

Abstract—The growing complexity of In-vehicle infotainment
HMI software requirements calls for the design of reusable
software components, the synthesis and generation of software
code. The infotainment systems are re-organizing in response to
new or changing conditions in the environment. The need for
self organization is often forced in user interface of
infotainment applications; which are typically hosted in
resource-constrained environments and may have to
dynamically reorganize in response to changes of user needs, to
heterogeneity and connectivity challenges, as well as to changes
in the execution context and physical environment.
In this paper, we present a lightweight component model for
HMI framework, which represents an Infotainment HMI
application as a set of interoperable local components. The
model supports reconfiguration, by offering code migration
services. We discuss an implementation of the core of HMI
framework, based on the component model and evaluate our
prototype.

Index Terms— Component Model, In-vehicle Infotainment
Systems, Human Machine Interface (HMI), Logical Mobility.

I. INTRODUCTION

Today’s cars provide an increasing number of new
functionalities that enhance the safety and driving
performance of drivers or raise their level of comfort. Passive
safety systems such as airbags were among the first to be
integrated. More recently, systems for active cruise control
[4] have been added, addressing aspects of active safety and
directly influencing the driving process itself. Further,
systems, such as night vision, will extend the drivers’ sensing
capabilities. In addition, Infotainment systems of general
interest have become increasingly common, providing luxury
facilities or enabling modern communication mechanisms.
With every new generation of cars, there are more built-in
infotainment functions.

Infotainment system manufacturers seeking to serve

Hemant Sharma is Software Engineer at Delphi Delco Electronics Europe
GmbH, Bad Salzdetfurth, Germany.
 (e-mail: hemant.sharma @ delphi.com).
Dr. Roger Kuvedu-Libla is EMC-Competency-Leader at Delphi Delco
Electronics Europe GmbH, Bad Salzdetfurth, Germany.
(e-mail: roger.kuvedu.libla @ delphi.com).
Dr. A. K. Ramani, is Professor at School of Computer Science, Devi Ahilya
University, Indore, INDIA. (e-mail: ramani.scs@dauniv.ac.in).

worldwide markets face a complex matrix of 15 major OEMs
(car companies) with 78 major marks (brands) and perhaps as
many as 600 vehicle models. Models may each have a
number of trim levels; serve multiple languages and
regulatory regimes (countries) [2]. To compete, the suppliers
will also need to deliver new functionality; features and a
fresh new look on an annual basis. This makes for an
extremely complex business model and requires a mammoth
engineering effort. Building Human Machine Interface
(HMI) for these complex applications is difficult and
code-intensive, consuming disproportionate amount of
resources and adding considerably to project risk.

The current state-of-practice for developing automotive
software for Infotainment and Telematics systems offers little
flexibility to accommodate such heterogeneity and variation.
Currently, application developers have to decide at design
time what possible uses their applications will have and the
applications do not change or adapt once they are deployed
on an infotainment platform. In fact, In-vehicle infotainment
applications are currently developed with monolithic
architectures, which are more suitable for a fixed execution
context.

Recent trends in automotive software design indicate that the
use of prefabricated building blocks for software
development is on the rise. The prefabricated artifacts are the
off-the-shelf (COTS) software infrastructure and
domain-specific service components that one can acquire
from different vendors and integrate them to deploy
large-scale software applications [1, 3]. Vehicle Navigation
is a good example of such an application on In-vehicle
Infotainment systems.

In this work, we exploit logical mobility [21] and
components to offer self organization to Infotainment HMI
applications. Logical Mobility is defined as the ability to ship
part of an application or even to migrate, a complete process
from one host to another. Logical mobility primitives have
been successfully used to enhance a user’s experience (Java
Applets), to dynamically update an application (Anti- Virus
software etc.), to utilise remote objects (RMI [24], CORBA
[26], etc), to distribute expensive computations
(Distributed.net [25]) etc. Component Models on the other
hand, argue for the decoupling of a system into a set of
interacting components with well defined interfaces.
Components promote decomposition and reusability of
software. There are numerous component models already

 Component Oriented Human Machine Interface
for In-vehicle Infotainment Applications

Hemant Sharma, Dr. Roger Kuvedu-Libla, and Dr. A. K. Ramani

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

developed and discussed in the literature [5,6,7,8,9,10],
offering various services such as transactions and
concurrency control and which have been used to represent
systems as a collection of either local or remote components.
The novel contribution of this paper is threefold: We argue
for the advantages that self organization brings to automotive
infotainment software systems and how this compares to
other approaches. We develop and discuss a lightweight
component model that uses logical mobility to offer self
organisational abilities to user interface for infotainment
systems. Finally, we present implementation of core of HMI
framework based on the component model and evaluate it.
The paper is structured as follows: In the following section an
overview of related research is provided. Section 3 describes
the component model for HMI framework. Section 4, gives
an overview of architecture of core of HMI framework. In
section 5, we describe the HMI framework prototype and
summarize its performance. Section 6 describes an example
HMI based on the framework. In section 7, we elaborate the
future activities and finally conclude the paper.

