Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

Component Oriented Human Machine Interface
for In-vehicle Infotainment Applications

Hemant Sharma, Dr. Roger Kuvedu-Libla, and DrKARamani

Abstract—The growing complexity of In-vehicle infotainment
HMI software requirements calls for the design ofreusable
software components, the synthesis and generatiof software
code. The infotainment systems are re-organizing iresponse to
new or changing conditions in the environment. Theneed for
self organization is often forced in user interface of
infotainment applications; which are typically hosed in
resource-constrained environments and may have to
dynamically reorganize in response to changes of eisneeds, to
heterogeneity and connectivity challenges, as wel to changes
in the execution context and physical environment.

In this paper, we present a lightweight component wdel for
HMI framework, which represents an Infotainment HMI
application as a set of interoperable local compomés. The
model supports reconfiguration, by offering code ngration
services. We discuss an implementation of the co HMI
framework, based on the component model and evaluatour

prototype.

Index Terms— Component Model, In-vehicle Infotainment
Systems, Human Machine Interface (HMI), Logical Molility.

I. INTRODUCTION

Today's cars provide an
functionalities that enhance the safety and driving
performance of drivers or raise their level of corhfPassive
safety systems such as airbags were among thedidse
integrated. More recently, systems for active @wsntrol

[4] have been added, addressing aspects of aetigtysand
directly influencing the driving process itself. rkher,
systems, such as night vision, will extend theehd¥/sensing
capabilities. In addition, Infotainment systems general
interest have become increasingly common, provitlirgry
facilities or enabling modern communication mechars.
With every new generation of cars, there are maiié-im
infotainment functions.

Infotainment system manufacturers seeking to serve

Hemant Sharma is Software Engineer at Delphi Delco Electroniesdpe
GmbH, Bad Salzdetfurth, Germany.

(e-mail: hemant.sharma @ delphi.com).

Dr. Roger Kuvedu-Libla is EMC-Competency-Leader at Delphi Delco
Electronics Europe GmbH, Bad Salzdetfurth, Germany.

(e-mail: roger.kuvedu.libla @ delphi.com).

Dr. A. K. Ramani, is Professor at School of Computer Science, Bailya
University, Indore, INDIA. (e-mail: ramani.scs@dauac.in).

ISBN:978-988-98671-9-5

increasing number of new

worldwide markets face a complex matrix of 15 m&&Ms
(car companies) with 78 major marks (brands) amtdayes as
many as 600 vehicle models. Models may each have a
number of trim levels; serve multiple languages and
regulatory regimes (countries) [2]. To compete,ghgpliers
will also need to deliver new functionality; featsrand a
fresh new look on an annual basis. This makes for a
extremely complex business model and requires amudim
engineering effort. Building Human Machine Intedac
(HMI) for these complex applications is difficultné
code-intensive, consuming disproportionate amouft o
resources and adding considerably to project risk.

The current state-of-practice for developing auttveo
software for Infotainment and Telematics systerfersfittle
flexibility to accommodate such heterogeneity aadation.
Currently, application developers have to decidelesign
time what possible uses their applications will dhand the
applications do not change or adapt once they eptoyed
on an infotainment platform. In fact, In-vehicldatainment
applications are currently developed with monadtithi
architectures, which are more suitable for a firgdcution
context.

Recent trends in automotive software design indidat the
use of prefabricated building blocks for software
development is on the rise. The prefabricatedaattifare the
off-the-shelf (COTS) software infrastructure and
domain-specific service components that one canieeq
from different vendors and integrate them to deploy
large-scale software applications [1, 3]. Vehiclavigation

is a good example of such an application on Inslehi
Infotainment systems.

