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Abstract — Natural examples of emergent behaviour, in 

groups due to interactions among the group’s individuals, 

are numerous. Our aim, in this paper, is to use complex 

emergent behaviour among agents that interact via pair-

wise attractive and repulsive potentials, to solve the local 

minima problem in the artificial potential based navigation 

method. We present a modified potential field based path 

planning algorithm, which uses agent internal states and 

swarm emergent behaviour to enhance group performance. 

The algorithm is used successfully to solve a reactive path-

planning problem that cannot be solved using conventional 

static potential fields due to local minima formation. 

Simulation results demonstrate the ability of a swarm of 

agents to perform problem solving using the dynamic 

internal states of the agents along with emergent behaviour 

of the entire group.  

 
Index Terms— Agent Internal States, Local Minima 

Escape, Swarm Emergent Behaviour, Wall Following.  

 
I. INTRODUCTION 

 Common emergent patterns in natural systems such as 

coherent flock, single-mill states, and double-mill pattern 

have been observed and reported for various species 

whose members have high rates of information exchange 

[1]–[3]. As the researchers become more concerned in 

investigating such phenomenon, terms like complexity, 

emergence, and stigmergy have been defined [4] and 

models of natural or artificial individuals, which interact 

through pair-wise long-range attraction and short-range 

repulsion within a swarm, have been introduced [5]–[8]. 

Such behaviour may offer new approaches to many 

classes of information processing problems, which 

currently prove infeasible, and to design systems that can 

accomplish their tasks more reliably, faster and cheaper 

than could be achieved by conventional systems [9].  

 

II. SWARM MODEL 

 Investigating the motion of swarms using artificial 

potential fields shows that swarms of interacting particles 

can relax into vortex-like states [8]. The model consists 

of Np agents with mass mi, position ri, velocity vi and 

relative distance rij between the i
th

 and j
th

 agents. The 

agents interact by means of a cohesive two-body 

generalized Morse potential Vinteraction(ri) with weak long 

range attraction and strong short range repulsion. 
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 For simplicity, we will consider identical agents of 

unit mass. To control the speed of the i
th

 agent a linear 

dissipative term with a positive coefficient βi is added 

[10]. The total potential field, which affects the i
th

 agent, 

is then characterized by other agent’s attractive and 

repulsive potential fields of strength Ca and Cr with 

ranges la and lr respectively along with obstacle 

potentials Vobstacles(ri) of strength Cio with range lio (Ca, 

Cr, la, lr, Cio, lio ≥ 0). For the goal we use a hyperbolic 

attractive well of strength wg to ensure convergence of 

the agents to the goal [11].  

 To make the swarm of agents dissipate energy while 

the total angular momentum is conserved as the swarm 

relaxes, the agents encounter orientation forces 

Forientation(ri,vi), which act directly on the agents’ 

velocities to orient the individuals’ velocities with 

respect to one another [8]. The constant CA is the 

magnitude of the orientation force and lA is the range 

over which the orientation interaction occurs (CA, lA ≥ 0). 

In general, the equations of motion for Np agents moving 

in a workspace that contains No point obstacles at 

locations ro and one goal G at position rg are then 

defined by: 

ii rv &=       (1) 

),( iitotaliim vrFv =&                (2) 

 where, Ftotal(ri,vi) is the sum of all forces exerted on 

the i
th

 agent. To calculate the force in Eq. (2), the global 

potential is now defined as: 

goalobstaclesninteractiototal VVVV ++=    (3) 

 where, the interaction potential Vinteraction(ri) is defined 

as the sum of the repulsion potential and the attraction 

potential among the agents. We use generalized Morse 

potential, of the exponentially decaying nature, to obtain 

interactions that are close to real biological systems as 

follows: 
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The obstacles and goal potentials are defined as: 

zozoi

z

o
l

o

N

z

iobstacles eCV
rr

r
−−

=

∑=
1

)(     (5) 

( )1||1)(
2 −−+= gigigoal wV rrr     (6) 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



