
Transaction-Consistent Global Checkpoints in a

Distributed Database System

Jiang Wu, D. Manivannan and Bhavani Thuraisingham ∗

Abstract—Checkpointing and rollback recovery are

well-known techniques for handling failures in dis-

tributed database systems. In this paper, we estab-

lish the necessary and sufficient conditions for the

checkpoints on a set of data items to be part of a

transaction-consistent global checkpoint of the dis-

tributed database. This can throw light on design-

ing efficient, non-intrusive checkpointing techniques

and transparent recovery techniques for distributed

database systems.

Keywords: Checkpointing, Recovery, Fault-tolerance,

Distributed databases

1 Introduction

It is a common practice to take checkpoints of a database
from time to time, and restore the database to the most
recent checkpoint when a failure occurs. In order to main-
tain the atomicity (explained in Section 2) of transac-
tions, it is desirable that a checkpoint records a state of
the database which reflects the effect of a set of com-
pleted transactions and not the results of partially exe-
cuted transactions. Such a checkpoint of the database is
called a transaction-consistent checkpoint[1]. A straight-
forward way to take a transaction-consistent checkpoint
of a distributed database is to block all newly submit-
ted transactions and wait till all the currently executing
transactions finish and then take the checkpoint. Such
a checkpoint is guaranteed to be transaction-consistent,
but this approach is not practical, since blocking newly-
submitted transaction will dramatically increase transac-
tion response time and this is not acceptable for the users
of the database. A more efficient way would be to save
(checkpoint) the state of each data item independently
and periodically without blocking any transaction. How-

∗This material is based in part upon work supported by
the US National science Foundation under Grant No. IIS-
0414791 and the US Department of Treasury Award #T0505060.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foun-
dation or the Department of Treasury. Jiang Wu and D.
Manivannan are with the Department of Computer Science,
University of Kentucky, Lexington, KY 40506 Tel/Fax: 859-
257-9234/323-3740 Email:{wujiang,mani}@cs.uky.edu. Bhavani
Thuraisingham is with the Department of Computer Science,
University of Texas at Dallas Tel/Fax: 972-883-4738/2349
Email:bhavani.thuraisingham@utdallas.edu.

ever if each data item is checkpointed independently and
periodically, the checkpoints of a data item may not be
part of any transaction-consistent global checkpoint of
the database and hence are useless.

In this paper, we address this issue and establish the nec-
essary and sufficient conditions for a checkpoint of a data
item (or the checkpoints of a set of data items) to be
part of a transaction-consistent global checkpoint of the
database. This result would be useful for constructing
a transaction-consistent global checkpoint incrementally
from the checkpoints of each individual data item. This
is because, by applying this condition, we can start from
an useful checkpoint of a data item and then can incre-
mentally add checkpoints of other data items until we get
a transaction-consistent checkpoint of the database. This
can also throw light on designing efficient non-intrusive
distributed checkpointing algorithms.

1.1 Motivation and Objectives

In a distributed system, to minimize the lost computa-
tion due to failures, the state of the processes involved in
a distributed computation are periodically checkpointed.
When one or processes involved in a distributed compu-
tation fails, the processes are restarted from a previously
saved consistent global checkpoint. When process are
independently checkpointed, the checkpoints taken may
not be part of any consistent global checkpoint and hence
are useless [2]. Netzer and Xu established the necessary
and sufficient conditions for the checkpoint of a process
to be useful. Netzer and Xu [2] introduced the notion of
zigzag paths between checkpoints of processes involved
in the computation. They proved that a checkpoint of a
process is useful if and only if there is no zigzag path from
that checkpoint to itself. In this paper, we generalize this
result to database systems.

1.2 Organization of the paper

The remainder of this paper is organized as follows. In
Section 2 we introduce the necessary background required
for understanding the paper. Section 3 discusses related
works. In Section 4 we present the necessary and suffi-
cient conditions for a set of checkpoints on a set of data
items to belong to a transaction consistent global check-
point and prove its correctness. Section 5 concludes the

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



paper and also presents the future work.

2 Background

2.1 System model

We consider a model of distributed database system sim-
ilar to the model in [1]. In this model, a distributed
database system consists of a set of data items residing
at various sites. Sites can exchange information via mes-
sages transmitted on a communication network, which is
assumed to be reliable. The data items of the database
are accessed by transactions and the transactions are
controlled by transaction managers (TM) that reside on
these sites. The TM is responsible for the proper schedul-
ing of transactions using appropriate concurrency con-
trol algorithms in such a way that the integrity of the
database is maintained. In addition, the data items at
each site are controlled by a data manager (DM). Each
DM, which is responsible for controlling access to items
at its site. Each data item is checkpointed by a transac-
tion periodically. Before a transaction takes a checkpoint
of a data item it obtains an exclusive lock on the data
item so no other transaction can be accessing that data
item while it is checkpointed. The state of a data item
changes when a transaction accesses that data item for a
write operation. In order to guarantee the integrity and
efficiency of transaction processing, four requirements re-
ferred to as ACID [4] must be maintained.

