
An Artificial Immune Networking Using
Intelligent Agents

S. Chandrasekaran
1
, C.Dinesh

2
, AL.Murugappan

3

ABSTRACT

The objective of the proposed work is to formally verify and

implement an Artificial Immune Networking model. The

work focuses on the protection against computer viruses

which disrupt the normal usage of the network. The

vulnerability of the network due to the malfunctions is

detected in terms of faulty or malicious nodes. An Artificial

Immune System or Bio-Inspired approach is adopted by

making the network to automatically detect and tolerate the

previously unseen normal behavior. In this system approach

the dynamic description of the usual behavior of network is

formally specified and clustering of decision making methods

to minimize the time of detection. The theoretical analysis of

such Immune Networking is also performed and the

necessary network components are proposed to counter

attack the intrusions. The Artificial Immune Networking and

its timely response are modeled using Colored Petri Nets

(CPN) at the illegal intrusions. The detection and recovery

from the intrusion may be achieved by employing intelligent

agents in a distributed environment. The performance of the

system is determined by the correct activation of the lympho

component at the earliest within the scope of intelligence

given to individual agents.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication, Invasive

software (e.g., viruses, worms, Trojan horses)

General Terms

Security

Keywords
Artificial Immune Network, Colored Petri Nets, Lymphos,

Intelligent Agents

S.Chandrasekaran is with Dr. M.G.R University, Chennai,, India

Working as Professor and Dean of Computer Science

Department(email: chandrasekaran_s@msn.com, mobile:+91

9841983789)

C. Dinesh is with Polytechnic University, Brooklyn, NY, (email:

dchand01@students.poly.edu ,mobile:732 762 2220)

AL.Murugappan is with K.C.G College of Technology

,Chennai,India(email:murugappan.alagappan@gmail.com

,mobile: +91 9444586197)

1. INTRODUCTION

In the human oriented computational world, there has been a

growing interest in the use of biology as a source of inspiration

for solving computational problems. There are several

computational techniques that look to biology for inspiration.

Some common examples include networks, evolutionary

algorithms, and Artificial Immune Systems or Immunological

Computation [2]. The proposed work is often referred to as a

strong member in Biologically Inspired Computing. The

motivation of this work is primarily to extract useful

mechanisms or metaphors from natural biological systems, in

order to develop cost effective computational solutions to

complex problems in a networking domain. [6], [9] proposed

the use of immune system concepts for design of computer

security systems and provided an elaborate description of some

immune system principles applicable to security. The immune

system also contains many useful information-processing

abilities, including pattern recognition, learning, memory and

inherent distributed parallel processing called as Artificial

Immune Networking Systems (AINS).

Essentially, AINS are the use of immune system components

and processes as to construct computational systems.

Applications of AINS include such areas as mobile networking,

business process prediction, fault diagnosis and tolerance

computer security, scheduling, virus detection, and optimization.

The work presents a general introduction to the field of artificial

immunology, stressing the key areas that are currently used

within the field of AINS. But the applications of these artificial

immune networking will give the expected security and

performance from the common internet users only when the

networking is modeled in a more formal way. Hence the focus

is to arrive at a computationally intensive and distributed model

for the network component immunity using a powerful PetriNet

modeling approach. An event triggered approach is used where

the interaction with other systems in the network is

asynchronous in nature. Based on the detection of any intruder

or virus into the network, the response for the malicious attack is

concurrent in its correction phase.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

1.1 Immune Model – Acquired Immunity

The two ways that any biological system responds to a virus are

suppression and tolerance. Immunity may be called as the degree

of suppression and tolerance is the degree of acceptance. The

tolerance of the computer network against viruses is the cross

reactivity to agents and system security components added to the

system. It is highly specific for each virus so that the network

needs special detection and vaccination software components. But

the immunity may be natural or acquired, say the system

components and the external security activities respectively as

shown in Table 1..