                            

 

 Ftotal(ri, vi) in Eq. (2) consists of the following: 

 

),()()(),( iinorientatioininteractioindissipatioiitotal vrFrFvFvrF ++=  

       )()(
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rFrF ++    (7) 

where, 

 

iiindissipatio vvF β−=)(     (8) 
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The orientation force is defined in (McInnes,2007) as: 
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Substituting from Eq. (3), Eq. (7-12) in Eq. (2), it can be 

seen that: 

  

)(),()( itotaliiinorientatioindissipatioii Vm rvrFvFv ∇−+=&         (13) 

 

 For a complex potential field such as that represented 

by Eq. (3-6), the potential can posses multiple local 

minima. A key issue is to identify how the agents will 

realize that they are trapped in a local minimum so that 

they can then attempt to escape. To solve the problem in 

this case, the agents must discount their immediate 

sensory information (attraction of the goal) by endowing 

them with higher-level perception concerning the 

environment. 

 

III. PROBLEM DEFINITION 

 The local minima problem has been an issue of 

concern for potential field methods [12]. Several 

attempts, which can be categorized into local minima 

avoidance (LMA) techniques and local minima escape 

(LME) techniques, have been made to overcome it [13]. 

In our previous work we introduced the approach of 

using dynamic internal states for a swarm of robots to 

escape local minima by manipulating the global potential 

of the environment. The performance of the swarm was 

enhanced by using some aspects of swarming behaviours 

such that swarm leader concept [14], and the collective 

behaviour [10], which can be found in real biological 

systems.     

 In this paper we introduce a solution to the problem 

performed by a swarm of robots, which encounter mutual 

interaction. By choosing the proper interaction 

parameters, a vortex-like pattern will emerge [8]. We will 

use the agents’ internal states to employ this emergent 

behaviour to make the swarm of agents escape local 

minima by following the boundaries of obstacles.  

 The reactive problem of a swarm of agents attracted to 

a goal point at position G is shown in Fig. 1, where we 

can see the group moves towards the goal as a flock with 

individuals’ velocities increasing until reaching the goal. 

Then they are trapped in the local minimum, which is a 

barrier that consists of a number of identical obstacle 

points located in the path of the swarm to the goal such 

that the goal is visible from the swarm individuals’ initial 

positions but they cannot pass through the barrier. 

Considering this case, the whole swarm will be trapped at 

the barrier because the agents trapped inside the barrier 

will suffer two opposite forces; the first force is the 

repulsion from the barrier while the other one will be the 

attraction to the goal.  

 Fig. 2 shows the nearly sinusoidal change in the group 

angular momentum for the swarm in Fig. 1 indicating the 

frequent attempts of the group to go to the goal through 

the obstacles and that the angular momentum of the 

swarm decreases as the swarm is repulsed. Then, the 

swarm group angular momentum almost decays with 

time. In that case, the swarm rotates around its center 

with a decaying angular momentum, which indicates that 

the swarm will never escape the local minimum.  

 

 
 

 
 

Fig.1.a. The swarm starts from position S and then becomes stuck in 

the local minimum, t = 95 
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Fig.1.b. The swarm fails to escape the local minimum, t = 250 

Fig.1. Behaviour of a swarm of agents that use fixed internal 

states. 

 

 
Fig. 2. Group angular momentum with time for the swarm in 

Fig.1. 

 

IV. INTERNAL STATE MODEL 

 We use one of the most interesting aspects in 

swarming behaviours, which is the emergence of vortex 

pattern among agents that interact via pair-wise attractive 

and repulsive potentials [15], as a new technique to 

escape the local minimum position. The solution depends 

mainly on increasing the group perception about the 

swarm state by linking the goal gradient potential in the 

equation of motion to one of the swarming parameters, 

the swarm center velocity vc, in a way that when the 

velocity of the swarm decreases the goal effect 

diminishes. This helps in eliminating the local minimum 

from the global potential, which in turn enables the 

formed vortex pattern amongst the group to solve the 

problem. The attraction strength wg in Eq. (13) is now 

defined as: 

