

S. Nireekshan Kumar*, J. Grace Jency Gnannamal**

Abstract — Delay Minimization and Power Minimization are
two important objectives in the design of high performance
circuits. Retiming is a very effective way of delay optimization
of sequential circuits. Bellman ford algorithm is very efficient
algorithm used as retiming, but it increases power
consumption of the circuit. This paper describes an algorithm
in graph theory that finds minimum spanning tree for
connected weighted graph. We first discuss the conventional
Bellmanford algorithm. Then we discuss DJP Algorithm
(Prims algorithm) targeting simultaneous delay and power
optimization with compromise. Finally these two algorithms
are compared. Experimental results show that Prims
algorithm is better than bellman ford algorithm when
simultaneous power and delay optimization is needed.

Index Terms – Circuit Optimization, Circuit Synthesis,
encoding, Sequential Logic Circuits.

I. INTRODUCTION

Delay minimization and power minimization are
two important objectives in the design of the high-
performance circuits [1]. Thus, a considerable research
effort has been made in trying to find power and delay-
efficient solutions to circuit design problems.

In the past, the major concerns of the VLSI
designer were area, performance, and cost [2] [3]. Power
consumption considerations were mostly of secondary
concern. In recent years, however, this trend has begun to
change, and, increasingly, power consumption is being
given comparable weight to area and speed in VLSI design
(Rabaey and Pedram 1996). One reason is that the
continuing increase in chip scale integration and the
operating frequency has made power consumption a major
design issue in VLSI circuits [5]. The excessive power
dissipation in integrated circuits not only discourages their
use in a portable device, but also causes overheating,
which degrades performance and reduces the circuit
lifetime. All of these factors drive designers to devote
significant resources to reduce the circuit power
dissipation. Indeed, the Semiconductor Industry
Association identified low-power design as a critical

*Completed Bachelors in Electrical & Electronics Engineering from
Madras University in 2004. He is currently Persuing Masters in VLSI
Design at Karunya University. His Research Interests are Low Power
VLSI, CAD for VLSI and Digital System Design. Phone No:
+919940706399; Email: nireekshankumar@karunya.edu.in

**Completed Bachelors in Electrical & Electronics Engineering from
Madras University in 2004. She is currently working as Lecturer in
Electronics & Communication Engineering Dept. in Karunya University.
Her research interests are CAD for VLSI, VLSI for Communication,
Testing. Phone No: +919486073383; Email: shinywesley@gmail.com

technological direction in 1992. There is intense
competition of global market and greater demand for high
performance circuits even in this era where power
consumption is being given comparable weight. Therefore
there lies a greater challenge before manufacturers to
design a circuit that will have both high performance and
Low power consumption. This problem is critical because
both are inversely proportional to each other.

Thus, a considerable research effort has been
made in trying to find power and delay-efficient solutions
to circuit design problems [6] [9]. There are many
Procedures for this delay efficient solutions. One such
procedure is using bypass transform [7]. Where the
unnecessary paths are bypassed. The second method is
using exact sensitization [8]. One of most popular method
that is applied at the Structural level is architecture
retiming [11]. Architecture Retiming is a transformation
technique to minimize critical path, there by reducing the
delay. Circuit partitioning and floor planning are also
methods for finding delay efficient systems. Circuit
partitioning aims to divide a given circuit to smaller sub-
circuits so that it can be used in the next physical design
process for hierarchical design approach. Traditionally, the
objective of partitioning is to minimize the amount of
interconnection among sub-circuits, which has direct
impact on the final chip area. Delay has also been an
important objective in partitioning, which aims to
minimize the number of inter-partition connection on
critical paths. A recent research focused on simultaneous
cut size and delay optimization. Another recent study
addresses power optimization in clustering. After
partitioning the given circuits into sub-circuits,
floorplanning is applied to identify the dimension and
location of the sub-circuits. Among several ways to
perform floorplanning, partitioning based method has been
one of the viable approaches. Most partitioning-based
floorplanning algorithms attempt to minimize area and
wire length. A recent study attempts to minimize wire
length and delay in multi-level partitioning based
floorplanning.

II. RETIMING

Retiming is a transformation technique used to

change the location of delay elements in a circuit without
affecting the input/output characteristics of the circuit.
Retiming can be used to increase the clock rate of circuit
by reducing the computational time of the critical path.
Recall that the critical path is defined to be the path with
the longest computational time. Among all paths that
contain all zero delays, another computation time of the
critical path is the lower bound on the clock period of the
circuit.

Delay and Power Optimization of Sequential
Circuits through DJP Algorithm

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

A. Properties of retiming:

The weight of the retimed path p = V0 V1 …..Vk is
given by

Wr (p) = W (p) + r (Vk) – r (V0)

1) Retiming does not change the number of delays in a
cycle.
2) Retiming does not alter the iteration bound in a DFG as
the number of delays in a cycle does not change
3) Adding the constant value j to the retiming value of each
node does not alter the number of delays in the edges of the
retimed graph.

