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Abstract− The Model Reference Adaptive System (MRAS) is 

probably the most widely applied speed sensorless drive 

control scheme. This paper compares induction motor speed 

estimation using conventional MRAS and AI-based MRAS 

with Stator Resistance Compensation. A conventional 

mathematical model based MRAS speed estimation scheme can 

give a relatively precise speed estimation result, but errors will 

occur during low frequency operation.  Furthermore, it is also 

very sensitive to machine parameter variations.  However, an 

AI-based MRAS-based system with a Stator Resistance 

Compensation model can improve the speed estimation 

accuracy and is relatively robust to parameter variations even 

at an extremely low frequency.  Simulation results using a 

validated machine model are used to demonstrate the 

improved behaviour. 

 
Index Terms− Dynamic Reference Model, Model Reference 

Adaptive System (MRAS), Neural Networks, Induction Motor 

Control.  
 

I. INTRODUCTION 

Much effort has been devoted to speed-sensorless 
induction machine drive schemes, with Model Reference 
Adaptive System (MRAS) being the most popular [1]. In a 
conventional mathematical-model-based MRAS, some state 
variables are estimated in a reference model, (e.g. rotor flux 
linkage components, ψrd, ψrq, or back e.m.f. components, ed, 
eq,etc.) of the induction machine obtained by using 
measured quantities, (e.g. stator currents and perhaps 
voltages).  
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These reference model components are then compared 
with state variables estimated using an adaptive model. The 
difference between these state variables is then used in an 
adaptation mechanism, which, for example, outputs the 
estimated value of the rotor speed ( rω̂ ) and adjusts the 

adaptive model until satisfactory performance is obtained 
[2-6]. 

Nevertheless, greater accuracy and robustness can be 
achieved, if the mathematical model is not used at all and 
instead, an AI-based non-linear adaptive model is employed.  
It is then also possible to eliminate the need of the separate 
PI controller, since this can be integrated into the tuning 
mechanism of the AI-based model [7].   

However, both the conventional MRAS and AI-based 
MRAS scheme are easily affected by machine parameter 
variations, which happen during practical operation [8,9].  In 
this case, an online stator resistance estimator is applied to 
the AI-based MRAS scheme which makes the whole scheme 
more robust during computer simulation and could possible 
make the scheme usable for practical operation [10, 11].  
The comparison of schemes presented here is felt to be 
valuable since much of the literature presents results for the 
novel approach alone [1]. 

 

II.   SPEED ESTIMATION USING CONVENTIONAL MODEL 

REFERENCE ADAPTIVE SYSTEM 

It is possible to estimate the rotor speed by using two 
estimators (a reference-model-based estimator and an 
adaptive-model-based one), which independently estimate 
the rotor flux-linkage components in the stator reference 
frame (ψrd, ψrq), and by using the difference between these 
flux-linkage estimates to drive the speed of the adaptive 
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model to that of the actual speed [12].  The expressions for 
the rotor flux linkages in the stationary reference frame can 
be obtained by using the stator voltage equations of the 
induction machine (in the stationary reference frame).  
These give (1) and (2), which are now rearranged for the 
rotor flux linkages: 
 

])()[/( ∫ ′−−= sDssDssDmrrd iLdtiRuLLψ                       (1) 

])()[/( ∫ ′−−= sQssQssQmrrq iLdtiRuLLψ                        (2) 

 
These two equations represent a so-called stator voltage 

model, which does not contain the rotor speed and is 
therefore a reference model.  However, when the rotor 
voltage equations of the induction machine are expressed in 
the stationary reference frame, they contain the rotor fluxes 
and the speed as well.  These are the equations of the 
adaptive model: 
 

dtTiLT rqrrrdsDmrrd )ˆˆˆ()/1(ˆ ψωψψ −−∫=                           (3) 

dtTiLT rdrrrqsQmrrq )ˆˆˆ()/1(ˆ ψωψψ −−∫=                       (4) 

 
The reference and adaptive models are used to estimate 

the rotor flux linkages and the angular difference of the 
outputs of the two estimators  

is used as the speed 
tuning signal.  This tuning signal is the input to a linear 
controller (PI controller) which outputs the estimated rotor 
speed as shown in Fig. 1.  The estimated speed can be 
expressed as (5) 

∫+= dtKK ipr ωω εεω̂                      (5) 
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Fig.1 MRAS-based rotor speed observer using rotor flux 

linkages for the speed tuning signal 

III.   ARTIFICIAL INTELLIGENCE-BASED  
MODEL REFERENCE ADAPTIVE SYSTEM 

 
The MRAS-based schemes described in the previous 

section contain a reference model and an adaptive model.  
However, greater accuracy and robustness can be achieved if 
the mathematical model is partially replaced by a neural 
network.  It is then also possible to eliminate the need of the 
separate PI controller, since this can be integrated into the 
tuning mechanism of the neural network-based model. 