• Atomicity: Each transaction is executed in its en-
tirety, or not at all executed.

• Consistency preservation: Execution of a transac-
tion in isolation (that is, with no other transaction
executing concurrently) preserves the consistency of
the database.

• Isolation: Even though multiple transactions may
execute concurrently, the system guarantees that, for
every pair of transactions Ti and Tj, it appears to Ti

that either Tj finished execution before Ti started,
or Tj started execution after Ti finished. Thus, each
transaction is unaware of other transactions execut-
ing concurrently in the system.

• Durability: After a transaction completes success-
fully, the changes it has made to the database per-
sist, even if there are system failures.

In order to maintain ACID requirements and achieve
maximum performance, a proper schedule of transactions
need to be arranged in which the operations of various
transactions are interleaved as much as possible. Given
a schedule, a directed graph, referred to as precedence
graph [5] or serialization graph [4], can be constructed to
illustrate the procedure of all the transactions running in
the database system. The serialization graph serves as an

important tool to analyze transaction processing in the
distributed database systems.

Each checkpoint on a data item is assigned a unique se-
quence number. We assume that the database consists a
set of n data items X = {xi | 1 ≤ i ≤ n}. In addition,
we denote by Cki

i the checkpoint on xi with sequence
number ki. The set of all checkpoints on data item xi is
denoted by Ci = {Cki

i | ki : ki ≥ 0}. The initial state
of data item xi is represented by checkpoint C0

i and a
virtual checkpoint Cvirtual

i represents the last state ob-
tained after termination of all transactions accessing data
item xi. A data item is checkpointed only after the state
of the data item changes. That is, after a data item is
checkpointed, it is not checkpointed again until at least
one other transaction has accessed and changed the data
item.

Let T = {Ti | 1 ≤ i ≤ m} be a set of transactions
that access the database system. In order to analyze the
relationship between checkpoints of various data items,
we assume that each checkpoint of a data item xi is taken
by a special transaction, called checkpointing transaction.
We denote by T

C
ki
i

the checkpointing transaction that

takes checkpoint Cki

i of data item xi. In order to maintain
atomicity of transactions, T

C
ki
i

is the local transaction

which is required to be scheduled to access a data item
when there are no other transactions accessing the data
item. The set of checkpointing transactions that produce
the checkpoints Ci is denoted by TCi

and the set of all
checkpointing transactions in the system is denoted by
TC.

A global checkpoint of the database is a set S = {Cki

i |
1 ≤ i ≤ n} of local checkpoints consisting of one check-
point for each data item. The set of checkpointing trans-
actions that produce the global checkpoint S is denoted
by ST = {T

C
ki
i

| 1 ≤ i ≤ n}. We use Cki

i and T
C

ki
i

in-

terchangeably. Sometimes, when we say a check-

point of a data item we mean the checkpointing

transaction which takes that checkpoint.

Each regular transaction is a partially ordered set of read
and/or write operations (operations are partially ordered
because two adjacent read operations in a transaction are
not comparable). A checkpointing transaction consists of
only one operation (namely the checkpointing operation),
an operation that is similar to a write operation which
requires mutually exclusive access to the data item. Let
Ri(xj) (respectively, Wi(xj)) denote the read (write) op-
eration of Ti on data item xj ∈ X and O

C
kj

j

(xj) denote

the checkpointing operation of T
C

kj

j

on data item xj . A

schedule ε over T
⋃

TC is a family of disjoint sets of par-
tially ordered operations of transactions in T

⋃
TC on

the data items (one set for each data item) [1]. Let ε(xj)
consist of all read, write and checkpointing operations

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



on xj of all transactions in T
⋃

TC. We denote by <xj

the partial order induced by all read, write, and check-
pointing operations on xj by the schedule ε over T

⋃
TC.

Given a schedule ε over T
⋃

TC, we define the relation
<T between transactions in T

⋃
TC with respect to a

schedule ε as follows:

1) Ti <T Tj ⇔ (i 6= j) ∧ (∃xk ∈ X : (Ri(xk) <xk

Wj(xk)) ∨ (Wi(xk) <xk
Wj(xk)) ∨ (Wi(xk) <xk

Rj(xk))).

2) Ti <T T
C

kj

j

⇔ (Wi(xj) <xj

O
C

kj

j

(xj)) ∨ (Ri(xj) <xj
O

C
kj

j

(xj)).

3) T
C

ki
i

<T Tj ⇔ (O
C

ki
i

(xi) <xi

Wj(xi)) ∨ (O
C

ki
i

(xi) <xi
Rj(xi)).