III. BELLMANFORD ALGORITHM

The Bellman–Ford algorithm, sometimes referred
to as the Label Correcting Algorithm, computes single-
source shortest paths in a weighted graph (where some of
the edge weights may be negative)

 Fig 1.1 A sequential Circuit

1. Let M = t max x n, where t max is the maximum
computational time of the nodes in G and n is the number
of nodes in G.Since t max = 2 and n=4, then M = 2 X 4 = 8.

2. Form a New Graph Gr which is the same as G except the
edge weights are replaced by wr (e) = M X w (e) – t (U) for
al edges U to V

Wr (1— 3) = 8 X 1 – 1 = 7
Wr (1— 4) = 8 X 2 – 1 = 15
Wr (3— 2) = 8 X 0 – 2 = -2
Wr (4— 2) = 8 X 0 – 2 = -2
Wr (2— 1) = 8 X 1 – 1 = 7

 Fig 1.2 Restructured Sequential Circuit

3. Solve the all-pairs shortest path problem on Gr. Let S’
(U, V) be the shortest path from U to V.

R (0) = inf inf 7 15
 7 inf inf inf
 inf -2 inf inf
 inf -2 inf inf

R (1) = inf inf 7 15
 7 inf 14 22
 inf -2 inf inf
 inf -2 inf inf

R (2) = inf inf 7 15
 7 inf 14 22
 5 -2 12 20
 5 -2 12 20

 5 -2 12 20
R (3) = 12 5 7 15
 7 12 14 22
 5 -2 12 20

S’(U, V) = 12 5 7 15
 7 12 14 22
 5 -2 12 20
 5 -2 12 20

4. To determine W (U, V) & D (U, V), where W(U, V) is
the minimum number of registers on any path from node U
to node V and D (U, V) is the maximum computation time
among all paths from node U to node V with weight W (U,
V).

If U = V then W (U, V) = 0 & D (U, V) = t (U).
If U = V then W (U, V) = S’(U, V) / 8 & D (U, V) = M X
W (U, V) – S’ (U, V) + t (V)

W (U, V) = 0 1 1 2
 1 0 2 3
 1 0 0 3
 1 0 2 0

D (U, V) = 1 4 3 3
 2 1 4 4
 4 3 2 6
 4 3 6 2

5. The values of W (U, V) & D (U, V) are used to
determine if there is a retiming solution that can achieve a
desired clock period. Given a clock period ‘c’, there is a
feasible retiming solution r such that Phi (Gr) < c if the
following constraints hold.

1. (Feasibility constraints) r (U) – r (V) < w (e) for every

edge U to V of G.
2. (Critical path constraints) r (U) – r (V) < W (U, V) –

1 for all vertices U, V in G such that D (U, V) > c.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

The Feasibility constraints forces the number of delays on
each edge in the retimed graph to be non negative and the
critical path constraints enforces Phi (G) < c. if D (U, V) >
c then W (U, V) + r (V) – r (U) > 1 must hold for the
critical path to have computation time lesser that or equal
to c. This leads to critical path constraints.

If c is chosen to be 3, the inequalities r (U) – r(V) < w (e)
for every edge U to V are

r (1) – r (3) < 1
r (1) – r (4) < 2
r (2) – r (1) < 1
r (3) – r (2) < 0
r (4) – r (2) < 0

and inequalities r (U) – r (V) < W (U, V) – 1 for all
vertices U, V in G such that D (U, V) > 3

r (1) – r (2) < 0
r (2) – r (3) < 1
r (2) – r (4) < 2
r (3) – r (1) < 0
r (3) – r (4) < 2
r (4) – r (1) < 0
r (4) – r (3) < 1

if there is a solution to the 12 inequalities above, then the
solution is a feasible retiming solution such that the circuit
can be clocked with period c = 3.
The constraint graph is shown below which will not have
any negative cycles.