The neural network-based model can take various forms: 
it can be an artificial neural network (ANN) or a fuzzy-
neural network etc. and there is also the possibility of using 
different types of speed tuning signals.  It is believed that 
some of these solutions can give high accuracy and are 
relatively robust to parameter variations even at extremely 
low stator frequency. 

One specific implementation of the ANN-based MRAS 
speed estimator system which is popular in academic work, 
as shown in Fig. 2, which is similar to the conventional 
MRAS system.  In this new model, the adaptive model is 
replaced by a simple two layer neural network, which 
enables the whole system with fast response and better 
accuracy than the conventional MRAS [13, 14].   
 

 

Fig.2 MRAS-based rotor speed estimator containing a two-
layer ANN 

 

IV.   MRAS BASED TWO-LAYER ANN SPEED ESTIMATOR 

WITH DYNAMIC REFERENCE MODEL 
 

Compared to the conventional MRAS scheme, the MRAS 
based rotor speed estimator containing a two-layer ANN 
could give more accurate estimation result and relatively 
robust to the parameters variations.  The two-layer ANN 
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replaces the adjustable model and adaptive mechanism in 
the conventional MRAS, but the reference model is still 
necessary for estimation the rotor flux which is used as 
speed tuning signal.  Several machine parameters are used to 
build the conventional reference model, such as stator 
resistance (Rs) and stator reluctance (Ls).  These parameters 
may change during the different periods of motor operating.  
The values of these parameters are fixed in the reference 
model.  So the ANN speed estimator is still sensitive to 
parameter variations especially during the motor low speed 
running period.   

To solve this problem and make this scheme more 
independent to the machine parameters, a stator resistance 
estimator is built in the new reference model, in which the 
stator resistance Rs value could be estimated online.  Fig. 3 
shows the total scheme of neural network based MRAS with 
a dynamic reference model.  

In this new system, both the reference model and adaptive 
model of the conventional MRAS system are modified for 
better performance.  The whole system can be divided into 
two main parts, the dynamic reference model part and the 
neural network part.  The dynamic reference part consists of 
the dynamic reference model derived from equations (1) and 
(2), in which the stator resistance Rs is replaced by the 

online estimated value sR̂ coming from equation (6) and (7), 
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Fig.3 MRAS based ANN speed estimator with dynamic 
reference model.   

The neural network part contains a simple two-layer 
neural network, with only an input layer and an output layer.  
Adjustable and constant weights are built in the neural 
network, and the adjustable weights are proportional to the 
rotor speed.  The adjustable weights are changed by using 
the error between the outputs of the reference model and the 
adjustable model, since any mismatch between the actual 
rotor speed and the estimated rotor speed results in an error 
between the outputs of the reference and adaptive estimators.  

To obtain the required weight adjustments in the ANN, 
the sampled data forms of equations (3) and (4) are 
considered.  By using the backward difference method, the 
sampled data forms of the equations for the rotor flux 

linkages can be written as (8) and (9), where T  is the 
sampling time. 
 

)1()/()1(ˆ
/)1(ˆ/)]1(ˆ)(ˆ[

−+−−

−−=−−

kiTLk
TkTkk

sDrmrqr

rrdrdrd

ψω
ψψψ

                         (8) 

)1()/()1(ˆ
/)1(ˆ/)]1(ˆ)(ˆ[

−+−−

−−=−−

kiTLk

TkTkk

sQrmrdr

rrqrqrq

ψω

ψψψ
              (9) 

 
Thus the rotor flux linkages at the kth sampling instant can 
be obtained from the previous (k-1)th values as 
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Introducing rTTc /= , the following weights are given: 
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It can be seen that 1w  and 3w  are constant weights, but 2w  

is a variable weight and is proportional to the speed.  Thus 
equations (10) and (11) take the following forms: 
 

)1()1(ˆ)1(ˆ)(ˆ 321 −+−−−= kiwkwkwk sDrqrdrd ψψψ        (13) 
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)1()1(ˆ)1(ˆ)(ˆ 321 −+−+−= kiwkwkwk sQrdrqrq ψψψ       (14) 

These equations can be visualized by the very simple two-
layer ANN shown in Fig. 4.  
 