A schedule is serial if the operations belonging to each
transaction appear together in the schedule [4]. A sched-
ule ε is serializable if the schedule has the effect equiv-
alent to a schedule produced when transactions are run
serially in some order. The concurrency control algo-
rithm ensures that a schedule of transactions running in
the distributed database system is serializable. One im-
portant kind of serialization, called conflict serializabil-
ity (CSR) [4] is considered in this paper. An execution
ε ∈ CSR iff the relation <T is acyclic. A serialization
order of a set of transactions with respect to a schedule
ε over T is defined as a linear ordering of all the trans-
actions such that if Ti <T Tj (either Ti or Tj could be
checkpointing transaction), then Ti must appear before
Tj in the ordering. If ε ∈ CSR, there must exist a serial-
ization order for ε over T that is compatible with <T .

Formal definition of a transaction consistent global check-
point follows [1]:

Definition 1 A global checkpoint of a distributed
database system is said to be transaction-consistent (tr-
consistent or simply consistent, for short) with respect
to a set of transactions T if there exists a serialization
order (which is a sequence of transactions) σ1σ2 for an
execution ε ∈ CSR of T such that the data item states
represented by the global checkpoint is the same as those
read by a read-only transaction TCP after all transactions
in σ1 have finished execution and before any transaction
in σ2 has started execution.

If the concurrency control algorithm guarantees an exe-
cution ε ∈ CSR, then the relation <T induces a directed
acyclic graph (Dag) on T

⋃
TC and conversely. We call

this graph the global serialization graph with respect to
the schedule ε of T

⋃
TC. For each data item, the trans-

actions accessing that data item induce a component of
the global serialization graph. The local serialization
graph induced by the transactions in T

⋃
TCi

accessing

data item xi is denoted by Gxi
(Vxi

, Exi
); the vertex set

Vxi
= {Tk ∪T

C
ki
i

| Tk ∈ T has accessed data item xi; Cki

i

is the checkpoint of xi taken by local checkpoint transac-
tion T

C
ki
i

} and the edge set Exi
= {ETT

xi
∪ETC

xi
∪ECT

xi
},

where

1: ETT
xi

= {(Ti, Tj) | Ti, Tj ∈ Vxi
; Ti <T Tj}.

2: ETC
xi

= {(Tj, TC
ki
i

) | Tj, TC
ki
i

∈ Vxi
; Tj <T T

C
ki
i

}.

3: ECT
xi

= {(T
C

ki
i

, Tj) | Tj, TC
ki
i

∈ Vxi
; T

C
ki
i

<T Tj }.

By merging the local serialization graphs Gxi
(Vxi

, Exi
),

we can construct the global serialization graph G(V, E)
where

V =
⋃

xi∈X

Vxi

and
E =

⋃

xi∈X

Exi

We use the following notations throughout the paper:
Ti −→

+ Tj iff there is a path from transaction Ti to
Tj (Ti and/or Tj could be a checkpointing transaction).
Ti −→ Tj iff there is an edge from Ti to Tj (Ti or Tj could
be a checkpointing transaction). Let σ1 ⊆ T and σ2 ⊆ T

be such that σ1

⋂
σ2 = φ. Then by σ1STσ2 with respect

to the serialization order induced by conflict-serializable
execution ε over T, we mean that each checkpointing
transaction in ST is executed after every transaction in
σ1 has been executed and before any transaction in σ2

has started execution. In particular, if σ1

⋃
σ2 = T, then

the set of checkpoints S taken by ST is tr-consistent iff
σ1STσ2.

Next, we make the following observations:

Observation 1 For any checkpointing transaction T
C

ki
i

,

since it accesses the data item xi exclusively, T
C

ki
i

must

have a path in the local serialization graph either to or
from any transaction Tj that has accessed xi.

Observation 2 For any checkpointing transaction T
C

ki
i

,

since it accesses the data item xi exclusively, if Ti −→
+

T
C

ki
i

and T
C

ki
i

−→+ Tj, then in the local serialization

graph induced by the operations in T ∪ TC on the data
item xi any path from Ti to Tj must pass through T

C
ki
i

.

Observation 3 In the local serialization graph induced
by the operations in T ∪ TC on the data item xi, for
any checkpointing transaction T

C
ki
i

and two other trans-

actions Ti and Tj that have accessed xi, the following
holds:

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



1. If T
C

ki
i

−→+ Tj and there exists Ti −→
+ Tj without

any checkpoint along the path in the local serializa-
tion graph, then T

C
ki
i

−→+ Ti.

2. Similarly, if Ti −→
+ T

C
ki
i

and there exists a path

Ti −→
+ Tj from Ti to Tj without any checkpoint

along the path in the local serialization graph, then
Tj −→

+ T
C

ki
i

.

Observations 1 and 2 are trivial. Observation 3 holds be-
cause in case 1, suppose T

C
ki
i

−→+ Ti is not true, then

Ti −→
+ T

C
ki
i

from Observation 1. Since T
C

ki
i

−→+ Tj,

from Observation 2, every path in the local serialization
graph from Ti to Tj must pass through T

C
ki
i

from Obser-

vation 2, which contradicts our assumption that there ex-
ists a path Ti −→

+ Tj without any checkpointing trans-
actions along the path. Similar argument can be used to
prove the correctness of case 2 in Observation 3.

We make use of these Observations in the proof of the
two important theorems in Section 4.