Table 1. Bio and Artificial Immune mapping

File infector viruses work by inserting their code into executable

files, just as the biological virus works by inserting its DNA code

into living cells [4]. When the virus or antigen enters the host

computing node at a specific file, the host starts producing the

antibodies in response to those interrupts. The antibodies

produced with in the system software for security management

modules and the resistance offered to any malicious code may be

called as natural or self immune networking. If the system is

introduced with some amount of antibodies or the network is

induced to create antibodies for certain antigens or viruses, the

mechanism may be called as acquired immunity. The point to be

highlighted here is that the antigen what is going to be injected is

a processed antigen like the dynamically created agent object. The

negative effect of that induced agent is highly minimized through

code optimization and scanning the same agent code multiple

times. The processed antigen is a foreign body so that it will start

producing antibody for it. Hence the network is immune to that

particular virus only. As the network functions or expands over

any period of time and if it is exposed to the same type of virus

once again, it generates similar antibodies or agents, the agents

would not allow the virus getting propagated from the affected

node to another one. The natural immunity is any standard virus

detecting mechanisms available only in the host system whereas

the acquired immunity is developed not only by the agents

roaming in the network but also by the way of replicating their

own agents depending upon the nature of virus attack.

Some deadly viruses create noticeable amount of network

performance degradation, sudden system reset, drivers

malfunctioning and loss of files leading to Acquired Immune

Deficiency Syndrome (AIDS) of a computer network. This type of

virus enters the host and suppresses the immunity of the network

so that other viruses can easily intrude into the network and

thereafter make the network, not respond properly to the future

injected antibodies. The entire network has to be finally shutdown

loosing all data and connectivity. The system has to be reinstalled

under a long maintenance period otherwise it has to be replaced.

When the artificial immune network is attacked by an external

antigen say a virus, there are two possibilities: tolerance or

immunity; the correct selection is crucial and depends on many

factors, like the nature, concentration of the antigen and the place

of attack. It is assumed that low concentration of antigen normally

induce tolerance; whereas medium concentration induce

immunity. Of course, high concentration also induces tolerance,

but the mechanism is not the same as for low concentration of the

antigen in the network. When an antigen attacks a file, the

artificial immune network decides which pathway should be taken

either suppression or immunity and it has to remember the choice

for a long time, even after the disappearance of the antigen as in

the biological system. It is crucial that the infected file does not

react against some of its other native files.

The agent server in the immune system produces agents

(antibodies) directed against the infected file. The phenomenon of

learning, i.e., the network has to learn whether to suppress or fight

the incoming antigen, is massively parallel. Since the type and

size of the all antigens are extremely large, the complexity of the

learning process is cumbersome. With finite number of known

antigens it is possible to train the network for early detection and

correction of the antigens which are non- self, since the process is

sequential. The degree of resistance is a function of the number

of antigens entered, their size and also their severity along with

the place of attack whereas the degree of tolerance is a function of

the number of antibodies injected or created at that point of time

in the network and their detection capability in terms of the

number of training patterns.

This approach for the design and development of an Immune

Network for virus detection is more robust due to the possibility

of agent creation and cloning to decrease the total storage need of

the virus signature list at every host. The autonomous,

multilayered, and distributed features of this Biological Immune

Systems suggest a distributed Mobile Agent System utilizing a

diverse array of agent detectors [10].

Biological Immune

System

Artificial Immune System

Human Body Computer Network

Organisms/ Organs Nodes / Files

Antibodies Mobile Agents

Antigens Software Virus

Immunity, Suppression Immunity, Tolerance

Neural Controller Server

Learning Training the agents

Immune memory Look up Table

Training patterns Virus Signatures

Receptors Detectors

Bio Connectivity Wireless/ Wired Link

Organ address IP Address

Time of Attack Time of Virus Detection

Cloning Agent Replication

Recovery Time Agent Life Time

Natural Immunity Built –in Security

Acquired Immunity Agent based Security

Natural Death Dead PC

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

2. ACQUIRED IMMUNITY PROBLEM

FORMULATION

The acquired immunity in the distributed network has been

illustrated with mathematical parameters representing the

network’s sensitivity and specificity. The immune network

sensitivity may be calculated as the ratio of the product of the

number of mobile agents created and the time taken to detect the

malicious codes in a single node and report them to the central

agent server to the time taken to detect the presence of all worms

which attack the whole network at the same duration of time. The

specificity represents the ratio of the number of specific infections

or worms detected by an agent with or without replication to the

total number of detectable worms in the given network.

