Synthesis of Finite Time Stable Backstepping Control Systems

Navid Noroozi

Paknoosh Karimaghaee

Fatemeh Safaei

Abstract—A new nonlinear design technique for finite time stabilization of a class of nonlinear systems is developed using backstepping method. This method is able to apply strict feedback form systems. An example illustrates the theoretical results.

Index Terms— Finite time stabilization, nonlinear systems, backstepping, strict feedback form.

I. INTRODUCTION

Finite time stability [1], [2] allows solving the finite time stabilization problem. This finite time stabilization was developed in [1]–[4], [9] for particular systems, for example the *n*-order integrator. Bhat et al provided an important contribution in [1] by proving that there is a necessary and sufficient condition for finite time stability involving the continuity of the settling-time function at the origin. Moulay et al developed in [2] a necessary and sufficient condition for finite time stabilization for finite time stabilization of class CL_k -affine systems involving a class CL^0 -settling-time function for the closed-loop system. They extended Sontag formula [5] to design a feedback control for the finite time stabilization.

Backstepping control for continuous-time systems has recently received a great deal of attention in the nonlinear control literature [6]-[8]. The popularity of this control methodology can be explained in a large part due to the fact that it provides a framework for designing stabilizing non-linear controllers for a large class of nonlinear cascade systems. Specifically, this framework guarantees stability by providing a systematic procedure for finding a control Lyapunov function for the closed-loop system and choosing the control such that the time derivative of the control Lyapunov function along the trajectories of the closed-loop dynamic system is negative.

In this paper we develop finite time stabilization of strict feedback control systems with a method as [6]. The main result relies on Theorem 4.2 in [1].

The rest of paper is organized as follows: In Section 2, some notations and preliminary results on finite time stability is reviewed. Section3 presents finite time backstepping control for continuous-time systems. Simulation results are included in Section 4. Section 5 concludes the paper.

N. Noroozi is with the Department of Electrical Engineering, Shiraz University, Shiraz, Iran (corresponding author to provide e-mail: navidnoroozi@gmail.com).

P. Karimaghaee is with the Department of Electrical Engineering, Shiraz University, Shiraz, Iran (e-mail: <u>kaghaee@shirazu.ac.ir</u>).

F. Safaei is with the Department of Electrical Engineering, Shiraz University, Shiraz, Iran (e-mail: samane_safaei@yahoo.com).

II. PRELIMINARY RESULTS

In this section, we introduce notation and definitions, and present some key results needed for developing the main results of this paper. Let *R* denote the set of real numbers, R_+ denote the set of positive real numbers, (.)^T and |.| denote transpose and *I*-norm, respectively.

Consider the nonlinear dynamical system given by

$$\dot{x} = f(x), \qquad x(0) = x_0$$
 (1)

where $x(t) \in D \subseteq \mathbb{R}^n$ is the state vector, *D* is an open set, $0 \in D$, f(0) = 0, and f(.) is continuous on *D*.

The following result provides sufficient conditions involving a scalar Lyapunov function for finite-time stability of the nonlinear dynamical system (1).

Theorem 1 ([1]): Consider the nonlinear dynamical system (1). Assume there exists a continuously differentiable function $V: D \rightarrow R_+$, real numbers c > 0 and $\alpha \in (0,1)$, and an open neighborhood $\Omega \subseteq D$ of the origin such that V(.) is positive definite and

$$\dot{V} \le -cV^{\alpha}, \qquad x \in \Omega$$

Then the zero solution $x(t) \equiv 0$ to (1) is finite-time stable. Moreover, if $N \subseteq D$ and T(.) is the settling time function, then

$$T(x) \leq \frac{1}{c(1-\alpha)} (V(x))^{1-\alpha}, \qquad x \in N$$

and *T*(.) is continuous on *N*. If, in addition, $D = \Omega = R^n$ and *V*(.) is radially unbounded, then the zero solution $x(t) \equiv 0$ to (1) is globally finite-time stable.

