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Abstract
 This paper presents an efficient FPGA implementation 
approach of the elliptic curve cryptography. There are many 
drawbacks in current encryption algorithms (RSA; AES) in 
respect of security, power & resources at real-time 
performance. The Elliptic Curve Cryptography (ECC) is 
evolving as an important cryptography, and shows a 
promise to be an alternative of RSA. Small size, high 
security and other features characterize ECC. Based on the 
theory of ECC, this paper analyzes its advantages over 
other cryptographies and focuses on its principle.  
  
Key terms: Elliptic curve point addition; point doubling; 
Finite field arithmetic; Point multiplication; virtex FPGA.  
 
1. Introduction 
 
It is widely recognized that security issues play a crucial 
role in the majority of computer and communication 
systems. A central tool for achieving software protection is 
Cryptography. Cryptographic algorithms are most 
efficiently implemented in custom hardware than in 
software running on general purpose processors. Hardware 
implementations are of extreme importance in case of high 
performance, security against system intruders and busy 
systems, where a cryptographic task consumes too much 
time. Traditional ASIC solutions have the well-known 
drawback of reduced flexibility compared to software 
solutions. Since modern security protocols are increasingly 
becoming algorithm independent, a high degree of 
flexibility with respect to the cryptographic algorithms is 
desirable. The security degrees of all the techniques are 
based on the hardness of mathematical problems. Among 
them, Elliptic curve cryptography shows a promise to be an 
alternative of RSA. 
A promising solution which combines high flexibility with 
the speed and physical security of traditional hardware is the 
implementation of cryptographic algorithms on 
reconfigurable devices such as FPGAs. FPGAs are hardware 
devices whose function is not fixed and which can be 
programmed in-system. An FPGA implementation can be 
easily upgraded to incorporate any protocol changes without 
the need for expensive and time consuming physical design, 
fabrication and testing required in case of ASICs 
  
 
The authors would like to thank Government of India, Ministry of 
Communications and Information Technology, Department of Information 
Technology, New Delhi, for funding the Project “Development of Software 
Protection Tools”, under which this work has been done. 
* Prof. Renu Vig is with the University Institute of Engineering and 
Technology; Panjab University; India;Email:renuvig@hotmail.com. 
** Ravi Tandon (Project Associate; master of electronics and 
communication; Panjab University; India; Email: 
robintandon_007@yahoo.co.in 
 

This work presents the ECC processor structure of moderate 
gate count and high speed and it is organized as follows. 
Section 2 focuses on the architecture of the ECC design. 
Section 3 explores the implementation techniques used for 
ECC Encryption and Decryption. Section 4 is endowed with 
experimental results on FPGA platform Section 5 shows the 
comparisons and finally section 6 winds up with future work 
and conclusion. 
 
2. Architecture of the Circuit 

Fig. 1: ECC processor architecture 
 
The operation that dominates the execution time of an 
elliptic curve cryptographic protocol is point multiplication. 
Efficient implementation of point multiplication can 
be separated into three distinct layers: 
1. Finite field arithmetic; 
2. Elliptic curve point addition and doubling  
3. Point multiplication technique. 
 

 
 