Let us assume a distributed network with a number of computing

nodes, say N. The Roaming Agent (RA) visits all nodes whose

Internet Protocol (IP) addresses are stored in the IP Table. The

Network Server (NS) is capable enough to create as many number

of agents or copies of any agents depending upon the nature and

place of attack. The number of agents created at any instance of

time is represented by the set A. The list of known worms or virus

signatures, say V are stored in the server.

N = {n1,n2,n3……ni…….nN}

A = {a1,a2,a3……aj,…….aM}

V = {v1,v2,v3.........vk.........vp}

Let the RA starts roaming through the network at t0. Let the time

of status report by RA to Network Server be t1 from the node ni.

Let the time taken by the NS to dispatch the correct mobile agent

aj in the form of a java class file to the suspected node as per the

IP-Address table be tcd, the time for creation and dispatch. The

traveling time of such a class file is taken to be tt. The time taken

to find a match for the substring is ts, scanning time.

The compilation in the available Java Run Time Environment

(JRE) in the affected node creates an antibody to scan the file for

the presence of an antigen in the specified file path. The path is

targeted towards any .exe or .zip or it may be any file type. The

immunity of the network lies in the activation of the Lymphocytes

(JRE) by the mobile agent created in the server. The activated

antibody scans the specified file in its correct location for the

presence of worm that is in the form of first 65536 bits or any

length as per the developer’s choice depending upon the severity

of the attack, machine code in the case of any executable file. The

scanning is a fast pattern matching problem looking for a

substring – the worm string in the first 2 ^ 16 bits of the entire

machine code. If the antibody detects a substring and verifies it

with the known worm signature, it reports to the server through an

agent but at this time, the return agent is infected and dies at the

server after having entered a report in the log available at the

server. Next the server takes a copy of the same agent class by

duplicating the code and sent to next suspected address or creates

a new agent class for another form of suspected attack. The total

time needed to detect, create, dispatch and scan all the nodes

against the worms may be calculated as,

Ttotal = N x (t0 + tcd + tt + ts)

 Detection time for a worm at

The sensitivity the ith node by jth agent for

of the AIN = signature vp

 Total time for detecting and

 Scanning all nodes against all

 signatures, Ttotal

 No of infections detected at

The specificity the ith node by jth agent for

 of the AIN = signature vp

 Total worms detectable at all

 nodes against all signatures, V

3. FORMAL DESIGN USING COLORED PETRI

NETS

Colored Petri Nets (CP-nets or CPN) is a graphical oriented

language for design, specification, simulation and verification of

systems. It is in particular well suited for systems in which

communication, synchronization and resource sharing are

important. Typical examples of application areas are

communication protocols, distributed systems, automated

production systems and work flow analysis. The development of

CP-nets has been driven by the desire to develop a modeling

language – at the same time theoretically well-founded and

versatile enough to be used in practice for systems of the size and

complexity we find in typical industrial projects. Petri nets

provide the primitives for the description of the synchronization

of concurrent processes, while programming languages provide

the primitives for the definition of data types and the manipulation

of data values.

The CPN modeling language combines Petri nets, which provide

the foundation of the graphical notation and the semantical

foundation for modeling concurrency, synchronization,

communication in systems and programming languages. The

module concept is hierarchical, allowing a module to have a

number of sub modules and allowing a set of modules to be

composed to form new modules. This enables the modeler to work

both top-down and bottom-up when constructing CPN models.

CPN models can be timed, meaning that the time taken by

different events in the system can be modeled. This means that

CP-nets can be used to investigate both logical and functional

properties such as absence of deadlocks, and performance

properties such as execution times and queue lengths [5].

A CPN model can be verified, to prove that it behaves as desired.

