

Performance Analysis of Elliptic Curve Cryptography on Reconfigurable Hardware

 Prof. Renu Vig ; Ravi Tandon

Abstract
 This paper presents an efficient FPGA implementation
approach of the elliptic curve cryptography. There are many
drawbacks in current encryption algorithms (RSA; AES) in
respect of security, power & resources at real-time
performance. The Elliptic Curve Cryptography (ECC) is
evolving as an important cryptography, and shows a
promise to be an alternative of RSA. Small size, high
security and other features characterize ECC. Based on the
theory of ECC, this paper analyzes its advantages over
other cryptographies and focuses on its principle.

Key terms: Elliptic curve point addition; point doubling;
Finite field arithmetic; Point multiplication; virtex FPGA.

1. Introduction

It is widely recognized that security issues play a crucial
role in the majority of computer and communication
systems. A central tool for achieving software protection is
Cryptography. Cryptographic algorithms are most
efficiently implemented in custom hardware than in
software running on general purpose processors. Hardware
implementations are of extreme importance in case of high
performance, security against system intruders and busy
systems, where a cryptographic task consumes too much
time. Traditional ASIC solutions have the well-known
drawback of reduced flexibility compared to software
solutions. Since modern security protocols are increasingly
becoming algorithm independent, a high degree of
flexibility with respect to the cryptographic algorithms is
desirable. The security degrees of all the techniques are
based on the hardness of mathematical problems. Among
them, Elliptic curve cryptography shows a promise to be an
alternative of RSA.
A promising solution which combines high flexibility with
the speed and physical security of traditional hardware is the
implementation of cryptographic algorithms on
reconfigurable devices such as FPGAs. FPGAs are hardware
devices whose function is not fixed and which can be
programmed in-system. An FPGA implementation can be
easily upgraded to incorporate any protocol changes without
the need for expensive and time consuming physical design,
fabrication and testing required in case of ASICs

The authors would like to thank Government of India, Ministry of
Communications and Information Technology, Department of Information
Technology, New Delhi, for funding the Project “Development of Software
Protection Tools”, under which this work has been done.
* Prof. Renu Vig is with the University Institute of Engineering and
Technology; Panjab University; India;Email:renuvig@hotmail.com.
** Ravi Tandon (Project Associate; master of electronics and
communication; Panjab University; India; Email:
robintandon_007@yahoo.co.in

This work presents the ECC processor structure of moderate
gate count and high speed and it is organized as follows.
Section 2 focuses on the architecture of the ECC design.
Section 3 explores the implementation techniques used for
ECC Encryption and Decryption. Section 4 is endowed with
experimental results on FPGA platform Section 5 shows the
comparisons and finally section 6 winds up with future work
and conclusion.

2. Architecture of the Circuit

Fig. 1: ECC processor architecture

The operation that dominates the execution time of an
elliptic curve cryptographic protocol is point multiplication.
Efficient implementation of point multiplication can
be separated into three distinct layers:
1. Finite field arithmetic;
2. Elliptic curve point addition and doubling
3. Point multiplication technique.

Fig. 2: Hierarchy of operations in ECC

Accordingly, there is a hierarchy of operations involved in
point multiplication with point multiplication techniques
near the top and the fundamental finite field arithmetic at the
base. The hierarchy, depicted in above Fig 2, has been
extended to the protocol level. For example, one could
decide to implement ECDSA signature generation entirely

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

in hardware so that the only input to the device is the
message to be signed, and the only output is the signature
for that message.
An important element of hardware design is to determine
those layers of the hierarchy that should be implemented in
silicon. Clearly, finite field arithmetic must be designed into
any hardware implementation accelerator for finite field
arithmetic only and then use an off-the-shelf microprocessor
to perform the higher-level functions of elliptic curve point
arithmetic. It is important to note that an efficient finite field
multiplier does not necessarily yield an efficient point
multiplier—all layers of the hierarchy need to be optimized.
Moving point addition and doubling and then point
multiplication to hardware provides a more efficient ECC
processor at the expense of more complexity. In all cases a
combination of both efficient algorithms and hardware
architectures is required. One approach to higher
functionality is the processor depicted in Fig 1. Along with
program and data memory, the three main components are
an arithmetic logic unit (AU), an arithmetic unit controller
(AUC), and a main controller (MC). The AU performs the
basic field operations of addition, squaring, multiplication,
and inversion, and is controlled by the AUC. The AUC
executes the elliptic curve operations of point addition and
doubling. The MC coordinates and executes the method
chosen for point multiplication, and interacts with the host
system.