In this work, we exploit logical mobility [21] and
components to offer self organization to InfotaimmnelMI
applications. Logical Mobility is defined as thelijpto ship
part of an application or even to migrate, a conepfgocess
from one host to another. Logical mobility primgs have
been successfully used to enhance a user’s exper{gava
Applets), to dynamically update an application (AMirus
software etc.), to utilise remote objects (RMI [2GORBA
[26], etc), to distribute expensive computations
(Distributed.net [25]) etc. Component Models on ttkeer
hand, argue for the decoupling of a system inteetao$
interacting components with well defined interfaces
Components promote decomposition and reusability of
software. There are numerous component modelsdgirea

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

developed and discussed in the literature [5,87.6],
offering various services such as transactions and
concurrency control and which have been used tresept
systems as a collection of either local or remotemonents.
The novel contribution of this paper is threefoltle argue
for the advantages that self organization bringatomotive
infotainment software systems and how this compé#ves
other approaches. We develop and discuss a lighitivei
component model that uses logical mobility to offslf
organisational abilities to user interface for taioment
systems. Finally, we present implementation of adrelMI
framework based on the component model and evailuate
The paper is structured as follows: In the follogvéection an
overview of related research is provided. Sectiolescribes
the component model for HMI framework. Section Weg
an overview of architecture of core of HMI framewoin
section 5, we describe the HMI framework prototyel
summarize its performance. Section 6 describexamgle
HMI based on the framework. In section 7, we elabothe
future activities and finally conclude the paper.

Il. BACKGROUND AND MOTIVATION

Drivers of vehicles operate in highly dynamic eoniments
or contexts. Existing context aware systems usé&egbeuch
as task at hand, location, user preferences andcalev
capabilities [11, 12, 13] to deliver relevant infation to the
user. The relevance of the information is relatiee a
particular circumstance or context.

An In-vehicle Infotainment device is usually conteztto the
vehicle network as well as to GPS network. Furiherot
only, may have WiFi or cellular connectivity, butsa
interface to various ad hoc networks using theaiefd or
Bluetooth interfaces. The potential for interactioith its
environment is great. However, the system only joies
limited HMI primitives for this. The result is thauch
devices are still seen as stand-alone and indepesgstem,
which interacts mainly to offer static services—enatction
with their environment and peers is either not aered or is
very limited. Thus, although physically mobile, yhare
logically static systems.

This HMI interaction model in current infotainmesystems
has various disadvantages: There is little coderirgha
between applications running on the same devicer€eTis no
framework providing higher level interoperabilitynca
communication primitives for HMI service applicat®
running on different devices. HMI Applications are
monolithic, composed of a single static interaciiaerface,
which makes it impossible to update part of HMUsture.
The procedure needed to host third party dynamicicse
applications is difficult.

A component-based approach using
primitives would have several advantages:

logical mobility

» Decomposition of applications as interoperable
components would allow for updating individual

ISBN:978-988-98671-9-5

parts, rather than replacing the application
completely.

e« Componentization would promote sharing of
implementations at runtime, which preserves
limited resources of mobile devices.

e Logical mobility primitives would facilitate
discovery and retrieval of components existing
on any host that is in reach, in a peer-to-peer
fashion.

A component model could support the removal of
infrequently used components when the system ismgrout

of resources. The components could be transparently
retrieved from peers or a centralized host whedegagain.

There is a substantial body of work on self-orgegjz self
healing, and adaptable systems, component depldyanen
middleware systems.

Beanome [15] and Gravity [16] are component modal&

on top of the Open Services Gateway Initiative (9SG
Framework [17]. OSGi is a commercial framework foe
Java platform that allows service providers to \ali
services to consumer devices attached to a remtlent
network and to manage those devices remotely. DACOA

is an adaptable distributed component based syftem
groupware applications that allows for the recamnfigion of
the system in the event of user mobility.

Lime [21] is a mobile computing middleware systematt
allows mobile agents to roam to various hosts sgariple
spaces. PeerWare [23] allows mobile hosts to sHate,
using logical mobility to ship computations to tremote
sites that host the data.

The FarGo-DA [22] distributed component model uses
logical mobility to allow disconnected operatiods such,
when a FarGo component is disconnected, it hasrdeuof
options to allow the remote reference to remairdval

I1l. COMPONENTMODEL

The term component model refers to a description of
components and a component infrastructure thataadist
from the details of a concrete implementation, sastthe
exact format of the component executable. The igodbing
so is to understand the choices that can be matie thesign
of component architecture, without getting distedctby
machine-specific or platform specific details. This
especially important in automotive systems, as hidlieved
that the diversity of process and architecturebmdan that
many different implementations of any given comptne
model will be needed.