The most straightforward verification method builds on model

checking by means of state spaces, i.e., directed graphs with a

node for each reachable system state and an arc for each possible

transition from one system state to another. State spaces often

become huge. Design/CPN also supports construction and

analysis of state spaces, allowing the user to verify a large variety

of different behavioral properties. The CPN language, i.e., the

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

syntax and semantics can be used to characterize the behavior of a

given CP-net, e.g., reachability, boundedness, home states,

liveness and fairness. The formal analysis and design methods

covering state spaces, place invariants, transition invariants and

timed CP-nets are discussed in this work. The CPN Model of the

Mobile agent based Artificial Immune Network is shown in

Figure 1.

Figure 1. CPN Model of AINS

Figure 2. Mobile Agent Creation Scenario

 Figure 3. Host Verification Scenario

Figure 4. File Scanning Scenario

In the agent creation scenario, the agent packet is formed using

the following tokens [BYTE_CODE, Client_addr, Server_addr]

which is dispatched after specific time delay as shown in Figure 2.

Timed protocols have been used to incorporate unknown delays

that might be caused at every hardware. After agent

authentication, the executable files are scanned for virus

signatures stored at the server and the log file is updated as shown

in Figure 3 and Figure 4. The basic software components that are

needed in an artificial immune networking are roaming agent

component for virus detection in an intelligent way and the

scanning agent modules for actual virus scanning like

lymphocytes. These lymphocytes like components are generated

from the central server module. Different types of scanning agents

as per the nature of attack, i.e., virus signatures are generated and

the correct scanning agent is selected from the server in an

intelligent way. The agents can be replicated if the number of

similar attack is concurrent.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

4. ARTIFICIAL IMMUNE NETWORKING

COMPONENTS

The key portion of antigen that is recognized by the antibody is

called epitope, which is the antigen determinant; Paratope is the

portion of antibody that corresponds to a specific type of antigens.

Once an antibody combines an antigen via their epitope, and

paratope, the antibody starts to eliminate the antigen. Recent

studies in immunology have clarified that each type of antibody

also has its own antigenic determinant, called an Idiotope as

shown in Figure 5. This means an antibody is recognized as an

antigen by another antibody. Based on this fact, scientists

proposed the concept of the immune network, or idiotypic

network, which states that antibodies and lymphocytes are not

isolated, but they are communicating with each other. Thus, the

immune response eliminating foreign antigens is offered by the

entire immune system (or, at least, more than one antibody) in a

collective manner. In the proposed Artificial Immune Network,

the infected portion of any file, say the first 65536 bits or the last

1024 bytes constitute a “worm” or an antigen is identified by the

antigen specific “java class” – Software Agent.

Figure 5. Artificial Immune Network Components

The architecture of immune network can be explained with the

help of the following functional modules interconnected in a

layered fashion as shown in Figure 6. The bottom most

communication layer corresponds to the distributed transport and

internet protocol stack for Wireless or LAN environment. The IP-

addresses of the participating nodes are often visited and their

links are checked by a roaming agent to make a First Information

Report (FIR) regarding the suspicious node against the unwanted

malicious code fragment. The FIR is prepared based on the Cyclic

Redundancy Check (CRC) mechanism. The health condition or

status of the node is manipulated by the server side component

and a suitable agent is created that carries a java class file to

suspected node. The creation and dispatch of the correct and

needed class file could be achieved by training the network. The

next layer corresponds to the actual scanning of the file in the

specified location for the presence of worm in the first 65536 bits

of the file that may be a .exe or .zip format. The upper layer is

needed for the formal report on the post scanning process

including the number of files scanned, the time of detection of

worms if any and the reporting time of the scanning agent to the

server after it returns back to the server.

Figure 6. Layered Architecture

4.1 Virus Signatures and Detection

The Virus Signatures are unique bit strings or binary pattern, of a

virus. It is like a fingerprint in that it can be used to detect and

identify specific viruses. All the commercially available Anti-virus

softwares use the virus signatures to scan for the presence of

malicious code. In general the machine code of the virus program

has to be compared for match with the code of file under scan.