3 Related Work

The checkpointing algorithms for distributed database
systems can be classified as log-oriented and dump-
oriented. In log-oriented approach, periodically a dump
of the database is taken and also a marker is saved at
appropriate places in the log. When a failure occurs, the
latest dump is restored and the operations on the log af-
ter the dump was taken is applied to the dump until the
marker is reached to restore the system to a consistent
state. In this approach, proper positioning of the marker
in the log will produce a consistent global checkpoint. In
the dump-oriented approach, checkpointing is referred to
as the process of saving the state of all data items in the
database (or taking a dump of the database) in such a way
that it represents a transaction-consistent checkpoint of
the database. The algorithms proposed in [6, 7, 8, 9] take
this approach. The basic idea behind the algorithm in [6]
is to divide the transactions into two groups: those be-
fore or after the checkpointing process. This algorithm is
non-intrusive but requires a copy of the database stored
temporarily. This temporary copy is used by transac-
tions that could not be decided whether or not they be-
long to any of the two groups when the checkpointing
process is going on. Pu [7] uses color method (white
and black) to distinguish data items that have started
checkpointing with data items that have not. Transac-
tions accessing both white and black data items have to
be aborted or delayed in order to maintain consistency,
which increases transaction response time. Pilarski et
al. [8] consider checkpoints as checkpoint transactions,
one for each data item. In addition, a checkpoint num-
ber (CPN) is associated with each checkpoint. By com-
paring the CPN, forced checkpoints on data items are

taken in order to maintain consistency. The previous
two algorithms are coordinated algorithms, in which one
process initiates and coordinates the checkpointing ac-
tivity. The algorithm proposed by Baldoni et al. [9] uses
a non-coordinated approach, in which no process initi-
ates checkpointing and each data item is checkpointed
independently. Like the algorithm of Pilarski et al. [8],
checkpoint numbers are used to synchronize checkpoint-
ing process and forced checkpoints are taken to main-
tain consistency. This algorithm is fully distributed but
may may suffer from large checkpointing overhead due to
forced checkpoints.

4 Necessary and Sufficient Condition

First, we establish the necessary and sufficient conditions
for a set of checkpoints, one from each data item to form
a transaction-consistent global checkpoint.

Theorem 1 Let T = {T1, · · · , Tm} be a set of transac-
tions accessing the database consisting of n data items
X = {x1, · · · , xn}. Assume that each data item is check-
pointed by a checkpointing transaction that runs at the
site containing the data item. Let S = {Cki

i | 1 ≤ i ≤ n}
be a set of checkpoints, one for each data item and let
ST = {T

C
ki
i

| 1 ≤ i ≤ n} be the set of checkpointing

transactions that produce S. Let ε be a schedule over T.
Then S is a tr-consistent global checkpoint iff there is no
path between any two checkpointing transactions ∈ ST in
the global serialization graph corresponding to the sched-
ule ε.

Proof: For lack of space we omit the proof of the theo-
rem. ⋄

Theorem 1 is useful for verifying whether a given
global checkpoint is transaction-consistent. However, this
theorem does not help in constructing a transaction-
consistent global checkpoint incrementally. This is be-
cause, if there is no path between two checkpoints of
two different data items, it does not mean that these
two checkpoints together can be part of a transaction-
consistent global checkpoint. Therefore, additional re-
strictions need to be added in order to be able to extend a
given set of checkpoints to a transaction-consistent global
checkpoint. As mentioned earlier, our goal is to come up
with the necessary and sufficient conditions for a set of
checkpoints to be part of a transaction-consistent global
checkpoint.

Next, we introduce some terminology for developing the
necessary and sufficient conditions for a set of checkpoints
to be part of a transaction-consistent global checkpoint.
Netzer and Xu [2] introduced the concept of zigzag paths
between checkpoints of a distributed computation and
used it to establish the necessary and sufficient conditions
for a set of checkpoints of a distributed computation to be

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



part of a consistent global checkpoint. We generalize their
definition of zigzag paths to checkpoints in distributed
database systems and use it for establishing the necessary
and sufficient conditions for a set of checkpoints of a dis-
tributed database to be part of a transaction-consistent
global checkpoint.

Definition 2 Let Cki

i be a checkpoint taken by the check-

pointing transaction T
C

ki
i

, and let C
kj

j be another check-

point taken by checkpointing transaction T
C

kj

j

. We say a

zigzag path exists from T
C

ki
i

to T
C

kj

j

if there exists a set

of transactions T′ = {Ti1 , Ti2 , · · · , Tiv
} ⊆ T such that

a) Ti1 ∈ T′ is a transaction such that T
C

ki
i

−→ Ti1 in

the global serialization graph;

b) for any Tik
∈ T′(1 ≤ k < v), Tik+1

∈ T′(1 <

(k + 1) ≤ v) is a transaction such that

1: Tik
←− Tik+1

(we call such an edge as reverse
edge);

or

2: Tik
−→ Tik+1

or (Tik
−→ T

C
kw
w

and T
C

kw
w
−→

Tik+1
for some w);

c) Tiv
∈ T ′ is a transaction such that Tiv

−→ T
C

kj

j

;

Note that a path in the global serialization graph is also
a zigzag path but not conversely. Next, we establish the
necessary and sufficient condition formally.