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

composite structure Component Model /

Component Model

HMIComponent

Registration

/

Deployer

Register

|_

v
o

| View

I

Facade

| MobilityDescriptor

VA

LogicalMobilitylnterface

/ ComponentPluglininterface

ComponentListener

Figure 1: HMI Framework Component Model

A. Component Meta-Model Overview

The component metamodel, as shown in Fig. 1, isetaM
Obiject Facility (MOF) [18]-compliant extension &gt UML
metamodel [19]. It builds upon and extends the UML
concepts of Classifier, Node, Class, Interfaceabatype,
and Instance. The most novel aspect of the componedel

is the way in which it offers distribution servicts local
components, allowing instances to dynamically send
receive components at runtime.

The component metamodel is a local, or in process,

reflective component metamodel for HMI applications
hosted on infotainment platforms. The model usegscil
mobility primitives to provide distribution serviseand
offers the flexible use of those primitives to #pplications;
instead of relying on the invocation of remote tafament
services via the vehicle network. The HMI framework
components are collocated on the same address. Spaee
model supports the remote cloning of componenteédet
hosts, providing for system autonomy when applosati
service connectivity is missing or is unreliables guch, an
instance of HMI framework, as part of HMI applicatj is
represented as a collection of local
interconnected using local references and wellraefi
interfaces, deployed on a single host. The model affers
support for structural reflection [15] so that dpations can
introspect which components are available localhgose
components to perform a particular task, and dyoaltyi
change the system configuration by adding or rengvi
components.

ISBN:978-988-98671-9-5

components,

B. Component Model Elements

Components

The framework components encapsulate particular
functionality, such as, for instance, a user istesf a service
advertisement protocol, a service, a graphics freonle, or a
widget library. The components separate interfaaed
implementations. A component is implemented by one
several HMI framework classes. It can implement one
more interfaces, called facades (a term inheritethfthe
CORBA component model [26]), with each facade dfigr
any number of operations. A metamodel for compadrat

are going to be deployed across autonomous domain
boundaries needs to ensure that interfaces that bave
been defined cannot be changed.

Each framework component implements at least one
facade, the Component facade [14]. The purposeisf t
facade is to allow an application to reason abdé t
component and its attributes. This permits accesthe
properties of the component by retrieving, adding,
removing, and modifying attributes. The componeaafie
also contains a constructor, which is used todh#é the
component, and a destructor, which is used whemvarg
the component from the system.

Containers

The central component of every HMI application the
container component. A container is a component
specialization that acts as a registry of compaarstalled

on the system. As such, a reference to each compamne

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

available via the container. The container compbnen
implements a specialization of the component fadhdé
exports functionality for searching components thatch a
given set of attributes.

An adaptive system must also be able to reactaogds in
component availability. For example, media player
interface foriPOD must be able to reason about which
streams it can decode. Hence, the container pertiméts
registration of listeners (represented by companehat
implement theComponentListener facade) to be notified
when components matching a set of attributes gbyethe
listener are added or removed.

To allow for dynamic adaptation, the container can
dynamically add or drop components to and fronsistem.
Registration and removal of components is delegttexhe

or more registrars. A registrar is a component that
implements a facade that defines primitives fodlng and
removing components, validating dependencies, dxaru
component constructors, and adding components ¢o th
registry.

C. Didtribution and Logical Mobility

An HMI application built using the framework can
reconfigure itself by using logical mobility primies. As
different paradigms can be applied to differenthsec®s, our
metamodel does not build distribution into the comgnts
themselves, but it provides it as a service; imgetations
of the framework metamodel can, in fact, dynamicaénd
and receive components and employ any of the dogieal
mobility paradigms.