Fig. 2: Hierarchy of operations in ECC 
 
Accordingly, there is a hierarchy of operations involved in 
point multiplication with point multiplication techniques 
near the top and the fundamental finite field arithmetic at the 
base. The hierarchy, depicted in above Fig 2, has been 
extended to the protocol level. For example, one could 
decide to implement ECDSA signature generation entirely 
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in hardware so that the only input to the device is the 
message to be signed, and the only output is the signature 
for that message. 
An important element of hardware design is to determine 
those layers of the hierarchy that should be implemented in 
silicon. Clearly, finite field arithmetic must be designed into 
any hardware implementation accelerator for finite field 
arithmetic only and then use an off-the-shelf microprocessor 
to perform the higher-level functions of elliptic curve point 
arithmetic. It is important to note that an efficient finite field 
multiplier does not necessarily yield an efficient point 
multiplier—all layers of the hierarchy need to be optimized. 
Moving point addition and doubling and then point 
multiplication to hardware provides a more efficient ECC 
processor at the expense of more complexity. In all cases a 
combination of both efficient algorithms and hardware 
architectures is required. One approach to higher 
functionality is the processor depicted in Fig 1. Along with 
program and data memory, the three main components are 
an arithmetic logic unit (AU), an arithmetic unit controller 
(AUC), and a main controller (MC). The AU performs the 
basic field operations of addition, squaring, multiplication, 
and inversion, and is controlled by the AUC. The AUC 
executes the elliptic curve operations of point addition and 
doubling. The MC coordinates and executes the method 
chosen for point multiplication, and interacts with the host 
system. 

3. Implementation Approaches: 
 
Elliptic curve key generation: 
Let E be an elliptic curve defined over a finite field Fp. Let 
P be a point in E (Fp), and suppose that P has prime order n. 
Then the cyclic subgroup of E (Fp) generated by P is P = 
{∞, P, 2P, 3P, (n−1) P}.The prime p, the equation of the 
elliptic curve E, and the point P and its order n, are the 
public domain parameters. A private key is an integer‘d’ 
that is selected uniformly at random from the interval [1, n 
−1], and the corresponding public key is Q = d*P. 
 
Algorithm 1: 
Elliptic curve key pair generation 
Input: Elliptic curve domain parameters (p, E, P, n). 
Output: Public key Q and private key d. 
1. Select d belongs to R in range [1, n−1]. 
2. Compute Q = d*P. 
3. Return (Q, d). 
 
Elliptic curve encryption and decryption scheme: 
We present the encryption and decryption procedures for the 
elliptic curve. A 
Plaintext ‘m’ is first represented as a point M, and then 
encrypted by adding it to k*Q where k is a randomly 
selected integer and Q is the intended recipient’s public key. 
The sender transmits the points C1 = k*P and C2 = M + 
(k*Q) to the recipient who uses her private key‘d’ to 
compute   dC1 = d (k*P) = k (d*P) = k*Q, and thereafter 
recovers M = C2 − (k*Q). An eavesdropper who wishes to 
recover M needs to compute k*Q. This task of computing 

k*Q from the domain parameters, Q, and C1 = k*P, is the 
elliptic curve analogue of the Diffie-Hellman problem. 
 
Algorithm 2: 
 
Basic elliptic curve encryption: 
Input: Elliptic curve domain parameters (p, E, P, n), public 
key Q, plaintext m. 
Output: Cipher text (C1, C2). 
1. Represent the message ‘m’ as a point M in E (Fp). 
2. Select ‘k’ belongs to R in range [1, n−1]. 
3. Compute C1 = k*P. 
4. Compute C2 = M + (k*Q) 
5. Return (C1, C2). 
 
Algorithm 3:  
 
Basic elliptic curve decryption 
Input: Domain parameters (p, E, P, n), private key d, cipher 
text (C1, C2). 
Output: Plaintext m. 
1. Compute M = C2−dC1, and extract m from M. 
2. Return (m) 
 
(1) Finite field arithmetic: - Fields are abstractions of 
familiar number systems (such as the rational numbers Q, 
the real numbers R, and the complex numbers C) and their 
essential properties. They consist of a set F together with 
two operations, addition (denoted by +) and multiplication 
(denoted by ·), that satisfy the usual arithmetic properties. 
 If the set F is finite, then the field is said to be finite. A field 
F is equipped with two operations, addition and 
multiplication. Subtraction of field elements is defined in 
terms of addition:  a −b = a + (−b) where −b is the unique 
element in F such that b+ (−b) = 0 (−b is called the negative 
of b).Similarly, division of field elements is defined in terms 
of multiplication: with b = 0, a/b = a ·b−1 where b−1 is the 
unique element in F such that b ·b−1 = 1.(b−1 is called the 
inverse of b.) 
Arithmetic unit shown in Fig.3 is carrying out these finite 
field operations as: 
 