III. FINITE TIME BACKSTEPPING CONTROL

Let us consider the following system

$$\dot{\eta} = f(\eta) + g(\eta)\xi \tag{2}$$

$$\dot{\xi} = f_1(\xi) + g_1(\xi)u$$
 (3)

where $[\eta^T, \xi]^T \in \mathbb{R}^n$ is the state vector, $u \in \mathbb{R}$ is the control input, $f: D \to \mathbb{R}^n$ satisfies f(0) = 0, $g: D \to \mathbb{R}^n$, and D is an open set with $0 \in D$. The goal is to design a control law to stabilize the origin($\eta = 0, \xi = 0$) for a finite time duration. If the following state feedback control law is chosen

Proceedings of the World Congress on Engineering 2008 Vol I WCE 2008, July 2 - 4, 2008, London, U.K.

$$u = \frac{1}{g_1(\xi)} (v - f_1(\xi)) \tag{4}$$

The following system is resulted

$$\dot{\eta} = f(\eta) + g(\eta)\xi \tag{5}$$
$$\dot{\xi} = v \tag{6}$$

Assume $\xi = \phi(\eta)$ exists such that the subsystem (2) is stabilized for a finite time duration. Also suppose that there exists a proper Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}_+$ such that $\dot{V} \leq -mV^{\gamma}$ on \mathbb{R}^n where $m \geq 1$ and γ a rational number such that its denominator is an odd number. Same as [6] we have

$$\dot{\eta} = f(\eta) + g(\eta)\phi(\eta) + g(\eta)z \tag{7}$$

$$\dot{z} = w \tag{8}$$

where $z = \xi - \phi$, and $w = v - \dot{\phi}$. Let $V_a(\eta, z) = V + |z|$ be a Lyapunov candidate for the above system. Then we have

$$\begin{split} \dot{V}_{a} &= \frac{\partial V}{\partial \eta} [f(\eta) + g(\eta)\phi(\eta)] + \frac{\partial V}{\partial \eta} g(\eta)z + \operatorname{sgn}(z)w \leq \\ &- mV^{\gamma} + \frac{\partial V}{\partial \eta} g(\eta)z + \operatorname{sgn}(z)w \end{split}$$

Then with the choice of $w = -|z| \frac{\partial V}{\partial \eta} g(\eta) - mz^{\gamma}$ results in

$$\dot{V}_a \le -mV^{\gamma} - m \mid z \mid^{\gamma} \le -mV_a^{\gamma} \tag{9}$$

The inequality (9) shows the origin ($\eta = 0, z = 0$) is globally finite time stable. Since $\phi(0) = 0$ the system (2)-(3) is globally finite time stable. By substituting $w, z, \dot{\phi}$, and (4) in u, the state feedback control law is determined

$$u = \frac{1}{g_1(\xi)} \left(\frac{\partial \phi}{\partial \eta} [f(\eta) + g(\eta)\xi] - |\xi - \phi| \frac{\partial V}{\partial \eta} g(\eta) - rz^{\gamma} - f_1(\xi) \right)$$
(8)

The main result is summarized in the following theorem.

Theorem 1: Consider the nonlinear dynamical system (2)-(3). Suppose that $\phi(\eta)$, $\phi(0) = 0$, be a state feedback finite time stabilizer for (2) and $V(\eta)$ be a Lyapunov function that $\dot{V} \leq -mV^{\gamma}$ on \mathbb{R}^n where $m \geq 1$ and γ a rational number such that its denominator is an odd number. Therefore, the control law (8) with the Lyapunov function $V_a(\eta,\xi) = V(\eta) + |\xi - \phi(\eta)|$ stabilizes for finite time duration. Moreover, the settling time function is

$$T(x) \le \frac{1}{m(1-\gamma)} (V_a(x))^{1-\gamma} \tag{9}$$

The same as [6] with repeat of backstepping method, the following strict feedback form can be stabilized in finite time

$$\begin{aligned} \dot{x} &= f_0(x) + g_0(x)z_1 \\ \dot{z}_1 &= f_1(x, z_1) + g_1(x, z_1)z_2 \\ \dot{z}_2 &= f_2(x, z_1, z_2) + g_2(x, z_1, z_2)z_2 \\ \vdots \\ \dot{z}_{k-1} &= f_{k-1}(x, z_1, ..., z_{k-1}) + g_{k-1}(x, z_1, ..., z_{k-1})z_{k-1} \\ \dot{z}_k &= f_k(x, z_1, ..., z_k) + g_k(x, z_1, ..., z_k)u \end{aligned}$$
(11)

where $x \in \mathbb{R}^n$, z_i , $1 \le i \le k$, is scalar value, and $f_i(0)=0$.

Multi-input case can also be determined based on *Theorem 1* and block backstepping method [10].