We consider four aspects of Logical Mobility: Compats,
Classes, Instances, and Data Types; the last iisedefs a

bit stream that is not directly executable by tinelerlying
architecture [21]. One such, the Logical MobilitytEy
(LME), is defined as an abstract generalizatiora @tlass,
Instance, or Data Type. In the framework component
metamodel, an LMU is always deployed in a Reflectiv
component. A Reflective component is a component
specialization that can be adapted at runtime bgiveng
LMUs from the framework migration services. By
definition, the container is always a reflectivergmnent, as

it can receive and host new components at runtime.

D. Component Life Cycle

The HMI framework supports a very simple and lighight
component life cycle. When a component is passdd tme
container for registration by loading it from petsint
storage, using @eployer, etc., the container delegates
registration to a registrar component. The regisiga
responsible for checking that the dependencies hef t
component are satisfied, instantiating the compbnsimg
its constructor, and adding it to the registry. &lthat the
component facade prescribes a single constructor. A
instantiated component can use the container faadet
references to any other components that it mayirega

ISBN:978-988-98671-9-5

component deployed and instantiated in the contaimey
be either enabled or disabled. The semantics gkthad the
initial state of the component depend on the corepbn
implementation. The functionality needed to marapeithe
state of the component is exported by the compdiaeate.

IV. ARCHITECTURE OFCOREHMI COMPONENT
FRAMEWORK

The aim of HMI Framework core in general is to pdav
higher level interaction primitives than those pded by the
vehicle infotainment network and infotainment seevi
system as a layer upon which HMI applications #rent
constructed. In doing so, the framework hides the
complexities ofaddressing distribution, heterogeneity, and
failures.

The core uses the adaptation primitives definedthsy
component model to build a flexible and adaptaldéfgrm

for flexible user interface development. Hence, levhi
describing the design of the core, we also validae
metamodel by showing how it can be used to build a
complete HMI application, which offers dynamically
adaptable services.

composita structure Core Framework /

HMI Core Component Framework
HMI Semices

O_

Wiew Composition Deployer Container Advertisahle

Remaote Discovery Advertising
Service Locator

Graphics Widget

OpenGL

Graphiss APls Vehicle

Network

Pratocol Interface

Figure 2: Core HMI Architecture Overview

The system is built on top of the OSGi middlewang a
provides an instance of the component containedeéised

in Section 3. This container is the central asmdotvery
instance of the middleware system. Registered with
container are all the components that are patekystem.
This includes application components (such as agdsion
application), libraries (such as route calculati@md system
services (such as any registrars, deployers, servic
advertising, and discovery components, etc.). All
components make their dependencies explicit thrabgh
properties. The core of every HMI application et
container, with every other service (including kaji
mobility) or application components built on topibfThus,
even though components may build complex dependency
graphs expressed via their properties, to the cwmrtathey

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

all implement components facades. Components can be
added and removed at runtime.

The framework core along with underlying middleware
provides a number of services to applications. Jéwices
themselves are seen as regular components budpasf the
container. As such, they can be dynamically added a
removed. In the following paragraph, we outline hthe
metamodel primitives are used to provide adaptable
advertising and discovery services for framework
components.

Components that wish to advertise their presenc¢héo
environment must implement the Advertisable facade.
Examples of advertisable components include repass,
services, etc. The Advertisable facade exportsthadethat
returns a message that is used for advertisings, tthe
advertising message allows the Advertisable compiotee
express information that it requires to be advedtisAn
advertising technique is represented by an Adwsrtis
component, which is a component implementing the
Advertiser facade. An advertiser component is rasjmnte

for accepting the message of advertisable compsnent
potentially transforming it into another format amging it to
advertise them. An advertiser allows componentsviigh to

be advertised to register themselves with it tatheertised.
The combination of component availability notificet and
advertiser registration allows an advertisable coment to
register with the container to be notified when cifie
advertisers are added to the system. The advddisab
component can then register to be advertised by.the

V. PROTOTYPINGAND EVALUATION

The prototype for core components of HMI Framewoak
been implemented using Java2 Micro Edition on thp of
OSGi framework [17]. The core is structured in three primary
layers:

A. Interface Layer

It includes a graphical framework plug-in, servizzsed
resources locator, and extensibility mechanismsh sas
plug-ins components and extension interfaces.