II. BACKGROUND AND MOTIVATION

Drivers of vehicles operate in highly dynamic environments
or contexts. Existing context aware systems use context such
as task at hand, location, user preferences and device
capabilities [11, 12, 13] to deliver relevant information to the
user. The relevance of the information is relative to a
particular circumstance or context.

An In-vehicle Infotainment device is usually connected to the
vehicle network as well as to GPS network. Further it not
only, may have WiFi or cellular connectivity, but also
interface to various ad hoc networks using the infrared or
Bluetooth interfaces. The potential for interaction with its
environment is great. However, the system only provides
limited HMI primitives for this. The result is that such
devices are still seen as stand-alone and independent system,
which interacts mainly to offer static services—interaction
with their environment and peers is either not considered or is
very limited. Thus, although physically mobile, they are
logically static systems.

This HMI interaction model in current infotainment systems
has various disadvantages: There is little code sharing
between applications running on the same device. There is no
framework providing higher level interoperability and
communication primitives for HMI service applications
running on different devices. HMI Applications are
monolithic, composed of a single static interaction interface,
which makes it impossible to update part of HMI structure.
The procedure needed to host third party dynamic service
applications is difficult.

A component-based approach using logical mobility
primitives would have several advantages:

• Decomposition of applications as interoperable
components would allow for updating individual

parts, rather than replacing the application
completely.

• Componentization would promote sharing of
implementations at runtime, which preserves
limited resources of mobile devices.

• Logical mobility primitives would facilitate
discovery and retrieval of components existing
on any host that is in reach, in a peer-to-peer
fashion.

A component model could support the removal of
infrequently used components when the system is running out
of resources. The components could be transparently
retrieved from peers or a centralized host when needed again.

There is a substantial body of work on self-organizing, self
healing, and adaptable systems, component deployment and
middleware systems.

Beanome [15] and Gravity [16] are component models built
on top of the Open Services Gateway Initiative (OSGi)
Framework [17]. OSGi is a commercial framework for the
Java platform that allows service providers to deliver
services to consumer devices attached to a residential
network and to manage those devices remotely. DACIA [20]
is an adaptable distributed component based system for
groupware applications that allows for the reconfiguration of
the system in the event of user mobility.

Lime [21] is a mobile computing middleware system that
allows mobile agents to roam to various hosts sharing tuple
spaces. PeerWare [23] allows mobile hosts to share data,
using logical mobility to ship computations to the remote
sites that host the data.

The FarGo-DA [22] distributed component model uses
logical mobility to allow disconnected operations. As such,
when a FarGo component is disconnected, it has a number of
options to allow the remote reference to remain valid.

III. COMPONENT MODEL

The term component model refers to a description of
components and a component infrastructure that abstracts
from the details of a concrete implementation, such as the
exact format of the component executable. The goal in doing
so is to understand the choices that can be made in the design
of component architecture, without getting distracted by
machine-specific or platform specific details. This is
especially important in automotive systems, as it is believed
that the diversity of process and architectures will mean that
many different implementations of any given component
model will be needed.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

composite structure Component Model

Component Model

View

ComponentListener

Interface

Facade
Registration

Deployer

LogicalMobilityInterface

MobilityDescriptor

LogicalMobilityEntity

Register

ComponentPlugInInterface

Reflactor

HMIComponent

Figure 1: HMI Framework Component Model

A. Component Meta-Model Overview

The component metamodel, as shown in Fig. 1, is a Meta
Object Facility (MOF) [18]-compliant extension of the UML
metamodel [19]. It builds upon and extends the UML
concepts of Classifier, Node, Class, Interface, Data- Type,
and Instance. The most novel aspect of the component model
is the way in which it offers distribution services to local
components, allowing instances to dynamically send and
receive components at runtime.