Typical computer viruses are a few thousand bytes in length. And

given that there are several thousand PC viruses the amount of

memory required just to contain all of the patterns would be

several megabytes. It would be much easier for the virus authors

as they have been given access to such virus databases. To avoid

such practices instead of an exact match, the softwares use just a

small piece of the virus code for scan. These short templates,

called signatures, improves the performance of the scanner and

also reveal nothing useful to virus authors. The algorithm as

shown in the box that is used for virus pattern matching is simple.

The machine code of the file under scan is pattern matched with

the virus templates [7]. The tested positive files are deleted to

avoid further damage to system softwares.

Pattern Matching Algorithm:

define V = {v1,v2,v3…vj}; // Set of Virus Signatures of length le

define F = {f1,f2,f3…fp} ; // Set of executable files to be scanned

define M = {m1,m2,m3…mk} ;// Set of m. codes of files scan

 int i, j, k, p = 0 ; // Increment variable initialization

SCAN : if vj = SUBSTRING (mk, i, le)

 then i++ ;

 Loop till LENGTH (mk); DELETE (fp) ; EXIT

Immune

Engine

Scanning

Dispatch

Agent creation

Communication

Node Status

Agent Link

Reporting

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

5. INTELLIGENT AGENTS FOR AINS

5.1 Scenario in Distributed Systems

The biological system is made up of many different types of cells

that operate independently, yet in cooperation with each other in

order to protect the body from foreign invasion. This highly

parallel and distributed structure suggests that an integrated

architecture can be viewed as a multiagent system (MAS), where

separate functions are carried out by individual agents [3]. Mobile

agent technology offers a new computing paradigm in which a

program, in the form of a software agent, can suspend its

execution on a host computer, transfer itself to another agent-

enabled host on the network, and resume execution on the new

host. According to definition, a multiagent system is a distributed

computing system consisting of interacting agents that coordinate

their actions inorder to complete competitive tasks [1]. To detect

pathogens, the signature of machine code of the file is matched

against signatures of potential viruses stored in an immune system

database. The Bio Inspired Network model operates in two

different modes; Normal Mode and Bio Mode. Firstly the

Intelligent Roam Agent travels through the network, visits each

and every node to detect changes in the CRC of windows

executable files confined to a specific directory, say

C:\WINDOWS\ where system files necessary for normal windows

boot up resides. And at the end of every round trip it calculates

the number of infected nodes. The Intelligent Roam Agent,

depending upon that number, initiates one of the modes either

virus tolerance or suppression.

 In the Normal Mode, the master agent created migrates and scans

executable files under the specified directory in all the hosts

connected to the server within the domain. The signature database

present only at the server is queried by the agent during its travel

using Remote Method Invocation – Java Data Base Connectivity

(RMI – JDBC). The results are updated in a log file created at the

end of scanning process. If the log has more than the tolerable

number of suspicions, then the agent terminates the host computer

to prevent further damage.

5.2 Concurrency and Self – Replication of Mobile

Agents

In the Bio mode of operation, the master agent performs self –

replication to create its own multiple instances to solve concurrent

attacks. The severity of the attack is calculated by the Intelligent

Roaming Agent. In both modes, the first 2^16 bits are verified

against 18 – bit virus signatures. The Cyclic Redundancy Check

value of the executable files stored in the database is compared to

detect the attack or corruption by viruses. The Agent calculates

and checks its own CRC before execution, which will disable the

virus from further multiplication. The proposed model has several

characteristics. They are

� Captures missing code from local class

 loader – Self Healing

� Clones itself when concurrent attacks are

 detected – Self Replication

� Finds the path to the destination

 Autonomously – Self Adaptation

The traditional method of virus detection and correction requires

the commercially available scanners to be present in all the host

machines within the Local Area Network (LAN). The virus

definition databases should be updated at regular intervals using

the Internet to prevent attacks of newer viruses in the server. The

proposed Bio Inspired Network model as shown in Figure 7,

solves the specified constraints (Cost and Storage Capacity) faced

by the traditional methods followed in the computer laboratories

by maintaining a single virus signature database and scanner using

Intelligent Agents. The model requires the agent server to be

running at every host to receive and forward the incoming

software agents. The RMI – JDBC is started at the server for the

mobile agents to query the master database for signatures and

CRCs.