 
 
Fig.3: Arithmetic unit block diagram of ECC 
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Fig.4: ECC multiplier logic for m=5 
 
ECC multiplier algorithm 4: 
Input: a =(am−1, . . .,a1,a0),b=(bm−1, . . .,b1,b0) belongs 
F2m(binary field) , and reduction polynomial 
f (z) = zm +r (z). 
Output: c = a ·b. 
1. Set c←0. 
2. For i from 0 to m −1 do 
2.1 c ← c + (b (i)* a). 
2.2 a ← (left shift (a)) +am−1*r. 
3. Return(c). 
 
(2) Elliptic curve point addition and doubling:- 
 Law for non-super singular (E/F2m): y2+x y = x3+ax2+b. 
Point addition.  Let P = (x1, y1) belongs to E (F2m) and Q 
= (x2, y2) belongs to E (F2m), where P not equal to Q. Then 
     P + Q = (x3, y3), where x3 = λ^2+λ+x1+x2 +a and y3 = 
λ(x1 +x3) +x3 + y1 with λ = (y1 + y2)/(x1 +x2). 
Point doubling.  Let P =(x1, y1) belongs to E (F2m), where 
P = −P. Then 2P =(x3, y3), and x3 = λ2+λ+a = x12 + b/x12 
and y3 = x12 +λx3 +x3 with λ = x1+ y1/x1. 
 

 
Fig5 :( a) point addition (b) point doubling 

 
(3) Point Multiplication: 
Algorithm 5: Right-to-left binary method for point 
multiplication 
Input: k = (kt−1, k1, k0) in binary, P belongs to E (F). 
Output: k*P. 
1. Q←∞. 
2. For i from 0 to t −1 do 
2.1 If   k(i) = 1 then Q←Q + P. 
2.2 P←2P. 
3. Return (Q). 
 

 
Fig 6: Complete architecture of ECC processor 
 
4. Implementation Results  
 
ISE 8.1i by Xilinx is used to synthesize the VHDL 
implementation of ECC algorithm and ModelSim 5.4a is 
used to simulate the design. Xilinx XC4VLX25-12 FPGA is 
taken as the target device 
 

Table: I 

 
Synthesis Results: 
  
Throughput = (163bits * 97.679 MHz)/ 15 = 1.06 Gb/sec 
Throughput per Slice: = 1.06 /26901 = 0.039 Mb/sec/slice 

 
Design 

 
Device 

 
FFs 

 
LUTs 

Clock 
period 
(ns) 

Cast 
[F2^133] 

XC2VP20-7 9988 18045 10.12 

Algotroni
x [F2^133] 

XC3S200-5 8970 17457 10.78 

Hellicon 
F2^133] 

VIRTEX4-11 4567 9876 7.89 

Elbert  
[F 2^133] 

XCV1000-4 5567 12009 8.34 

Mcloone  
[F2^163] 

XCV812-8 11234 28095 11.76 

This work 
[F 2^163 ] 

VIRTEX4-12 10938 26901 9.871 
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5. Comparisons with Previous Implementations 
 
Table I shows the comparison with selected existing FPGA 
implementations. As can be observed from Table 1 this 
architecture can achieve a good speed to area ratio, with 
very less LUTs and FFs utilization, than all prior FPGA 
implementations known to the authors. 
  
6. Future Work and Conclusion 
 
In this work, a FPGA implementation for ECC is presented. 
The whole design is captured entirely in VHDL language 
using a bottom-up design and verification methodology. An 
optimized coding for the implementation of ECC algorithm 
has been developed which results in a throughput of 1.06 
Gbits/sec using a single FPGA device. Future development 
will include: Parameterization of the algorithm by selection 
of cipher key bits (233,283 or 353).  
. 
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