The component metamodel is a local, or in process,
reflective component metamodel for HMI applications
hosted on infotainment platforms. The model uses logical
mobility primitives to provide distribution services and
offers the flexible use of those primitives to the applications;
instead of relying on the invocation of remote infotainment
services via the vehicle network. The HMI framework
components are collocated on the same address space. The
model supports the remote cloning of components between
hosts, providing for system autonomy when application
service connectivity is missing or is unreliable. As such, an
instance of HMI framework, as part of HMI application, is
represented as a collection of local components,
interconnected using local references and well-defined
interfaces, deployed on a single host. The model also offers
support for structural reflection [15] so that applications can
introspect which components are available locally, choose
components to perform a particular task, and dynamically
change the system configuration by adding or removing
components.

B. Component Model Elements

Components

The framework components encapsulate particular
functionality, such as, for instance, a user interface, a service
advertisement protocol, a service, a graphics framework, or a
widget library. The components separate interfaces and
implementations. A component is implemented by one or
several HMI framework classes. It can implement one or
more interfaces, called facades (a term inherited from the
CORBA component model [26]), with each facade offering
any number of operations. A metamodel for components that
are going to be deployed across autonomous domain
boundaries needs to ensure that interfaces that have once
been defined cannot be changed.

Each framework component implements at least one
facade, the Component façade [14]. The purpose of this
facade is to allow an application to reason about the
component and its attributes. This permits access to the
properties of the component by retrieving, adding,
removing, and modifying attributes. The component facade
also contains a constructor, which is used to initialize the
component, and a destructor, which is used when removing
the component from the system.

Containers

The central component of every HMI application is the
container component. A container is a component
specialization that acts as a registry of components installed
on the system. As such, a reference to each component is

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

available via the container. The container component
implements a specialization of the component facade that
exports functionality for searching components that match a
given set of attributes.

An adaptive system must also be able to react to changes in
component availability. For example, a media player
interface for iPOD must be able to reason about which
streams it can decode. Hence, the container permits the
registration of listeners (represented by components that
implement the ComponentListener facade) to be notified
when components matching a set of attributes given by the
listener are added or removed.

To allow for dynamic adaptation, the container can
dynamically add or drop components to and from the system.
Registration and removal of components is delegated to one
or more registrars. A registrar is a component that
implements a facade that defines primitives for loading and
removing components, validating dependencies, executing
component constructors, and adding components to the
registry.

C. Distribution and Logical Mobility

An HMI application built using the framework can
reconfigure itself by using logical mobility primitives. As
different paradigms can be applied to different scenarios, our
metamodel does not build distribution into the components
themselves, but it provides it as a service; implementations
of the framework metamodel can, in fact, dynamically send
and receive components and employ any of the above logical
mobility paradigms.

We consider four aspects of Logical Mobility: Components,
Classes, Instances, and Data Types; the last is defined as a
bit stream that is not directly executable by the underlying
architecture [21]. One such, the Logical Mobility Entity
(LME), is defined as an abstract generalization of a Class,
Instance, or Data Type. In the framework component
metamodel, an LMU is always deployed in a Reflective
component. A Reflective component is a component
specialization that can be adapted at runtime by receiving
LMUs from the framework migration services. By
definition, the container is always a reflective component, as
it can receive and host new components at runtime.

D. Component Life Cycle

The HMI framework supports a very simple and lightweight
component life cycle. When a component is passed on to the
container for registration by loading it from persistent
storage, using a Deployer, etc., the container delegates
registration to a registrar component. The registrar is
responsible for checking that the dependencies of the
component are satisfied, instantiating the component using
its constructor, and adding it to the registry. Note that the
component facade prescribes a single constructor. An
instantiated component can use the container facade to get
references to any other components that it may require. A

component deployed and instantiated in the container may
be either enabled or disabled. The semantics of those and the
initial state of the component depend on the component
implementation. The functionality needed to manipulate the
state of the component is exported by the component facade.

IV. ARCHITECTURE OF CORE HMI COMPONENT

FRAMEWORK

The aim of HMI Framework core in general is to provide
higher level interaction primitives than those provided by the
vehicle infotainment network and infotainment service
system as a layer upon which HMI applications are then
constructed. In doing so, the framework hides the
complexities of addressing distribution, heterogeneity, and
failures.

The core uses the adaptation primitives defined by the
component model to build a flexible and adaptable platform
for flexible user interface development. Hence, while
describing the design of the core, we also validate the
metamodel by showing how it can be used to build a
complete HMI application, which offers dynamically
adaptable services.