 Fig 1.3: Restructured circuit without negative cycles

A. Bellmanford Algorithm for finding shortest path

1. r (1) (U) = 0
2. For K = 1 to n
3. If K = U
4. r (1) (K) = W (U to K)
5. For K =1 to n-2
6. For V = 1 to n
7. r (K+1) (V) = r (K) (V)

8. For W = 1 to n

9. If r (K+1) (V) > r (K) (W) + W (W to V)

10. r (K+1) (V) = r (K) (W) + W (W to V)

11. For V =1 to n

12. For W = 1 to n

13. If r (n-1) (V) > r (n-1) (W) + W (W to V)

14. Return False and exit

15. Return True and exit.

IV. DJP ALGORITHM

DJP algorithm is a n algorithm in graph theory
that finds a minimum spanning tree for a connected
weighted graph This means it finds a subset of edges that
forms a tree that include every vertex, where the total
weight of all the edges in a tree is minimized. The
algorithm was discovered in 1930 by mathematician
vojtech Jarnik and later independently by computer
scientist Robert. C. Prim in 1957 and re discovered by
Edsger Dijkstra in 1959. Like Kruskal's algorithm, DJP
algorithm is based on a generic MST algorithm. The main
idea of DJP algorithm is similar to that of Dijkstra's
algorithm for finding shortest path in a given graph. Prim's
algorithm has the property that the edges in the set A
always form a single tree. We begin with some vertex v in
a given graph G =(V, E), defining the initial set of vertices
A. Then, in each iteration, we choose a minimum-weight
edge (u, v), connecting a vertex v in the set A to the vertex
u outside of set A. Then vertex u is brought in to A. This
process is repeated until a spanning tree is formed. Like
Kruskal's algorithm, here too, the important fact about
MSTs is we always choose the smallest-weight edge
joining a vertex inside set A to the one outside the set A.

The implication of this fact is that it adds only
edges that are safe for A; therefore when the algorithm
terminates, the edges in set A form a MST.

A. DJP algorithm to find the shortest path

DJP (G, w, v)

1. Q ← V[G]
2. for each u in Q do
3. key [u] ← ∞
4. key [r] ← 0
5. π[r] ← NIl
6. while queue is not empty do
7. u ← EXTRACT_MIN (Q)
8. for each v in Adj[u] do
9. if v is in Q and w(u, v) < key [v]
10. then π[v] ← w(u, v)
11. key [v] ← w(u, v)

Theorem: DJP algorithm finds a minimum spanning tree.

Proof: Let G = (V,E) be a weighted, connected graph. Let
T be the edge set that is grown in DJP algorithm. The proof
is by mathematical induction on the number of edges in T
and using the MST Lemma.

Basis: The empty set is promising since a connected,
weighted graph always has at least one MST.

Induction Step: Assume that T is promising just before the
algorithm adds a new edge e = (u,v). Let U be the set of
nodes grown in DJP algorithm. Then all three conditions in
the MST Lemma are satisfied and therefore T U e is also
promising. When the algorithm stops, U includes all
vertices of the graph and hence T is a spanning tree. Since
T is also promising, it will be a MST.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

 Fig 1.4 A Sequential Circuit

R (1) = inf inf 7 15

 7 inf inf inf

 inf -2 inf inf

 inf -2 inf inf

 Fig 1.5 Retimed sequential circuit

V. SEQUENTIAL BENCHMARK CIRCUIT

Sequential benchmark circuits are the circuits
which are kept to use for testing the algorithm efficiency.
Before they are implemented in hardware. Here in this
paper we used ISCAS99 sequential benchmark circuits for
testing the algorithm. These benchmark circuits consists of
flip-flops, counters etc… The series name of this
Benchmark circuits is B series. We used four benchmark
circuits namely B01, B02, B03, B04, B05.

VI. EXPERIMENTAL ENVIRONMENT

All experiments were conducted on desktop
computer with an Intel Core 2 Duo T5300 CPU (1.73GHz)
and 2 GB of RAM. The operating system was Microsoft
Windows XP.

VII. RESULTS

Bellman ford algorithm is written in Matlab and

converted into VHDL using Accel DSP synthesis tool from
Xilinx and then it was tested on ISCAS 99 sequential
benchmark circuits. The results are tabulated. DJP
algorithm also was written in Matlab and converted into
VHDL using Accel Dsp synthesis tool from xilinx and then

it was tested on ISCAS 99 sequential benchmark circuits.
The results are tabulated.

The synthesis is done on Xilinx 7.1i. The delay or
frequency value is taken from synthesis report. The delay
values are represented in terms of nano seconds and
frequency values are represented in MHZ. Both the
algorithms are compared. The results show that bellman
ford algorithm gives high performance than the prims
algorithm, but it increases the power dissipation of the
circuit. DJP algorithm also give high performance little
lesser than bellmanford algorithm, but the power
dissipation is reasonable compared to bellmanford
algorithm.