IV. EXAMPLE

To verify the theoretical derivations, we design state feedback control law for third-order integrator [9]. Consider the following dynamical system

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ \dot{x}_3 &= u \end{aligned} \tag{11}$$

In [9], a finite time stabilizer has been proposed for double integrators. Herein, we divide the above system in two subsystems. Therefore a feedback control for the finite time stabilization of first subsystem is [9]

$$\rho = x_3 = -\operatorname{sgn}(x_2) |x_2|^{\lambda} - \operatorname{sgn}(\phi_{\lambda}) |\phi_{\lambda}|^{\frac{\lambda}{2-\lambda}}$$
(12)

where $\phi_{\lambda} = x_1 - \frac{1}{2 - \lambda} \operatorname{sgn}(x_2) |x_2|^{2 - \lambda}$, and $\lambda = 3 - \frac{2}{\gamma}$. Therefore, from *Theorem 1*, the finite time stabilizer feedback law is

$$u = w + \dot{\rho} = -|z| \frac{\partial V}{\partial x_2} - z^{\gamma} + \dot{\rho}$$
(13)

where $V = \frac{2-\lambda}{3-\lambda} |\phi_{\lambda}|^{\frac{3-\lambda}{2-\lambda}} + x_2 \phi_{\lambda} - \frac{1}{3-\lambda} |x_2|^{3-\lambda}$ and

 $z = x_3 - \phi_{\lambda}$. Simulation runs for $\lambda = \frac{2}{3}$ and 20 seconds. Initial conditions of plant are set to $[1 - 0.5 - 1]^{\text{T}}$. Fig. 1 depicts state trajectories of the system. Fig.2 and Fig.3 show the control w(t) and z(t), respectively. Proceedings of the World Congress on Engineering 2008 Vol I WCE 2008, July 2 - 4, 2008, London, U.K.

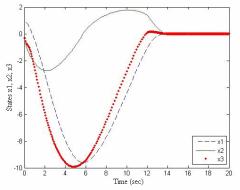


Fig. 1. Trajectories of the state x_1 (dashed line), the state x_2 (solid line), and the state x_3 (dotted line)

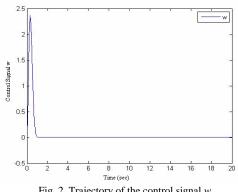
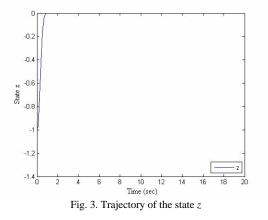


Fig. 2. Trajectory of the control signal w



V. CONCLUSION

In this paper, we have extended the backstepping control for finite time stabilization of continuous-time systems. The main result is a variable structure control which can be applied to a large class of nonlinear systems. The simulation results show that the proposed method is effective.

REFERENCES

- [1] S. P. Baht, D. S. Bernstein, "Finite time stability of continuous autonomous systems, SIAM J. Control Optim. 38 (3), pp. 751-766, 2000.
- [2] E. Moulay, W. Perruquetti, "Finite time stability and stabilization of a class of continuous systems," J. Math. Anal. Appl. 323, pp. 1430-1443, 2006.
- Y. Hong, Finite-time stabilization and stabilizability of a class of [3] controllable systems, Systems Control Lett. 46, pp. 231-236, 2002.
- [4] Y. Hong, Y. Xu, J. Huang, Finite-time control for robot manipulators, Systems Control Lett. 46, pp. 243-253, 2002.

- [5] E. D. Sontag, "A universal construction of Artstein's theorem on nonlinear stabilization," Syst. Control Lett., vol. 13, pp. 117-123, 1989.
- P.V. Kokotovic, "The joy of feedback: nonlinear and adaptive," IEEE [6] Control Systems Magazine, vol. 12, 1992, pp. 7-17.
- [7] M. Krstic, I. Kanellakopoulos and P. V. Kokotović, "Adaptive nonlinear control without overparameterization," Systems Control Lett., Vol. 19, pp. 177 185, 1992.
- [8] M. Krstic, J. M. Protz, J. D. Paduano and P. V. Kokotovic, "Backstepping designs for jet engine stall and surge control," In Proc. 1EEE Conf. Dec. Contr., New Orleans, LA, 1995, pp. 3049-3055.
- [9] S.P. Bhat, D. Bernstein, Continuous, bounded, finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Automatic Control, Vol. 43, No. 5, pp. 678-682, May 1998.
- [10] H.K. Khalil, Nonlinear Systems. 2nd ed. Prentice Hall. Englewood Cliffs, NJ. 1996, ch. 13.