Figure 2: Core HMI Architecture Overview

The system is built on top of the OSGi middleware and
provides an instance of the component container, as defined
in Section 3. This container is the central aspect of every
instance of the middleware system. Registered with the
container are all the components that are part of the system.
This includes application components (such as a Navigation
application), libraries (such as route calculation), and system
services (such as any registrars, deployers, service
advertising, and discovery components, etc.). All
components make their dependencies explicit through their
properties. The core of every HMI application is the
container, with every other service (including logical
mobility) or application components built on top of it. Thus,
even though components may build complex dependency
graphs expressed via their properties, to the container, they

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

all implement components facades. Components can be
added and removed at runtime.

The framework core along with underlying middleware
provides a number of services to applications. The services
themselves are seen as regular components built on top of the
container. As such, they can be dynamically added and
removed. In the following paragraph, we outline how the
metamodel primitives are used to provide adaptable
advertising and discovery services for framework
components.

Components that wish to advertise their presence to the
environment must implement the Advertisable facade.
Examples of advertisable components include repositories,
services, etc. The Advertisable facade exports a method that
returns a message that is used for advertising; thus, the
advertising message allows the Advertisable component to
express information that it requires to be advertised. An
advertising technique is represented by an Advertiser
component, which is a component implementing the
Advertiser facade. An advertiser component is responsible
for accepting the message of advertisable components,
potentially transforming it into another format and using it to
advertise them. An advertiser allows components that wish to
be advertised to register themselves with it to be advertised.
The combination of component availability notification and
advertiser registration allows an advertisable component to
register with the container to be notified when specific
advertisers are added to the system. The advertisable
component can then register to be advertised by them.

V. PROTOTYPING AND EVALUATION

The prototype for core components of HMI Framework has
been implemented using Java2 Micro Edition on the Top of
OSGi framework [17]. The core is structured in three primary
layers:

A. Interface Layer

It includes a graphical framework plug-in, service-based
resources locator, and extensibility mechanisms such as
plug-ins components and extension interfaces.

B. Composite Layer

The components of this layer offers application service
patterns, design-to-implementation mappings, platform
profiles, and extensibility mechanisms for interoperating
with other infotainment applications.

C. Communication Layer

Communication layer components provide plug-in interface
for distributed resources. They are responsible for
dynamically registering and activating the vehicle network
specific message handling protocol.

Figure 3: Layered Component View for Core of HMI

Framework

Implementation of core of the framework occupies 254
kilobytes, as a compressed Java archive, and includes a launcher
implementation, multicast and centralised publish/subscribe
advertising and discovery components and numerous plug-in
interfaces. The core contains the minimal components to design
an HMI view, handle interactions on the view and establish
connection between view and desired infotainment service. The
core has been deployed on ARM 9 based OMAP platform along
with a test HMI view to access raw GPS data. The table below
summarizes the memory usage and performance figures.

Application Start-up Time 9 Seconds

Memory usage for Application 820 KB

Time to connect to GPS server 1400 ms

Time to Update HMI View 100 ms

Time to register for GPS data 657 ms

Table 1: Performance Figures

VI. THE TRAFFIC MESSAGE HMI

We have implemented a simple Traffic Message
Notification application using the HMI framework core.
Components that implement Traffic Message decoding and text
presentation inherit message format from the radio tuner
running on the same platform. As such, the Traffic HMI
application uses the notification service to be notified whenever
the tuner façade component that has Traffic Message attribute
implemented is registered. Moreover, it uses the deployer and

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

the discovery components to premium Traffic message service
that are found remotely. The application itself occupies 96
kilobytes as a compressed Java archive.

Figure 4: Traffic Message HMI Application Overview

The Traffic Message HMI demonstrates an application that uses
the container to listen to the arrival of new components,
adapting its interface and functionality upon new TMC service
component arrival. It also demonstrates reaction to context
changes, as the application monitors the discovery services for
new service components and schedules them for use as soon as
they appear.

VII. CONCLUSION

In this paper, we present an approach for building HMI for
In-vehicle infotainment software applications by means of
components. We enable this by using a logical mobility based
component model for HMI framework. The lightweight
component metamodel is instantiated as a framework system for
adaptable HMI application and systems. The framework offers
logical mobility primitives as first-class citizens. .

The performance of prototype version of HMI framework
shall be running a test HMI application found to be adequate
and the time needed to adapt was measured to be minimal. An
alternative approach to using components and logical
mobility would be to create a programming language that
allows the specification of modular systems but that also offers
built-in logical mobility primitives.

To extend this work, we are looking into:

• addressing the performance deficiencies of the
component communication mechanism,

• investigating the policy issues (with regard to
security) raised by the extra granularity and
autonomy introduced by the component system,

• Finally providing full implementations of a
component API in a Java and C++ languages.