B. Composite Layer

The components of this layer offers applicationvieer

patterns, design-to-implementation mappings, platfo
profiles, and extensibility mechanisms for intengtimg

with other infotainment applications.

C. Communication Layer

Communication layer components provide plug-in riiaige

for distributed resources. They are responsible for
dynamically registering and activating the vehioktwork
specific message handling protocol.

ISBN:978-988-98671-9-5

composite structure Core Layer /

Interface Layer

Resource
Plugin

Graphics
plugin

Widget
Framework

Composite Layer

Platform Implementation
Profile Map
Communication Layer
Communication Protocol Plug-in
T T

! S 4

Connect Fegister Flug-in Register

Figure 3: Layered Component View for Core of HMI
Framework

Implementation of core of the framework occupies4 25
kilobytes, as a compressed Java archive, and iesladauncher
implementation, multicast and centralised publishézribe
advertising and discovery components and numeroug-ip
interfaces. The core contains the minimal companntlesign
an HMI view, handle interactions on the view andakbsh
connection between view and desired infotainmenice The
core has been deployed on ARM 9 based OMAP platédomg
with a test HMI view to access raw GPS data. Théetaelow
summarizes the memory usage and performance figures

Application Start-up Time 9 Seconds
Memory usage for Application 820 KB
Time to connect to GPS server 1400 ms
Time to Update HMI View 100 ms
Time to register for GPS data 657 ms

Table 1: Performance Figures

VI. THE TRAFFIC MESSAGEHMI

We have implemented a simple Traffic Message
Notification application using the HMI framework reo
Components that implement Traffic Message decodirdytext
presentation inherit message format from the raiioer
running on the same platform. As such, the TrafiMl
application uses the notification service to befieat whenever
the tuner fagade component that has Traffic Messétgibute
implemented is registered. Moreover, it uses th@ajer and

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 1
WCE 2008, July 2 - 4, 2008, London, U.K.

the discovery components to premium Traffic messsgeice
that are found remotely. The application itself ques 96
kilobytes as a compressed Java archive.

composite structure TMC HMI /

[Tramcdam | [20km]

From : Hannover

To :Kassel | f---- = Graphics
Framework

Traffic Jam Expected
Due fo Heavy Show

Tuner Server
Proxy

—— Tuner Facade atraces )
TG MSE AP TMC Service Interface TMC Senvices

Figure 4: Traffic Message HMI Application Overview

The Traffic Message HMI demonstrates an applicatian uses
the container to listen to the arrival of new comgats,
adapting its interface and functionality upon neMd service
component arrival. It also demonstrates reactiorcdatext
changes, as the application monitors the discoseryices for
new service components and schedules them forausecen as
they appear.

VII. CONCLUSION

In this paper, we present an approach for builditidl for
In-vehicle infotainment software applications by ane of
components. We enable this by using a logical nitgbdlased
component model for HMI framework. The lightweight
component metamodel is instantiated as a framesystem for
adaptable HMI application and systems. The fram&vedfers
logical mobility primitives as first-class citizens

The performance of prototype version of HMI framekvo
shall be running a test HMI application found todsequate
and the time needed to adapt was measured to lmmahin
alternative approach to using components and lbgica
mobility would be to create a programming language that
allows the specification of modular systems but #iso offers
built-in logical mobility primitives.

To extend this work, we are looking into:

» addressing the performance deficiencies of the
component communication mechanism,

* investigating the policy issues (with regard to
security) raised by the extra granularity and
autonomy introduced by the component system,

* Finally providing full implementations of a
component APl in a Java and C++ languages.

ISBN:978-988-98671-9-5

REFERENCES

[1] B. Hardung, T. Kdlzow, A. Kriiger: “Reuse of Softwan Distributed
Embedded Automotive Systems”. Proc. EMSOFT, 203-2004

[2] J. Dannenberg, C. Kleinhans: “The Coming Age ofl@uration in
the Automotive Industry”, Mercer Management Jourh8t88-94,
2004.

[3] I. Kruger, E. Nelson. K.V. Prasad: “Service-basedftare
Development for Automotive Applications”. Proc. C8ERGENCE
2004, 2004.