 
Fig. 4 Neural network representation for estimated rotor flux 

linkages 
 

The neural network is training by the backpropagation 
method; the estimated rotor speed can be obtained from: 
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Where η is the learning rate and α is a positive constant 

called the momentum constant.  The inclusion of the 
momentum term into the weight adjustment mechanism can 
significantly increase the convergence, which is extremely 
useful when the ANN shown in Fig. 4 is used to estimate in 
real time the speed of the induction machine.   
 

V.   SIMULATION RESULTS AND DISCUSSION 

To compare the conventional MRAS and the AI-based 
MRAS with dynamic reference model, simulations are 
established by using Matlab-Simulink software, based on 
the standard well established validated 2-axis machine 
model [6].   

Speed estimation results using conventional MRAS and 
neural network based MRAS are shown in Fig. 5 and Fig. 6 
respectively.  These results assume the machine parameters 
are correctly measured and unchanged during operation.  
Both of the two schemes can give good speed tracking 
results.   

 

Fig. 5 Speed estimation using Conventional MRAS 
 

 
Fig. 6 Speed Estimation using Two-layer ANN MRAS 

 
Further simulation has been carried out with changed 

stator resistance to test how much the parameter changing 
would affect the speed estimation results.   

 

 

Fig.7 Speed estimation by using Conventional MRAS (with 
stator resistance Rs changed 2%) 
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Fig. 8 Speed Estimation using Two-layer ANN MRAS (with 

stator resistance Rs changed 2%) 
 

In Fig. 7 and Fig. 8, simulations are carried out with the 
stator resistance changed by a small amount, 2%.  Obviously, 
both schemes are still sensitive to parameter variations.   

A final simulation for AI-based MRAS with the dynamic 
reference model is shown in Fig. 9.  The online estimated 
stator resistance is displayed in Fig. 10.  From the 
simulation result in Fig. 9, the effect caused by the stator 
resistance variation has been considerably improved. 
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Fig. 9 Speed Estimation using Two-layer MRAS with 

dynamic reference model 
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Fig. 10 Estimated Rs in the dynamic reference model 

 
 

Comparing all the above simulation results shows that the 
conventional MRAS scheme works well when the 
parameters are precisely measured and do not change during 
operation.  The MRAS with adaptive model replaced by the 
two-layer neural network can slightly improve the 
performance when working in the same situation.  But both 
schemes can still be easily affected by parameters variations, 
which do occur during practical operation.  By introducing 
the stator resistance online estimator, the performance is 
much improved which should enable the scheme usable for 
practical operation. 

 

VI.   CONCLUSION 
 

The main objective of this paper is to compare 
conventional MRAS and AI-based MRAS for induction 
motor speed sensorless speed estimation. The conventional 
MRAS can give good speed estimation in most of the 
operation period, but errors will occur during low frequency 
operation mainly caused by the machine parameter 
variations.  An AI-based MRAS system can give improved 
accuracy and bypasses the PI controller tuning problems.  
The simple structure of the two-layer neural network shown 
in Fig. 4 yields a speed estimation system working online 
with a fast response.  Also the simple two-layer neural 
network does not require a separate learning stage, since the 
learning takes place during the on-line speed estimation 
process. This is mainly due to the fact that the development 
time of such an estimator is short and the estimator can be 
made robust to parameter variations and noise.  Furthermore, 
in contrast to most conventional schemes, it can avoid the 
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direct use of a speed-dependent mathematical model of the 
machine. 

However, the Two-layer neural network MRAS lies more 
in the realm of adaptive control then neural networks.  The 
speed value is not obtained at the output, but as one of the 
weights.  Moreover, only one weight is adjusted in the 
training.  Therefore, it would still be sensitive to parameter 
variations and system noise. 

In the new approach, an online stator resistance estimator 
is used to compensate the parameter variations.  From the 
comparison of the computer simulation results, it is obvious 
that this new approach makes the whole scheme more robust 
to parameter variations, which also gives the possibility of 
practical use of the neural network based MRAS scheme.  
The stator resistance estimator is working under adaptive 
mechanism (PI controller).  Further study could be carried 
out for replace the PI controller with another simple neural 
network which could also estimate more machine 
parameters. 
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