3. Implementation Approaches:

Elliptic curve key generation:
Let E be an elliptic curve defined over a finite field Fp. Let
P be a point in E (Fp), and suppose that P has prime order n.
Then the cyclic subgroup of E (Fp) generated by P is P =
{∞, P, 2P, 3P, (n−1) P}.The prime p, the equation of the
elliptic curve E, and the point P and its order n, are the
public domain parameters. A private key is an integer‘d’
that is selected uniformly at random from the interval [1, n
−1], and the corresponding public key is Q = d*P.

Algorithm 1:
Elliptic curve key pair generation
Input: Elliptic curve domain parameters (p, E, P, n).
Output: Public key Q and private key d.
1. Select d belongs to R in range [1, n−1].
2. Compute Q = d*P.
3. Return (Q, d).

Elliptic curve encryption and decryption scheme:
We present the encryption and decryption procedures for the
elliptic curve. A
Plaintext ‘m’ is first represented as a point M, and then
encrypted by adding it to k*Q where k is a randomly
selected integer and Q is the intended recipient’s public key.
The sender transmits the points C1 = k*P and C2 = M +
(k*Q) to the recipient who uses her private key‘d’ to
compute dC1 = d (k*P) = k (d*P) = k*Q, and thereafter
recovers M = C2 − (k*Q). An eavesdropper who wishes to
recover M needs to compute k*Q. This task of computing

k*Q from the domain parameters, Q, and C1 = k*P, is the
elliptic curve analogue of the Diffie-Hellman problem.

Algorithm 2:

Basic elliptic curve encryption:
Input: Elliptic curve domain parameters (p, E, P, n), public
key Q, plaintext m.
Output: Cipher text (C1, C2).
1. Represent the message ‘m’ as a point M in E (Fp).
2. Select ‘k’ belongs to R in range [1, n−1].
3. Compute C1 = k*P.
4. Compute C2 = M + (k*Q)
5. Return (C1, C2).

Algorithm 3:

Basic elliptic curve decryption
Input: Domain parameters (p, E, P, n), private key d, cipher
text (C1, C2).
Output: Plaintext m.
1. Compute M = C2−dC1, and extract m from M.
2. Return (m)

(1) Finite field arithmetic: - Fields are abstractions of
familiar number systems (such as the rational numbers Q,
the real numbers R, and the complex numbers C) and their
essential properties. They consist of a set F together with
two operations, addition (denoted by +) and multiplication
(denoted by ·), that satisfy the usual arithmetic properties.
 If the set F is finite, then the field is said to be finite. A field
F is equipped with two operations, addition and
multiplication. Subtraction of field elements is defined in
terms of addition: a −b = a + (−b) where −b is the unique
element in F such that b+ (−b) = 0 (−b is called the negative
of b).Similarly, division of field elements is defined in terms
of multiplication: with b = 0, a/b = a ·b−1 where b−1 is the
unique element in F such that b ·b−1 = 1.(b−1 is called the
inverse of b.)
Arithmetic unit shown in Fig.3 is carrying out these finite
field operations as:

Fig.3: Arithmetic unit block diagram of ECC

Modular adder /
subtraction
Block

Modular
multiplication
block

Modular
inversion and
division block

Modular
reduction
block

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Fig.4: ECC multiplier logic for m=5

ECC multiplier algorithm 4:
Input: a =(am−1, . . .,a1,a0),b=(bm−1, . . .,b1,b0) belongs
F2m(binary field) , and reduction polynomial
f (z) = zm +r (z).
Output: c = a ·b.
1. Set c←0.
2. For i from 0 to m −1 do
2.1 c ← c + (b (i)* a).
2.2 a ← (left shift (a)) +am−1*r.
3. Return(c).