Table No-1: Time Values of original Benchmark Circuit

SL
No

Benchmark Circuit Original Time

01 B01 2.489 ns
401.99 MHZ

02 B03 1.657 ns
603.300 MHZ

03 B04 9.132 ns
109.505 MHZ

04 B05 6.538 ns
152.946 MHZ

Table No-2: Time Values of circuit after applying
Bellmanford algorithm

SL
No

Benchmark Circuit Time after applying
Bellmanford

01 B01 1.103 ns
884.12 MHZ

02 B03 1.102 ns
889.52 MHZ

03 B04 3.203 ns
512.023 MHZ

04 B05 6.538 ns
152.946 MHZ

Table No-3: Time values after applying DJP algorithm

SL
No

Benchmark Circuit Time after applying
DJP

01 B01 1.930 ns
528.10 MHZ

02 B03 1.382 ns
772.50 MHZ

03 B04 5.489 ns
364.29 MHZ

04 B05 4.023 ns
398.023 MHZ

Table No-4: Power Values of original circuit

SL
No

Benchmark Circuit Power Value

01 B01 615 mW
02 B03 712 mW
03 B04 412 mW
04 B05 503 mW

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Table No-5: Power Values after applying Bellman ford
algorithm

SL
No

Benchmark Circuit Power Value

01 B01 879 mW
02 B03 890 mW
03 B04 653 mW
04 B05 604 mW

Table No-6: Power values after applying DJP algorithm

SL
No

Benchmark Circuit Power Value

01 B01 674 mW
02 B03 801 mW
03 B04 512 mW
04 B05 580 mW

VIII. CONCLUSIONS

This paper described a graph algorithm which is
used as retiming to optimize the delay and power
simultaneously with compromise. Since there is always
tradeoff between speed and power, both cannot be
optimized at a time.
Retiming is a transformation technique which is used to
reduce the delay or to reduce power keeping time constant.
But if we can make some compromise between power and
time values then we can have optimized delay & Power
simultaneously.

Table No-1 show the Time period of original
Benchmark circuit. Table No-2 show the time period
values after applying Bellman ford algorithm, which shows
high performance is obtained, but Table No-5 shows that
there is drastic increase in the power dissipation values
after applying bellmanford algorithm which is not good for
any circuit in this low power age.

Table No-3 shows that higher performance is
obtained by using DJP algorithm but little lesser than
bellmanford algorithm, also Table No-6 shows that power
dissipation increase is not much when compared to Table
No-5.

Hence it can be concluded that both the delay and
power dissipation cannot be optimized simultaneously. But
with some compromises made between time & power,
simultaneous delay and power optimization is possible.
Also we need to search for algorithms which will reduce
the delay and power. But we need to make some
compromises. DJP algorithm is very useful when we need
simultaneous optimization of Delay & Power.

REFERENCES

[1] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Circuitry,”
Algorithmica, Vol. 6, No.1, pp. 5-35, 1991

[2] P. Pan, “Performance-driven integration of retiming and
resynthesis,”in Proc. DAC, 1999, pp. 243–246.

[3] Deming and Jason Cong, “A Depth Optimal Area Optimization
Mapping Algorithm for FPGA Designs” in Proc. Int. Workshop FPGAs,
1992

[4] E. Lahman, Y. Wantable, J.Grodstein and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. Computer-
Aided Design integrated circuits & systems vol. 16 n0.8, pp. 813-834,
Aug 1997.

[5] Mongkol Ekpanyapong, Karthik Balakrishnan, Vidit Nanda and Sung
KyuLim, “Simultaneous Delay and Power Optimization in Global
Placement”, in Proc ISCAS 2004.

[6] K. J. Singh, A. R. Wang, R. K. Brayton and A.L. Sangiovanni -
Vincentelli, “Timing Optimization of Combinational Logic,” in Proc
ICCAD, 1988, pp. 282-285

[7] P.C. McGeer, R.K. Brayton, A.L. Sangiovanni-Vincentelli, and S. K.
Sahni, “Performance enhancement through the generalized bypass
transform,” in Proc. ICCAD, 1991, pp. 184–187.

[8] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Performance optimization using exact
sensitization,” in Proc. DAC, 1994, pp. 425–429.

[9] K. J. Singh, “Performance optimization of digital circuits,” Ph.D.
dissertation, Univ. California, Berkeley, CA, 1992.

[10] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Retiming and resynthesis: Optimizing sequential networks
with combinational techniques,” IEEE Trans. Comput.-Aided Design
Integr. CircuitsSys t., vol. 10, no. 1, pp. 74–84, Jan. 1991.

[11] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining
latency constrained circuits,” in Proc. DAC, 1996, pp. 708–713.

[12] for] M.C. V. Marinescu and M. Rinard, “High-level automatic
pipelining sequential circuits,” in Proc. ISSS, 2001, pp. 215–220
.
[13] H. Touati, N. Shenoy, and A. L. Sangiovanni-Vincentelli, “Retiming
for table-lookup field-programmable gate arrays,” in Proc. Int. Workshop
FPGAs, 1992, pp. 89–93.

[14] E. M. Sentovich et al., “SIS: A system for sequential circuit
synthesis,” Univ. California, Berkeley, CA, Tech. Rep. UCB/ERL
M92/41, 1992.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