Theorem 2 A set S′ of checkpoints, each checkpoint of
which is from a different data item, can belong to the
same consistent global checkpoint with respect to a serial-
izable schedule of a set of transactions iff no checkpoint
in S′ has a zigzag path to any checkpoint (including it-
self) in S′ in the global serialization graph corresponding
to that schedule.

Proof:

(If-Part:) Suppose no checkpoint in S′ has a zigzag path
to any checkpoint (including itself) in S′. We construct
a consistent global checkpoint S that contains the check-
points in S′ plus one checkpoint for each data item not
represented in S′ as follows:

• For each data item that has no checkpoint in S′ and
that has a checkpoint with a zigzag path to a mem-
ber of S′, we include in S its first checkpoint that
has no zigzag path to any checkpoint in S′. Such a
checkpoint is guaranteed to exist because the virtual
checkpoint of a data item does not have an outgoing
zigzag path.

• For each data item that has no checkpoint in S′ and
that has no checkpoint with zigzag path to a mem-
ber of S′, we include its initial checkpoint (it is also
the first checkpoint that has no zigzag path to any
member of S′ and there cannot be a zigzag path from
any checkpoint in S′ to this initial checkpoint).

We claim that S is a tr-consistent global checkpoint.
From Theorem 1, it is sufficient to prove that there is
no path between any two checkpoints of S in the global
serialization graph. Suppose there is a path from a check-
point A ∈ S to a checkpoint B ∈ S. Assume that the
checkpoint A was taken on data item xi and checkpoint
B was taken on data item on xj .

Case 1: A, B ∈ S′. This condition implies that a zigzag
path exists from A to B, contradicting the assumption
that no zigzag path exists between any two checkpoints
in S′.

Case 2: A ∈ S− S′ and B ∈ S′. This contradicts the
way S− S′ is constructed (checkpoints in S− S′ are cho-
sen in such a way that no zigzag path exists to any mem-
ber of S′ from those checkpoints).

Case 3: A ∈ S′ and B ∈ S− S′. B cannot be an initial
checkpoint, since no checkpoint can have a path to an
initial checkpoint. Then by the choice of B, B must be
the first checkpoint on xj that has no zigzag path to any
member of S′. The checkpoint preceding B on xj , say D,
must have a zigzag path to some member of S′, say E.

Let Tu be the transaction (that accessed xj and created
the edge Tu −→ B) that lies on the zigzag path from A

to B. Similarly, let Tv be a transaction (that accessed xj

and created the edge D −→ Tv) that lies on the zigzag
path from D to E. Note that such transactions exist
because B and D are checkpoints of data item xj . In
addition, according to our assumption that checkpoint
is taken only after the state of the data item has been
changed by transaction, let us suppose such transaction
is Tw.
Claim: There exists a zigzag path from A to E in the
global serialization graph.
Proof of the claim: Based on Observation 1, we have
either Tu −→

+ D or D −→+ Tu in local serialization
graph corresponding to data item xj . If Tu −→

+ D, due
to the existence of zigzag path from D to E, we get a
zigzag path from A to E through Tu, D and Tv. and
hence the claim. On the other hand, if D −→+ Tu, then
because of the edge from Tu to B, we know that Tu must
happen between D and B in the local serialization graph.
Similarly, we can show that Tv must also happen between
D and B in the local serialization graph. Meanwhile since
Tw happen between D and B, we conclude that any path
between Tu, Tv and Tw must have no checkpoints along
the path since D and B are two adjacent checkpoints in
the local serialization graph of xj . Since Tw involves write

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



operations, which is similar to checkpointing operations,
all the observations for checkpointing transactions can be
used for Tw. From Observation 1, Tw must have a path
to or from both Tu and Tv, therefore four cases arise:

1) If Tu −→
+ Tw −→

+ Tv, the zigzag path from A to
Tu, the path Tu −→

+ Tw −→
+ Tv and the zigzag

path from Tv to E construct the zigzag path from A

to E.

2) If Tv −→
+ Tw −→

+ Tu, the zigzag path from A to
Tu, the reverse path Tv −→

+ Tw −→
+ Tu and the

zigzag path from Tv to E construct the zigzag path
from A to E.

3) If Tw −→
+ Tu and Tw −→

+ Tv, the zigzag path
from A to Tu, the reverse path from Tu to Tw, the
path from Tw to Tv and the zigzag path from Tv to
E construct the zigzag path from A to E.

4) If Tu −→
+ Tw and Tv −→

+ Tw, the zigzag path
from A to Tu, the path from Tu to Tw, the reverse
path from Tw to Tv and the zigzag path from Tv to
E construct the zigzag path from A to E.