kew cc

gg )1(
||. vλλ −−=                                   (14) 

where k is a positive coefficient. This effect will not 

solve the problem by it self because the vortex pattern 

emerges and the local minimum disappears but the agents 

may rotate around their center behind the wall, as shown 

in Fig. 1, which indicates that the swarm will not follow 

the obstacle boundaries. At this point comes the role of 

manipulating one of the agents’ internal states, the 

dissipation coefficient β, to achieve a pure rolling in a 

way that makes the group follow obstacle boundaries. 

The dissipation coefficient will be defined as: 
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 where βo is the minimum dissipation coefficient 

necessary to prevent the agents from escaping the group 

[10], Ri is the minimum distance between i
th

 agent and 

the obstacles, λc is a positive coefficient that controls the 

effect of the swarm center velocity on the goal attraction 

potential strength in Eq. (14), λg is a positive coefficient 

that guarantees that wg is always positive and λβ is a 

positive coefficient that controls the effect of the swarm 

center velocity on the dissipation coefficient in Eq. (15). 

The effect of manipulating the dissipation coefficient β 

guarantees that when the swarm is trapped, the swarm’s 

individuals closer to the boundary of the obstacles will 

gain higher values of dissipation coefficient (i.e. lower 

velocities). Meanwhile, the individuals who are far from 

the obstacles will gain lower values of dissipation 

coefficient and consequently higher velocities to form a 

pure rolling action. 

 

V. STABILITY ANALYSIS 

 We will follow Mogilner’s approach [6] to discuss the 

stability of the system. From Eq. (13) it can be deduced 

that: 
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 where Vtotal(ri) is from Eq. (3). Now, the total energy 

of the system is defined as: 
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Substituting from Eq. (8), Eq. (10) and Eq. (17) in Eq. 

(19): 
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 Then, it can be concluded that: 
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 Knowing that 0>β , wg ≥ 0, λg ≥ 0, CA ≥ 0, k >0, then 

0<φ& , therefore the system is Lyapunov stable, so that 

the group will slowly leak energy and relax to a 

minimum-energy state.  

 

VI. NUMERICAL RESULTS 

 

A. Problem Solving 
 

 Simulation results, demonstrated in Fig. 3, show a 

swarm of agents escaping local minimum while Fig. 4 

shows the group angular momentum during the problem-

solving phase. We can see in Fig. 3.a) that the swarm 

moves towards the goal as almost aligned flock until it 

enters the local minimum. This is shown regime I of Fig. 

4, where the group angular momentum is low and of 

almost constant value. 

 The effect of the term in that increases the perception 

of the group about the environment is obvious in Fig. 

3.b) to Fig. 3.e), which show that when the swarm is 

stuck the goal effect on the group is decreased. This 

makes the local minimum disappears, as shown in Fig. 

3.b) to Fig. 3.e), and the vortex pattern emerge with 

higher angular momentum amongst the group. Fig. 3.b) 

to Fig. 3.e) also show the effect of using Eq. (15) and Eq. 