Figure 7. Proposed Bio Inspired Network model using

Intelligent Agents

The agents are created using Kaariboga; a free implementation of

a framework for mobile agents [8]. It is implemented in Java and

thus it supports dynamic class loading and can be used on every

computer supporting the Java platform. The server starts with

default security manager and hence vulnerable under open

networks. The Kaariboga project developed at the university of

denmark lacked the implementation for code mobility and

required the class file of the agent at all hosts. This feature is

included to enhance its functionality, performance and to support

code mobility.

Kaariboga uses TCP/IP for agent migration through

firedispathrequest method. The server listens to the default port

10100 for incoming agents. The following is the list of some

predefined methods of Boga Agents

• firedestroyrequest() - Destroys agent through

process kill

• onCreate() - Called when an agent is created

• onArrival() - Called when an agent arrives on the

base

• onDispatch() - Called when an agent moves from

the base

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

The main CLASS : roamAgent consists of the following method

definitions to perform the intended operations. They are defined

as follows

• onCreate () : gets the initial IP of the machine to check

for exe file CRCs under specified directory IFF the

machine is reachable from the server.

• onArrival () : checks its own CRC before scanning files

for suspicion using RMIJDBC connectivity. IFF it is

valid, then collects exe files under the given directory

using FILE NAME FILTER Interface. Check their

CRC, reports to the server if any invalid entries

detected.

• run () : jumps and executes scanning of files

• doCheckSum () : return the CRC of the windows

executable file

• The roamAgent calls the mScan agent which scans the

exe files (first 2 ^ 16 bits) against virus signatures (18

bit) stored in the database and returns the scan results to

the user using onArrival () and doCheckSum ()

methods.

5.3 Acquired Immuno Deficiency Syndrome

 The Acquired Immuno Deficiency Syndrome (AIDS) of a

Computer network is thought of as a collection of symptoms that

do not have an easily identifiable cause since it is a condition that

has to be contracted. The viruses and worms enter into the nodes

and links and affect the entire network immunity at that part of the

network that fights off viruses. The deficiency refers to resulting

consequences that makes the immune system stop working

properly. It is a syndrome because network with such an

experience, any number of different types of symptoms and

opportunistic malfunctioning or stoppage of the entire system will

occur.

A file can be infected with worm or virus without developing

AIDS. The virus can remain in computing node for many years

without causing serious software or hardware problems. During

this period, the virus is said to be latent, or inactive. Eventually,

most computing systems which are infected do develop AIDS in

distributed computing environment. Treatment of infected files or

systems involves either trying to slow down or stop the virus from

spreading into other nodes or files. During such a treatment, the

prevention of other viruses that may enter into the immune

network system can be reduced. The risk of contracting the virus

increases if an individual node in the network has different illegal

connectivity or practices and a number of unsafe browsing.

Unsafe browsing refers to internet connectivity without using any

method to prevent the exchange of spam and viruses without

adhering to the stipulated security advises through firewalls and

anti virus packages. An important element of the artificial immune

system is like a group of white blood cells that include helper T

cells, macrophages and monocytes which are the basic security

and system management modules in the biological system. The

immune system consists of all those spam preventions, software

agents, and firewall mechanism that protect the node and/or

network from infection by foreign machine code packets, such as

worms.