Since local serialization graph is a component of the
global serialization graph, any local path can find its cor-
respondence in the global serialization graph. Therefore
the zigzag path from A to E must can be found in the
global serialization graph. Therefore no matter what the
situation is, we can always find a zigzag path from from
A to E, which a contradiction to our assumptions. This
is a contradiction to the assumption that no zigzag path
exists between any two checkpoints in S′.

Case 4: A ∈ S− S′ and B ∈ S− S′. As in case 3, B

must be the first checkpoint on xj that has no zigzag path
to any member of S′. Then the checkpoint that precedes
B on data item xj , say D, must have a zigzag path to
some member of S′, say E. Then, as in case 3, there
exists a zigzag path from A to E. This contradicts the
choice of A where A is the first checkpoint on data item
xi with no zigzag path to any member of S′.

Therefore S, containing S′, is a tr-consistent global check-
point.

(Only-if Part:) Conversely, suppose there exists a zigzag
path between two checkpoints in S′ (including zigzag cy-
cle), then we show that they cannot belong to the same
transaction-consistent global checkpoint. Assume that a
zigzag path exists from A to B (A could be B) and along
such a path, the length of consecutive reverse edges is at
most w. We use induction on w to show that A and B

cannot belong to the same consistent global checkpoint.

Base case (w = 0): If the length of consecutive reverse
edges is at most zero, the zigzag path from A to B is in

fact a path from A to B. Then, from Theorem 1, A and B

can not belong to the same consistent global checkpoint.

Base case (w = 1): Suppose the length of consecutive
reverse edges along the zigzag path from A to B is
at most one. Let the consecutive reverse edges with
length equal to one from A to B be T1,1 ←− T2,1,
· · ·, T1,u ←− T2,u. Suppose those reverse edges are
components of local serialization graph corresponding to
data items x1,1, · · ·, x1,u.

Claim: x1,1, · · ·, x1,u can not all be equal to xi where A

takes place.
Proof of claim: Suppose x1,1, · · ·, x1,u are all equal to
xi. Then A, T1,1, T2,1, · · ·, T1,u, T2,u are transactions
accessing xi (note that we use A and the checkpointing
transaction that takes the checkpoint A interchangeably).
From Observation 1, the following two cases arise:

1) A −→+ T2,u. If this is the case, a path A −→+

B via T2,u exists and hence A and B can not be
part of a transaction-consistent global checkpoint,
by Theorem 1.

2) T2,u −→
+ A. Since T2,u −→ T1,u, we must have

T1,u −→
+ A from Observation 3. If this is the case,

when we consider the reverse edge T1,u−1 ←− T2,u−1,
the following two sub-cases arise:

2.1) A −→+ T2,u−1. In this case, a cycle T1,u −→
+

A −→+ T2,u−1 −→
+ T1,u from T1,u to itself

exists. However, a cycle can not exist if the
schedule of T ∪TC ∈ CSR.

2.2) T2,u−1 −→
+ A. Since T2,u−1 −→ T1,u−1, we

must have T1,u−1 −→
+ A from Observation 3.

If this is the case, we need to consider the previ-
ous reverse edge T1,u−2 ←− T2,u−2 in the zigzag
path and make a similar argument with that
edge. Proceeding like this, we will end up with
a path T1,1 −→

+ A; since A −→+ T1,1, we have
A −→+ A, i.e., A is on a cycle which is a con-
tradiction to the assumption that the schedule
of T ∪TC ∈ CSR is serializable.

So, our assumption that x1,1, · · ·, x1,u are all equal to xi

is wrong and hence the proof of the claim.

Using arguments similar to the one above, we can show
that x1,1, · · ·, x1,u can not all be xj . So far, we have
proved that there must exist a data item associated with
a reverse edge that is different from both xi and xj . Let
us assume such a data item is x1,p with associated reverse
edge as T1,p ←− T2,p. Next we prove our claim that A

and B can not belong to a transaction-consistent global
checkpoint.

On data item x1,1 that both T1,1 and T2,1 have accessed,
no checkpoint taken after T1,1, say D1, can be combined

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



with A to form a consistent global checkpoint due to
the path A −→+ D1 (from Theorem 1). Therefore, on
x1,1 we can only use some checkpoint C1 taken before
T2,1 accessed x1,1 to construct a transaction-consistent
global checkpoint containing A. Using similar argument,
on x1,2, which both T1,2 and T2,2 have accessed, any
checkpoint taken after T1,2 accessed, say D2, can not be
combined with C1 to form a consistent global checkpoint
due to the path from C1 −→

+ D2. So we have to use
some checkpoint C2 on x1,2, which was taken before T2,2

accessed x1,2. Similarly, on x1,p, which both T1,p and
T2,p have accessed, we have to use some checkpoint Cp,
which was taken before T2,p to construct a transaction-
consistent global checkpoint containing A.