(16) which manipulate the values of the dissipation 

coefficient making the individuals closer to the obstacle 

to gain higher dissipation coefficient that makes them of 

lower velocity than those who are located far from the 

obstacle walls. This guarantees pure rolling motion, 

making the group to follow the wall boundary even if 

there is no direct contact to the obstacle wall. The pure 

rolling-wall following action is very clear in Fig. 3.b) to 

Fig. 3.e). Fig. 4 shows that the swarm maintains almost 

constant group angular momentum to follow boundaries 

of the obstacles. Zones II, III, IV and V of Fig. 4 

respectively show the group angular momentum 

corresponding to the boundaries following for the lower 

horizontal inner wall, vertical inner wall, the higher 

horizontal inner wall, and the outer boundaries of the 

higher horizontal wall until the swarm escapes from the 

local minimum. Again the effect of the term that 

increases the perception of the group about the 

environment is obvious in Fig. 3.f) and Fig. 3.g) in a way 

that as the agents escape from the local minimum, the 

swarm center velocity increases and consequently the 

goal effect on the group increases which makes the group 

moves towards the goal with relatively higher velocity as 

an almost aligned flock. This is shown in region VI of 

Fig. 4 where the swarm group angular momentum 

decreases as the swarm moves toward the goal. Using the 

model ensures sinusoidal change in the agent’s 

dissipation coefficient, especially the peripheral ones, 

with time as shown in Fig. 5. This effect guarantees that 

the swarm will follow the obstacle wall in a pure rolling 

motion even in the absence of the goal effect and 

consequently the absence of the direct touch of the 

swarm to the wall. 

 
 

Fig. 3.a. The swarm at the initial position, t=17 

 

 

 

Fig. 3.b. t= 39 
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Fig. 3.c. t= 55 

 

 

Fig. 3.d. t= 200 

 

 

Fig. 3.e. t= 220 

 

 

Fig. 3.f. t= 260 

 

X 

X 

Y 

Y 

X 

X 

Y 

Y 

X 

X 

Y 

Y 

X 

X 

Y 

Y 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



                            

 

 

Fig. 3.g. The swarm escape the local minimum, t=270 

Fig.3. Behaviour of a swarm using the internal state model 

with agents’ above zoom window. 

 

 
Fig.4. Group angular momentum with time for swarm in Fig.3. 

 

 
Fig.5. A peripheral agent’s dissipation coefficient with time 

 

 

 

B. Solving a Maze Application 

 

We now consider two groups of agents attempting to 

reach a single goal in a maze whose potential field has 

multiple local minima. The groups navigate from a 

starting point S and attempt to reach a goal position G 

through a 4-level maze. One of these two groups, swarm 

A, is using the internal state model supported by the wall 

following technique to solve the maze while the other 

group, swarm B, is using a conventional static potential 

field. The simulation results, shown in Fig. 6, 

demonstrate the capability of the swarm using the 

internal state model to solve the problem and reach the 

goal, while the other conventional swarm is trapped in 

the first level of the maze. Fig. 7 shows the path of the 

center-of-mass of swarm A through the maze to the goal. 

 

 

Fig.6.a. The two swarms as the starting position, t=0 
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Fig. 6.b. t=71 

 

Fig. 6.c. t=125 

 

Fig. 6.d. t=346 

 

Fig.6.e. t=550 
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Fig. 6.f. The swarm that use internal state model solves the maze 

while the swarm with fixed internal states fails. t=810 

Fig.6. Two swarms in a maze application 

 

Fig.7. The path of the swarm center inside the maze 

 

VII. CONCLUSION 

 This paper presents a development of our work in 

overcoming the local minima problem by using the 

agent’s internal states along with the emergent 

behaviour of the agents. The model uses the swarm 

center velocity to solve the problem in two ways. The 

first way links the goal attraction potential strength in 

the equation of motion to the swarm center velocity in 

a way that as the swarm center decreases, the goal 

effect decreases and the local minimum disappears. 

At the same time when the goal effect decreases, a 

swarm vortex pattern emerges. This activates the pure 

rolling motion of the swarm through which the agents 

near to the wall of obstacles acquire higher dissipation 

coefficient, consequently having lower velocities than 

those individuals that are far from the wall. This will 

enable the swarm of agents to achieve pure rolling 

motion in which the swarm follows the wall 

boundaries even in case of indirect contact. The 

simulation results show that, rather than moving in a 

static potential field, the agents are able to manipulate 

the potential according to their estimation of whether 

they are moving towards the goal or stuck in a local 

minimum and the method allows a swarm of agents to 

escape from and to manoeuvre around a local 

minimum in the potential field to reach a goal. This 

new methodology successfully solves reactive path 

planning problem, such as a complex maze with 

multiple local minima, which cannot be solved using 

conventional static potential fields.  
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