6. PERFORMANCE AND RESULTS

The artificial immune network] is realized with five systems

connected to a single server as a distributed system. The worm or

virus attack is realized through the recent and wild virus

signatures [11] of various sizes ranging from 32 to 512 bits. The

files of different types like .exe, .zip and.com of different sizes are

tested for the one or multiple virus infections in all the nodes

concurrently. The performance of the proposed artificial immune

network is evaluated on the basis of the total time taken including

the time for creation, dispatch, travel, scanning and reporting the

status of the files specified in the user defined target path at the

destinations. The cost benefit factor, usability and extensibility of

this approach are remarkable since from a single installation,

information security of multiple nodes are achieved which can

also be extended for future unknown viruses if their signature is

identifiable. The sensitivity, specificity and the overall detection

capability are the three performance metrics through which the

evaluation of the work is carried out. Firstly the sensitivity of the

proposed artificial immune network against worm or virus attacks

depend on the number of nodes in the network since the roaming

agent has to verify the check sum of the individual files. The

numbers of virus signatures, nodes, files tested are 80, 5 and 35

respectively. The time taken for arrival, scan and reporting of

bugs to the server by the roam and scan mobile agents are shown

in Table 2.

Table 2. Scan and Report time for individual agents

The connectivity parameters like the data transfer rate,

intermediate firewalls and switches along with the bandwidth are

also becoming the deciding factors. Keeping the above parameters

constant, the sensitivity is calculated as the ratio of the time taken

by the roaming agent to give the FIR to that of the total time

covering the entire scanning process for a particular file. The

sensitivity, specificity and detectability of the agent system are

calculated using the travel, scan, report time as shown below. The

size of virus signature database and number of nodes decreases

the specificity factor and detectability of the agent respectively.

Time for

Creation/

Dispatch

tcd

(sec)

Travel

time

tt

Time

for

CRC

check

Total

length

of file
machin

e code

(bits)

Time for

Scanning

Virus

Sign

(sec)

Total

time

for

Check

(sec)

6 9 6 64 ----- -----

3 9 ----- 64 393 426

6 9 6 32 ----- -----

3 9 ----- 32 237 270

6 8 5 24 ----- -----

4 9 ----- 44 202 230

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Table 3. Tested Worms ,Viruses and Trojans

The Sensitivity = 6 + 9 + 6 = 0.3450

 Factor

 426 / 7

The Specificity = 64 / 80 * 64 = 0.0125

 Factor

 Number of Signatures * size

 of signature

The detectability =

of the AINS Machine code size * No

 of nodes * No. of Files

 = 80 * 64 / 65536 *5 * 7

 = 0.002235

 With the proposed intelligent agent method it is possible to detect

any attack with only a single point of control at the network server

not at all nodes that will lead to a cost effective secured

mechanism.

Figure8 Snapshot of the Implemented AINS using Agents.

8. CONCLUSION

The security of a computer or information network is enhanced by

adopting the acquired immune behavior artificially in the

distributed network. The immune network is modeled through a

timed and event oriented Petri Net to decide the reachability and

space complexity of such a system considering the similarities and

the dissimilarities between the biological and artificial immune

system. The network components including inherent system safety

modules and the software agents for the quicker activation of the

antibodies in the suspected location are achieved by intelligent

agents. The remote virus database is searched for the suspected

virus in terms of a malicious machine code and the correct java

class file could be selected through a learning process. As an

outcome of the decision made by the intelligent roaming agent,

the scanning agent is in turn transferred to the suspected location

as defined in the IP-address table. In the distributed environment,

the mobile java class file is compiled and executed at the

destination address and scans the relevant or specified files in the

target path. Multiple copies of the scanning agents is created and

dispatched to the various suspected nodes in the network

depending upon the severity and multitudeness of the attack. The

intelligent agent method is found to be working good for all types

of viruses, worms and Trojans as tabulated in Table 3. The output

GUI snapshot for the implemented technique is also shown in the

Figure 8.

The intelligent agent model thus provides security in a distributed

environment with minimum cost if all the nodes are in the same

operating system. Again if multiple attacks are detected then

suitable instances of agents from a single agent class are

instantiated and packed up to the respective nodes concurrently.

The self replicative model is implemented through java class files

which are executed in the run time at the affected nodes.

Virus

Name

Date

discovered
Type

Reported

Infections

Damage

Potential
Signature

Rbot.21

0944
18/01/2006 Worm Low Medium

30d1ceeb7137

01948f1746dd

3912f7d3

Mytob.