REFERENCES

[1] B. Hardung, T. Kölzow, A. Krüger: “Reuse of Software in Distributed

Embedded Automotive Systems”. Proc. EMSOFT, 203-210, 2004
[2] J. Dannenberg, C. Kleinhans: “The Coming Age of Collaboration in

the Automotive Industry”, Mercer Management Journal 18:88-94,
2004.

[3] I. Krüger, E. Nelson. K.V. Prasad: “Service-based Software
Development for Automotive Applications”. Proc. CONVERGENCE
2004, 2004.

[4] BMW. ACC. http://www.bmw.co.za/products/acc/default.asp.
[5] C. Szyperski. Component Software. Addison-Wesley, 1998.
[6] M. Völter. A Generative Component Infrastructure for Embedded

Systems. http://www.voelter.de/data/pub/SmallComponents.pdf
2003.

[7] Szyperski, C.: Component Software: Beyond Object-Oriented
Programming, 2nd edition. Addison-Wesley and ACM Press (2002)

[8] C. Pahl. A Pi-calculus based Framework for the Composition and
Replacement of Components. In Proc. OOPSLA Workshop on
Specification and Verification of Component -based systems, 2001.

[9] Bachman, F., Bass, L., Buhman, S., Comella-Dorda, S., Long, F.,
Seacord, R.C., and Wallnau, K.C. Technical Concepts of Component
-Based Software Engineering. Tech. Rep. CMU/SEI-2000-TR-008,
Software Engineering Institute, Carnegie Mellon University, 2000.

[10] D. Schmidt, The ACE ORB.
 http://www.cswustl.edu/~schmidt/TAO.html.
[11] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste,

Project Aura: Toward distraction-free pervasive computing, IEEE
Pervasive computing (2002), 22–31.

[12] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy,
Modeling context information in pervasive computing systems, 1st
International Conference on Pervasive Computing (Zurich,
Switzerland), Springer, August 26-28 2002, pp. 167–180.

[13] Patil, S. and J. Lai. Configuring Privacy Preferences in an Awareness
Application. In Proceedings of CHI 2005.

[14] S. Zachariadis and C. Mascolo. Adaptable mobile applications
through satin: Exploiting logical mobility in mobile computing
middleware. In 1st UK-UbiNet Workshop, September 2003..

[15] H. Cervantes and R. Hall, “BEANOME: A Component Model for the
OSGi Framework,” Software Infrastructures for Component-Based
Applications on Consumer Devices, Sept. 2002.

[16] H. Cervantes and R. Hall, “Autonomous Adaptation to Dynamic
Availability Using a Service-Oriented Component Model,” Proc. 26th
Int’l Conf. Software Eng. (ICSE ’04), pp. 614-623, May 2004.

[17] The OSGi Framework, OSGi Alliance, http://www.osgi.org, 1999.
[18] “Meta Object Facility (MOF) Specification,” Tech. report, Object

Management Group, Mar. 2000.
[19] “Unified Modeling Language”, version 1.5, Object Management

Group, http://www.omg.org/docs/formal/03-03-01.pdf, Mar. 2003.
[20] R. Litiu and A. Parakash, “Developing Adaptive Groupware

Applications Using a Mobile Component Framework,” Proc. 2000
ACM CSCW, pp. 107-116, 2000.

[21] A.L. Murphy, G.P. Picco, and G.-C. Roman, “Lime: A Middleware for
Physical and Logical Mobility,” Proc. 21st Int’l Conf. Distributed
Computing Systems (ICDCS 21), pp. 368-377, May 2001.

[22] Y. Weinsberg and I. Ben-Shaul, “A Programming Model and System
Support for Disconnected-Aware Applications on
Resource-Constrained Devices,” Proc. 24th Int’l Conf. Software Eng.,
pp. 374-384, May 2002.

[23] G. Cugola and G. Picco, “Peer-to-Peer for Collaborative
Applications,” Proc. IEEE Int’l Workshop Mobile Teamwork
Support/Int’l Conf. Distributed Computing Systems (ICDCS ’02), pp.
359-364, July 2002.

[24] Sun Microsystems, Inc. Java Remote Method Invocation
Specification, Revision 1.50, JDK 1.2 edition, October 1998.

[25] The Distributed.net Project. http://www.distributed.net.
[26] OMG. CORBA Component Model.
 http://www.omg.org/cgi-bin/doc?orbos/ 97-06-12, 1997.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