On the other hand, on data item x1,u that both T1,u

and T2,u have accessed, no checkpoint taken before
T2,u, say Cu, can be combined with B to construct a
transaction-consistent global checkpoint due to the path
path Cu −→

+ B. Therefore, on x1,u, we can only use
some checkpoint Du taken after T1,u accessed x1,u to con-
struct a transaction-consistent consistent global check-
point containing B. Similarly, on x1,u−1, which both
T1,u−1 and T2,u−1 have accessed, any checkpoint taken
before T2,u−1, say Cu−1 can not be combined with Du

to construct a transaction-consistent global checkpoint
containing due to the path path Cu−1 −→

+ Du. So we
have to use some checkpoint Du−1 on x1,u−1 that was
taken after T1,u−1 accessed x1,u−1. Proceeding like this,
on x1,p, which both T1,p and T2,p have accessed, we have
to use some checkpoint Dp, which is taken after T1,p ac-
cessed x1,p, to construct a transaction-consistent global
checkpoint containing B.

Thus, for data item x1,p, we can only use a checkpoint
taken before T1,p and T2,p have accessed x1,p to construct
a transaction-consistent global checkpoint containing A;
on the other hand, we can only use a checkpoint taken af-
ter T1,p and T2,p have accessed to construct a transaction-
consistent global checkpoint containing B. So, for data
item x1,p, there in no checkpoint that can be combined
with both A and B to construct a transaction-consistent
global checkpoint. This proves the Theorem in the base
case w = 1.

Next, assume that if there is a zigzag path from A to
B which contains consecutive reverse edges with length
at most k, then A and B together cannot belong to a
transaction-consistent global checkpoint. We prove that
a zigzag path from A to B which contains consecutive
reverse edges of lengths at most k + 1 can not belong to
a transaction-consistent global checkpoint.

Suppose the series of consecutive reverse edges along the
zigzag path from A to B are: T1,1 ←− · · · ←− Tu1,1

(u1 ≤ k + 1); T1,2 ←− · · · ←− Tu2,2 (u2 ≤ k + 1); · · ·
T1,v ←− · · · ←− Tuv,v (uv ≤ k + 1). Thus, on the zigzag
path from A to B that we consider, we have consecutive

reverse edges of lengths u1, · · ·, uv, (ui ≤ k + 1∀i). Each
of these reverse edges should come from the local serial-
ization graph of a data item. Suppose the reverse edges
are edges of local serialization graphs corresponding to
data items x1,1, · · ·, xu1−1,1, . . . , . . ., x1,v, · · ·, xuv−1,v

respectively. First, we show that at least one of the data
items x1,1, · · ·, xu1−1,1 . . . , . . . x1,v, · · ·, xuv−1,v is not
equal to xi (recall that A is the checkpoint of data item
xi).

Suppose x1,1, · · ·, xu1−1,1 . . . , . . ., x1,v, · · ·, xuv−1,v are all
same as xi. Then A, T1,1, · · ·, Tu1,1 . . . , . . . T1,v, · · ·, Tuv ,v

are transactions accessing xi. Based on Observation 1,
two cases arise:

1) A −→+ Tuv ,v. If this is the case, a path A −→ B

via Tuv,v exists, and hence A and B together cannot
be part of a transaction-consistent global checkpoint
by Theorem 1.

2) Tuv,v −→
+ A. Because of the series of reverse edges

T1,v ←− · · · ←− Tuv,v on xi, from Observation 3,
we have T1,v −→

+ A. Then, when we consider the
series of reverse edges T1,v−1 ←− · · · ←− Tuv−1,v−1,
the following two sub-cases arise:

2.1) A −→+ Tuv−1,v−1. In this case, a cycle exists
T1,v −→

+ A −→+ Tuv−1,v−1 −→
+ T1,v, which

is a contradiction to the fact that the schedule
of T ∪TC ∈ CSR.

2.2) Tuv−1,v−1 −→
+ A. Because of the series of re-

verse edges T1,v−1 ←− · · · ←− Tuv−1,v−1 on xi,
based on Observation 3, we have T1,v−1 −→

+

A. In this case, we need to consider the previ-
ous sequence of reverse edges T1,v−2 ←− · · · ←−
Tuv−2,v−2 and repeat the analysis similar to case
2.1) and 2.2).

Continuing this process, we will end up with a cycle in
the serialization graph which is a contradiction to the fact
that T ∪ TC ∈ CSR. This means that our assumption
that x1,1, · · ·, xu1−1,1 . . . , . . . x1,v, · · ·, xuv−1,v are all xi

is wrong.

Using similar arguments, we can show that not all the
data items x1,1, · · ·, xu1−1,1 . . . , . . . x1,v, · · ·, xuv−1,v can
be equal to xj . Suppose x1,1, · · ·, xu1−1,1 . . . , . . . x1,v,
· · ·, xuv−1,v are all xj .

