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Abstract—Over the last few years automated model
generation has become an increasingly important component
of methodologies for verification of large, complex mix-signal
SoCs (system-on-chips) and SiPs (system-in-packages). In this
paper a novel approach termed Multiple Model Generation
System using Delta operator (MMGSD) is developed for
extracting either single-input single-output (SISO) or
multiple-input single-output (MISO) macromodels from a
SPICE netlist. This model generation process detects
nonlinearity through variations in output error. Examples of
the application of MMGSD are presented for simple two-input
systems incorporating a two-stage CMOS operational
amplifier (op amp). We demonstrate the generated models are
able to model various circuits with good accuracy.

Keywords—Automated Model Generation, