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Abstract—A new nonlinear design technique for finite time 
stabilization of a class of nonlinear systems is developed using 
backstepping method. This method is able to apply strict 
feedback form systems. An example illustrates the theoretical 
results. 
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I. INTRODUCTION 
Finite time stability [1], [2] allows solving the finite time 

stabilization problem. This finite time stabilization was 
developed in [1]–[4], [9] for particular systems, for example 
the n-order integrator. Bhat et al provided an important 
contribution in [1] by proving that there is a necessary and 
sufficient condition for finite time stability involving the 
continuity of the settling-time function at the origin. Moulay 
et al developed in [2] a necessary and sufficient condition for 
finite time stability for continuous autonomous system. Then 
they developed a necessary and sufficient condition for finite time 
stabilization of class CLk-affine systems involving a class 
CL0-settling-time function for the closed-loop system. They 
extended Sontag formula [5] to design a feedback control for 
the finite time stabilization. 

Backstepping control for continuous-time systems has 
recently received a great deal of attention in the nonlinear control 
literature [6]-[8]. The popularity of this control methodology can 
be explained in a large part due to the fact that it provides a 
framework for designing stabilizing non-linear controllers for a 
large class of nonlinear cascade systems. Specifically, this 
framework guarantees stability by providing a systematic 
procedure for finding a control Lyapunov function for the 
closed-loop system and choosing the control such that the time 
derivative of the control Lyapunov function along the 
trajectories of the closed-loop dynamic system is negative. 

In this paper we develop finite time stabilization of strict 
feedback control systems with a method as [6]. The main 
result relies on Theorem 4.2 in [1]. 

The rest of paper is organized as follows: In Section 2, 
some notations and preliminary results on finite time stability 
is reviewed. Section3 presents finite time backstepping control 
for continuous-time systems. Simulation results are included in 
Section 4. Section 5 concludes the paper. 
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II. PRELIMINARY RESULTS 
In this section, we introduce notation and definitions, and 

present some key results needed for developing the main 
results of this paper. Let R denote the set of real numbers, R+ 

denote the set of positive real numbers, (.)T and |.| denote 
transpose and 1-norm, respectively.  
Consider the nonlinear dynamical system given by 
 

0)0(),( xxxfx ==&       (1) 

where  is the state vector, D is an open set, nRDtx ⊆∈)(
D∈0 ,  f(0) = 0, and f(.) is continuous on D. 

The following result provides sufficient conditions involving 
a scalar Lyapunov function for finite-time stability of the 
nonlinear dynamical system (1). 
Theorem 1 ([1]): Consider the nonlinear dynamical system 
(1). Assume there exists a continuously differentiable 
function , real numbers c > 0 and+→ RDV : )1,0(∈α , and 
an open neighborhood D⊆Ω of the origin such that V(.) is 
positive definite and 
 

Ω∈−≤ xcVV ,α&  
 
Then the zero solution  to (1) is finite-time stable. 
Moreover, if and T(.) is the settling time function, 
then 
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and T(.) is continuous on N. If, in addition, nRD =Ω= and 
V (.) is radially unbounded, then the zero solution 0)( ≡tx to 
(1) is globally finite-time stable. 
 

III. FINITE TIME BACKSTEPPING CONTROL 
Let us consider the following system 

 
ξηηη )()( gf +=&        (2) 

ugf )()( 11 ξξξ +=&        (3) 
 
where  is the state vector,  is the control 

input, satisfies f(0) = 0, , and D is 
an open set with 

nTT R∈],[ ξη Ru ∈
nRDf →: nRDg →:

D∈0 . The goal is to design a control law to 
stabilize the origin( 0,0 == ξη ) for a finite time duration. If 
the following state feedback control law is chosen 
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The following system is resulted 
 

ξηηη )()( gf +=&        (5) 

v=ξ&             (6) 
 

Assume )(ηφξ = exists such that the subsystem (2) is 
stabilized for a finite time duration. Also suppose that there 
exists a proper Lyapunov function  such that 

 on R
+→ RRV n:

γmVV −≤& n where  and 1≥m γ a rational number such 
that its denominator is an odd number. Same as [6] we have 
 

zggf )()()()( ηηφηηη ++=&      (7) 
wz =&               (8) 

 
where . Let φφξ &−=−= vwz and, ||),( zVzVa +=η  be a 
Lyapunov candidate for the above system. Then we have 
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Then with the choice of γη
η

mzgVzw −
∂
∂

−= )(||  results in 

 
γγγ
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The inequality (9) shows the origin )0,0( == zη  is globally 
finite time stable. Since 0)0( =φ the system (2)-(3) is 

globally finite time stable. By substituting w, z, , and (4) in 
u, the state feedback control law is determined 

φ&

 

))()(||])()([(
)(

1
1

1
ξη

η
φξξηη

η
φ

ξ
γ frzgVgf

g
u −−

∂
∂

−−+
∂
∂

=  

 (8) 
The main result is summarized in the following theorem. 
 
 Theorem 1: Consider the nonlinear dynamical system 
(2)-(3). Suppose that )(ηφ , 0)0( =φ , be a state feedback 
finite time stabilizer for (2) and )(ηV be a Lyapunov function 

that  on RγmVV −≤& n where  and 1≥m γ a rational number 
such that its denominator is an odd number. Therefore, the 
control law (8) with the Lyapunov function 

|)(|)(),( ηφξηξη −+= VVa  stabilizes for finite time 
duration. Moreover, the settling time function is  
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The same as [6] with repeat of backstepping method, the 
following strict feedback form can be stabilized in finite time 
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where , znRx ∈ i , ki ≤≤1 , is scalar value, and fi(0)=0. 
 Multi-input case can also be determined based on Theorem 
1 and block backstepping method [10].  

IV. EXAMPLE 
To verify the theoretical derivations, we design state 

feedback control law for third-order integrator [9]. 
Consider the following dynamical system 
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In [9], a finite time stabilizer has been proposed for double 
integrators. Herein, we divide the above system in two 
subsystems. Therefore a feedback control for the finite time 
stabilization of first subsystem is [9] 
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where λ
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φ −

−
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γ
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Therefore, from Theorem 1, the finite time stabilizer 
feedback law is 
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where λ
λ
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2 xxV  and 

λφ−= 3xz . Simulation runs for 
3
2

=λ  and 20 seconds. 

Initial conditions of plant are set to [1 -0.5 -1]T. Fig. 1 depicts 
state trajectories of the system. Fig.2 and Fig.3 show the 
control w(t) and z(t), respectively. 
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Fig. 1. Trajectories of the state x1 (dashed line), the state x2 (solid line), and 

the state x3 (dotted line) 
 

 
Fig. 2. Trajectory of the control signal w 

 

 
Fig. 3. Trajectory of the state z 

 

V. CONCLUSION 
In this paper, we have extended the backstepping control 

for finite time stabilization of continuous-time systems. The 
main result is a variable structure control which can be 
applied to a large class of nonlinear systems. The simulation 
results show that the proposed method is effective. 
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