introducing the notation b β= − , 
c γ= , the following expression is obtained: 

0 /
0

1( / )
1 ( / )

cb c
y y

x x
Δ =

⎡ ⎤+⎣ ⎦

.     (4)  

or, in terms of parameter y  itself: 

0
1 /

01 ( / )
cb c

yy y
x x

= +
⎡ ⎤+⎣ ⎦

.     (5)  

Having established the form of the ‘knee’ function we now 
consider some examples of its application. 

III. LINEAR ELASTIC FRACTURE MECHANICS AND THE LIMIT 
STRESS CRITERION 

Griffith’s LEFM scaling law [4] in the form  
22 /(1 ) Ica E Kσ π γ ν= − =      (6)  

gives rise to a paradox. If cracks of progressively smaller size 
are considered, specimen strength is predicted to increase 
without limit. This is in contradiction with observations, since 
even most carefully prepared and defect-free specimens of any 
material possess finite strength.  
     The distinction between the two extremes of behaviour 
within the framework of LEFM is sometimes referred to as the 
long crack and the short crack regimes, respectively. In the long 
crack regime the inverse square root scaling with crack size is 
expected, while in the short crack regime the specimens must 
possess a limiting stress value associated with alternative 
failure phenomenon, e.g. yield. In order to capture the strength 
scaling behaviour over the entire range of crack length a 
multi-scaling description of the two criteria is required. 
     The existence of the two regimes of strength behaviour 
already became apparent in the early experiments of Irwin [5]. 
Experiments were conducted on thin (0.8mm) large sheet of 
aluminium 7075 alloy containing central slits normal to the 
tensile loading direction. Irwin calculated the net section stress 
at instability, accounting for finite width of the sheet, and 
plotted this stress as a function of the crack (slit) length 2a . 
Irwin’s results clearly demonstrated the inverse square root 
behaviour predicted by LEFM, as illustrated by the dropping 
portion of the curve shown in Figure 2(a).  
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Figure 2. The Irwin et al [5] data for the net failure stress as a 
function of the total slit length 2a, plotted (a) in linear 
coordinates, and (b) bilogarithmic coordinates, with the “knee 
function” describing the transition between the two regimes. 
 
However, it is also apparent from this figure that for shorter 
cracks there exists a limiting value of stress that is independent 
of the crack length 2a , provided it does not exceed some 
threshold value, 12 2a a< . Combination of the two failure 
criteria with different scaling behaviour is required to obtain a 
description that is valid over the entire range of crack lengths. 
Using the approach based on the “knee function” described in 
the previous section, the two-criterion failure criterion must 
satisfy the following conditions: 
Long cracks ( ∞→1/ aa ):  
failure stress obeys LEFM scaling,  2/1

11 )/(/ −= aaσσ . 

Short cracks ( 0/ 1 →aa ):  
failure stress approaches the limiting value,  1/ 1 =σσ . 
The following ‘knee’ function describes failure stress 
dependence on the crack length: 
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( )( ) nnaa
/5.0

11 /1

1

+
=

σ
σ .              (7) 

This function displays the required behaviour in the extremes 
of long and short crack lengths. Parameter n  provides control 
over the transition between the two regimes: the greater the 
value of n, the sharper the appearance of the “knee” on the 
diagram. The application of the knee function (7) to Irwin’s 
data is shown in Figures 2(a) and 2(b) by the continuous curves. 
The parameters of the knee function have been identified by the 
least squares procedure. 

IV. PARIS FATIGUE CRACK GROWTH DIAGRAM 
Paris fatigue crack growth rate (FCGR) diagram relates the 
crack extension rate d / da N with the stress intensity factor 
range, KΔ . In practice it is often observed that FCGR also 
depends on the maximum stress intensity factor, maxK , leading 

to the use compound parameters, such as 1
max

m mK K−Δ . 
     Figure 3(a) shows the dependence of fatigue crack growth 
rate on applied stress intensity factor range KΔ  for a titanium 
alloy [6]. The data has been presented on bi-logarithmic scale 
with the crack growth rate d / da N  chosen as the abscissa, for 
convenience of analysis. This choice allows the ‘knee’ function 
to be applied for the description of the dependence in the form 

( )/
0

( )
1 ( ' / ')

Ic th
th cb c

K KK K
a a

Δ − Δ
Δ = Δ +

+
,     (8)  

where thKΔ denotes the fatigue threshold, IcKΔ  corresponds to 
the critical stress intensity factor for fast fracture, ' d / da a N=  
is the crack advance per cycle and 0'a  is the intermediate value 
of this parameter in the transition range. Parameters b  and c  
describe the slope of the diagram and the sharpness of the 
transition. Assuming stress intensity factor threshold of 

7.5thKΔ = , the following values of the parameters are found 
that describe the continuous curve in Figure 3(a): 

        
6

0

85.8 6.7

' (6.1 1.3) 10
IcK

a −

Δ = ±

= ± ×
       0.4 0.03

0.55 0.15m
α = ±

= ±
 

Figure 3(b) shows the dependence of the rate of crack growth 
under fatigue loading on the applied stress intensity factor 
range KΔ  for a corrosion resistant titanium alloy tested in air, 
in distilled water and in 3.5% aqueous solution of NaCl [6]. The 
use of knee function description allows revealing aspects of 
behaviour not immediately apparent from experimental data, 
such as the reduction of the upper stress intensity factor 
threshold for one of the cases considered. 
     Figure 3(b) shows the dependence of the rate of crack 
growth under fatigue loading on the applied stress intensity 
factor range KΔ  for a corrosion resistant titanium alloy tested 
in air, in distilled water and in 3.5% aqueous solution of NaCl 
[6]. The use of knee function reveals aspects not immediately 
apparent from experimental data, such as the reduction of the 
upper stress intensity factor threshold for one of the cases 
considered.  
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Figure 3. (a), (b) Fatigue crack growth diagrams [6]. 

V. FRETTING FATIGUE THRESHOLDS 
Fretting fatigue is a complex phenomenon governed by the 

process of micro-slip at the edge of partially adhered frictional 
contact where stress concentration and stress gradients are 
particularly high, and the process of crack initiation and 
propagation exhibits strong and complex dependence on size 
and scale. A variety of approaches have been proposed for the 
description of threshold conditions that must serve as the basis 
for rational design criteria [9]. 

The objective is always to determine the fretting fatigue limit 
of the contact as a function of geometry and loading conditions, 
and hence to investigate the effect of loading parameters on the 
“size effect” induced by the steep stress gradient. As discussed 
by Nowell [10], if a Hertzian fretting contact is considered then 
the width parameter a  varies as PR , whereas characteristic 
pressure 0p  varies as RP / . It is therefore possible to 

maintain 0p  (hence preserving the stress concentration at the 
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trailing edge of the contact) constant and vary a by varying the 
load and pad radius. Similar reasoning may be applied to 
contacts of more complex geometries, e.g. flat and rounded in 
shape.  Nowell [10] undertook several series of experiments 
where the magnitude of 0p  was kept constant while the contact 
size was varied. Within each series, a critical size of contact 
above which short fatigue lives were observed was found, 
whereas smaller contacts specimen lasted for more than 107 
cycles. Therefore, the fretting strength of the component was 
found to decreases with increasing contact width. Dini [11] 
made similar analysis for flat and rounded contact geometries. 
 Influence of the normal load, RP
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Figure 5. Threshold predictions (markers) and the 
‘knee’ function description (continuous curves). 

 
     The functional form of the multi-scaling power law suitable 
for the present context describes the dependence of fretting 
strength of a contact, bσ , on its size, a : 

( )
( )2 3 3

1
0 0 1

( ) ( ) ( )
0

( )/ , ( )
1 ( / )

b

C Cfl C

Ca a C
a a

σ
σ

= +
+ Λ Λ Λ

ΛΛ Λ , (9) 

where 0a  is the combined size-material parameter defined by 
El Haddad [8]. Symbol Λ  stands here for the set of parameters 
( , , , )P QR R f G , where flP pR σ0=  and fPQRQ /=  are 

dimensionless parameters defined respectively for the peak 
normal pressure 0p  and tangential load Q , flσ  is the material 

fatigue limit, f  is the coefficient of friction, and G  is a 

geometrical factor that accounts for the shape of the couplings. 
     The application of the derivation of threshold curves for 
fretting of Hertzian contacts is illustrated in Figure 5. 
Optimised functional form was found by comparison with data 
derived from short crack arrest design methodologies. In 
particular, making use of the thresholds derived by Dini [11] 
for Al-4%Cu alloys (metal on metal contact was only 
considered, so that the coefficient of friction was 0.55), a 
general expression for the dependence of functions C0, C1, C2 
and C3 in (12) on loading parameters RP and RQ was found. 
     Comparison between the prediction curves obtained using 
the functional form (12) with the results from Dini [11] 
(markers) are shown in Figure 5. Note the logarithmic scales 
used for both axes, and the fact that the single formula (12) 
captures the entire set of predicted threshold curves depending 
on not less than three different parameters. 

VI. CONCLUSIONS 
The present paper contains an overview of some instances of 
non-trivial size dependence and scaling behaviour in the 
strength of engineering materials and systems. On the basis of 
the analysis of the fundamental relationships between physical 
quantities it is concluded that scaling transitions are often 
associated with the change of power laws, caused by the change 
of the underlying physical mechanisms.  
     In order to obtain a quantitative description of these 
transitions, a generic ‘knee’ function was introduced. This tool 
provides a means of quantifying the relationship between 
system dimensions and strength in the intermediate transition 
regime without the need to perform detailed simulation. 
    To illustrate the utility of this approach, a number of 
applications were considered in the study of strength. It was 
shown that the method works well even in such complex 
situations like the case of fretting fatigue thresholds, when the 
system strength depends on three independent parameters. 
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