MR
09/06/2004 Worm Low Medium

1c6c7cbb3e47f

ae15dd54da06

9cd5165

Wombl

e.D
12/09/2006 Worm Low Medium

a7eed18c2189

7e50bbe167b8f

438b9af

Virtum

onde.26

7

02/04/2007 Trojan Low Low

731396df61f1c

edc2b70ab33e

bb0c0b3

NetSky.

C
25/02/2004 Worm Medium Low

0e17dbec1904

b7c10614bfb2

9ef758fd

Dldr.Nu

rech.B

G

25/12/2005 Trojan High Low

041c6826efdea

3f72b167ea7a5

35978c

SdBot.a

kv
17/11/2005 Worm Low Medium

e4c3dcd460c2e

4c898c65a591

61c2d80

Scano.Z 17/05/2006 Worm Low Low

b2f196575a08

1b0B3d0E3f42

34b747ed

Banwar

um.E
28/05/2006 Worm Low Medium

de42073eff6b9

b12313915ad1

2c13bdb

Renchn

eg.B.Dl

l

25/05/2006 Worm Low Medium

e78755206af1d

523a79a0510e

3106708

Agobot.

97918
29/08/2005 Worm Medium Medium

445882B3C91

5350B29735D

F1C8169ECB

Codbot.

AP
29/08/2005 Worm Low Medium

c34b5ec44017

814cb4b97188

55267984

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

8.1 Discussion

The proposed network model faces severe drawback in detecting

the suspected worm due to the different operating system

environment in a networking scenario. The speed of virus / worm

detection is heavily depending upon the individual node’s

authentication and authorization settings. The ever increasing and

alarming rate of unidentified intruders into a network makes the

learning process more complex with multiple attributes of the

antigen. The nature of attack by the viruses and their replication in

very large number in a non deterministic manner makes the

network susceptible to infection in a more complex manner. The

correct and quicker selection of the mobile java class file tries to

enhance the performance of the network but the sensitivity and

specificity diminish due to the non availability of the exact virus

signatures even though they are large in number but unknown

with their abrupt time of attack. The over all detectability of AINS

can be enhanced if some pre evidences of the style and origin of

the attack were available.

9. REFERENCES

[1] Beer, R.D., Chiel, H.J. and Sterling, S., A Biological

Perspective on Autonomous Agent Design, In Robotics and

Autonomous systems, Vol. 6, (1990), 169 – 186.

[2] Dasgupta, D, Artificial Immune Systems and Their

Applications, Heidelberg, Germany: Springer-Verlag, 1999.

[3] Dasgupta, D., An artificial immune system as a multi-agent

decision support system, Proc. IEEE Int. Conf. Systems, Man

and Cybernetics ,(Oct. 1998), pp. 3816–3820.

[4] David Kotz and Robert S. Gray, Mobile Agents and the

Future of the Internet, ACM Operating Systems Review,

(Aug. 1999), 7-13.

[5] Desel, J., and Reisig, W., Place/Transition Petri Nets. In

Lecture on Petri nets I: Basic Models, vol 1491 of Lecture

Notes in Computer Science, Springer - Verlag, 1998.

[6] Forrest S., Perelson A.S., Allen L., and Cherukuri, R., Self–

Nonself Discrimination in a Computer, Proceedings of the

IEEE Symposium on Research in Security and Privacy(Los

Alamos, CA: IEEE Computer Society Press), 1994.

[7] Goel, S and Bush S.F., Biological Models of Security for

Virus Propagation in Computer Networks login:, vol. 29, no.

6, (Dec. 2004), 49-56.

[8] Kaariboga Mobile Agents (Sep. 2003). [Online]. Available:

http:// http://www.projectory.de/kaariboga/index

[9] Kephart, J.O., Biologically Inspired Defenses against

Computer Viruses, Proceedings of IJCA ’95, (1995) 985–

996.

[10] Paul K. Harmer et al, An Artificial Immune System

Architecture for Computer Security Applications, IEEE

Transactions on Evolutionary Computation, vol. 6, no. 3,

(Jun. 2002), 252 – 280.

[11] Virus Information and Statistics, [Online]. Available: http://

http://www.avira.com/en/threats/

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