(2) Elliptic curve point addition and doubling:-
 Law for non-super singular (E/F2m): y2+x y = x3+ax2+b.
Point addition. Let P = (x1, y1) belongs to E (F2m) and Q
= (x2, y2) belongs to E (F2m), where P not equal to Q. Then
 P + Q = (x3, y3), where x3 = λ^2+λ+x1+x2 +a and y3 =
λ(x1 +x3) +x3 + y1 with λ = (y1 + y2)/(x1 +x2).
Point doubling. Let P =(x1, y1) belongs to E (F2m), where
P = −P. Then 2P =(x3, y3), and x3 = λ2+λ+a = x12 + b/x12
and y3 = x12 +λx3 +x3 with λ = x1+ y1/x1.

Fig5 :(a) point addition (b) point doubling

(3) Point Multiplication:
Algorithm 5: Right-to-left binary method for point
multiplication
Input: k = (kt−1, k1, k0) in binary, P belongs to E (F).
Output: k*P.
1. Q←∞.
2. For i from 0 to t −1 do
2.1 If k(i) = 1 then Q←Q + P.
2.2 P←2P.
3. Return (Q).

Fig 6: Complete architecture of ECC processor

4. Implementation Results

ISE 8.1i by Xilinx is used to synthesize the VHDL
implementation of ECC algorithm and ModelSim 5.4a is
used to simulate the design. Xilinx XC4VLX25-12 FPGA is
taken as the target device

Table: I

Synthesis Results:

Throughput = (163bits * 97.679 MHz)/ 15 = 1.06 Gb/sec
Throughput per Slice: = 1.06 /26901 = 0.039 Mb/sec/slice

Design

Device

FFs

LUTs

Clock
period
(ns)

Cast
[F2^133]

XC2VP20-7 9988 18045 10.12

Algotroni
x [F2^133]

XC3S200-5 8970 17457 10.78

Hellicon
F2^133]

VIRTEX4-11 4567 9876 7.89

Elbert
[F 2^133]

XCV1000-4 5567 12009 8.34

Mcloone
[F2^163]

XCV812-8 11234 28095 11.76

This work
[F 2^163]

VIRTEX4-12 10938 26901 9.871

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

5. Comparisons with Previous Implementations

Table I shows the comparison with selected existing FPGA
implementations. As can be observed from Table 1 this
architecture can achieve a good speed to area ratio, with
very less LUTs and FFs utilization, than all prior FPGA
implementations known to the authors.

6. Future Work and Conclusion

In this work, a FPGA implementation for ECC is presented.
The whole design is captured entirely in VHDL language
using a bottom-up design and verification methodology. An
optimized coding for the implementation of ECC algorithm
has been developed which results in a throughput of 1.06
Gbits/sec using a single FPGA device. Future development
will include: Parameterization of the algorithm by selection
of cipher key bits (233,283 or 353).
.
References

• G. Orlando and C. Paar, “A High Performance
Reconfigurable Elliptic Curve Processor for
GF(2m)”, CHES 2000

• Trade of analysis of FPGA based elliptic curve
cryptographies 2002

• K. Fong etal, “Field Inversion and Point Halving
Revisited”, IEEE Trans on Comp, 2004

• N. A. Saqibetal, “A Parallel Architecture for Fast
Computation of Elliptic Curve Scalar
Multiplication over GF(2m)”, Elsevier Journal of
Microprocessors and Microsystems, 2004

• Sabiel Mercurioetal, “ An FPGA Arithmetic Logic
Unit for Computing Scalar Multiplication using the
Half-and-Add Method”, IEEE Reconfigure 2005

• A new approach to elliptic curve cryptography:
RNS architecture. IEEE MELECON 2006

• Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in

Cryptography. London Mathematical Society
Lecture Note Series 265, Cambridge University
Press, 1999.

• Borodin, A., Munro, I.: The Computational
Complexity of Algebraic and Numeric Problems.
Elsevier, New York, 1999

• NIST, \Recommended Elliptic Curves for Federal
 Government Use", July 1999, see
 http://csrc.nist.gov/csrc/fedstandards.html.
• V. Miller, \Uses of elliptic curves in

cryptography",
• Lecture Notes in Computer Science 218: Advances

in Cryptology - CRYPTO '85, pages 417-426,
 Springer-Verlag, Berlin, 1986.
• N. Koblitz, \Elliptic curve cryptosystems",
• Mathematics of Computation, 48:203-209, 1987

ANSI X9.62, \The Elliptic Curve Digital Signature
 Algorithm (ECDSA)", 1999.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