[4] BMW. ACC. http://www.bmw.co.za/products/acc/defaasp.

[5] C. Szyperski. Component Software. Addison-Wes|&98L

[6] M. Volter. A Generative Component Infrastructure mbedded
Systems. http://www.voelter.de/datptib/SmallComponents.pdf
2003.

[7] Szyperski, C.. Component Software: Beyond Objedtided
Programming, %' edition. Addison-Wesley and ACM Press (2002)

[8] C. Pahl. A Pi-calculus based Framework for the Casitipn and
Replacement of Components. In Proc. OOPSLA Worksbap
Specification and Verification of Component -basgdtems, 2001.

[9] Bachman, F., Bass, L., Buhman, S., Comella-Dordal &g, F.,
Seacord, R.C., and Wallnau, K.C. Technical Concep@omponent
-Based Software Engineering. Tech. Rep. CMU/SEIRZOR-008,
Software Engineering Institute, Carnegie Mellon wénsity, 2000.

[10] D. Schmidt, The ACE ORB.
http://www.cswustl.edu/~schmidt/TAO.html

[11] David Garlan, Dan Siewiorek, Asim Smailagic, andeP&teenkiste,
Project Aura: Toward distraction-free pervasive pating, IEEE
Pervasive computing (2002), 22—-31.

[12] Karen Henricksen, Jadwiga Indulska, and Andry Ratkioginy,
Modeling context information in pervasive computisgstems, 1st
International Conference on Pervasive Computing ri¢Ay
Switzerland), Springer, August 26-28 2002, pp. 160~

[13] Patil, S. and J. Lai. Configuring Privacy Prefeein an Awareness
Application. In Proceedings of CHI 2005.

[14] S. Zachariadis and C. Mascolo. Adaptable mobileliegons
through satin: Exploiting logical mobility in mokil computing
middleware. In 1st UK-UbiNet Workshop, Septembed20

[15] H. Cervantes and R. Hall, “BEANOME: A Component Mbtbr the
OSGi Framework,” Software Infrastructures for Comet-Based
Applications on Consumer Devices, Sept. 2002.

[16]H. Cervantes and R. Hall, “Autonomous AdaptationDgnamic
Availability Using a Service-Oriented Component MgtProc. 26th
Int'l Conf. Software Eng. (ICSE '04), pp. 614-623ay 2004.

[17] The OSGi Framework, OSGi Alliance, http://www.osgy, 1999.

[18] “Meta Object Facility (MOF) Specification,” Techeport, Object
Management Group, Mar. 2000.

[19] “Unified Modeling Language”, version 1.5, Object Maement
Group, http://www.omg.org/docs/formal/03-03-01.pidfar. 2003.

[20] R. Litiu and A. Parakash, “Developing Adaptive Gpaware
Applications Using a Mobile Component Frameworkro® 2000
ACM CSCW, pp. 107-116, 2000.

[21] A.L. Murphy, G.P. Picco, and G.-C. Roman, “LimeMAddleware for
Physical and Logical Mobility,” Proc. 21st Int'l @b Distributed
Computing Systems (ICDCS 21), pp. 368-377, May 2001

[22] Y. Weinsberg and I. Ben-Shaul, “A Programming Modetl System
Support for Disconnected-Aware Applications on
Resource-Constrained Devices,” Proc. 24th Int'l {C8oftware Eng.,
pp. 374-384, May 2002.

[23] G. Cugola and G. Picco, “Peer-to-Peer for Collathoea
Applications,” Proc. IEEE Int'l Workshop Mobile Teavork
Support/Int’l Conf. Distributed Computing SystenSCS '02), pp.
359-364, July 2002.

[24] Sun Microsystems, Inc. Java Remote Method Invonatio

Specification, Revision 1.50, JDK 1.2 edition, Qm01998.
[25] The Distributed.net Projedtitp://www.distributed.net
[26] OMG. CORBA Component Model.
http://www.omg.org/cgi-bin/doc?orbo87-06-12, 1997.

WCE 2008