So far we have proved that there must exist a data item
associated with at least one reverse edge in the zigzag
path from A to B that is different from both xi and xj .
suppose such a data item is xg,p associated with the re-
verse edge Tg,p ←− Tg+1,p which is one of the reverse
edges in the sequence of reverse edges T1,p ←− · · ·Tup,p.
Next, we prove that A and B can not be part of a
transaction-consistent global checkpoint.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



On data item x1,1 that both T1,1 and T2,1 have accessed,
no checkpoint D1, taken after T1,1 has accessed x1,1,
can be combined with A to construct a consistent global
checkpoint because there is a path from A to D1. There-
fore we can only use some checkpoint C1, taken before
T2,1 on x1,1 to construct a consistent global checkpoint
containing A. On x1,2, which both T1,2 and T2,2 have
accessed, no checkpoint taken after T12

, say D2, can be
combined with C1 to form a consistent global checkpoint
because there is a zigzag path from C1 to D2 with con-
secutive reverse edges of length at most k. So we have to
use some checkpoint C2 on x1,2, which was taken before
T2,2 accessed x1,2.

Proceeding like this, on data item xg,p, which was ac-
cessed by the transactions Tg,p and Tg+1,p, no checkpoint
Dp taken after both Tg,p and Tg+1,p, have accessed can
be combined with Cp−1, to construct a consistent global
checkpoint due to the existence of the zigzag path of con-
secutive reverse edges of length at most k. So we have to
use some checkpoint Cp which was taken before Tg,p and
Tg+1,p have accessed xg,p.

On the other hand, on x1,v, which both T1,v and T2,v

have accessed, no checkpoint Cv that was taken before
T2,v accessed x1,v combined with B to construct a tr-
consistent global checkpoint because Cv has a zigzag path
to B with consecutive reverse edges of length at most
k. Therefore, on x1,v, we have to use some checkpoint
Dv, that was taken after T1,v accessed x1,v. On x1,v−1,
which both T1,v−1 and T2,v−1 have accessed, we can not
use any checkpoint Cv−1 that was taken before T2,v−1 to
construct a consistent global checkpoint containing Dv

due to the existence of a zigzag path with consecutive
reverse edges of length at most k So, we have to use
some checkpoint Dv−1 on x1,v−1 that was taken after
T1,v−1 accessed. Proceeding like this, on xg,p, we have
to use some checkpoint Dp that was taken after Tg,p has
accessed to construct a tr-consistent global checkpoint
containing Dp−1.

Thus, on the data item xg,p, which is different from both
xi and xj , no checkpoint that was taken before Tg,p ac-
cessed can be used to construct a tr-consistent global
checkpoint containing A and no checkpoint taken after
Tg,p accessed can be used to construct a tr-consistent
global checkpoint containing B. Thus, xg,p does not have
any checkpoint that can be combined with both A and B

to construct a tr-consistent global checkpoint.

Therefore A and B can not belong to a consistent global
checkpoint. This proves the theorem. ⋄

Corollary 1 A checkpoint of a data item in a distributed
database can be part of a tr-consistent global checkpoint
of the database iff it does not lie on a zigzag cycle.

Proof: Follows from the Theorem by taking S
′

as the
set containing the checkpoint. ⋄

5 Conclusion

Checkpointing has been traditionally used for handling
failures in distributed database systems. If each data
item is independently checkpointed, the checkpoints
taken may not be useful for constructing a transaction-
consistent global checkpoint of the entire database. In
this paper, We have presented the necessary and sufficient
condition for a set of checkpoints of a set of data items in
the database to be part of a transaction-consistent global
checkpoint of the distributed database.

References

[1] S. Pilarski and T. Kameda, “Checkpointing for dis-
tributed databases: starting from the basics,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 3, pp. 602–610, 1992.

[2] R. H. B. Netzer and J. Xu, “Necessary and suf-
ficient condition for consistent global snapshots,”
IEEE Trans. Soft. Eng., vol. 6, pp. 274–281, 1999.

[3] S. H. Son, “An algorithm for non-interfering check-
points and its practicality in distributed database
systems,” Information Systems, vol. 14, no. 5, pp.
421–429, 1989.

[4] A. Silberschatz, H. F. Korth, and S. Sudarshan,
Database system concepts, 1996.

[5] M. Singhal and N. G. Shivaratri, Advanced concepts
in operating systems, 1994.

[6] S. H. Son and A. K. Agrawala, “Distributed check-
pointing for globally consistent states of databases,”
IEEE Transactions on Software Engineering, vol. 15,
no. 10, pp. 1157–1167, October 1989.

[7] C. Pu, “On-the-fly, incremental, consistent reading
of entire databases,” in Proceedings of the 11th Con-
ference on Very Large Database. Morgan Kaufman
Pubs. (Los Altos, CA), Stockholm, 1985, pp. 367–
375.

[8] S. Pilarski and T. Kameda, “A novel checkpointing
scheme for distributed database systems,” in Proc.
ACM SIGACT-SIGMOD-SIGART Symp. on Prin-
ciples of Database Sys., Nashville, TN, 1990.

[9] R. Baldoni, F. Quaglia, and M. Raynal, “Consistent
checkpointing for transaction systems,” The Com-
puter Journal, vol. 44, no. 2, 2001.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008


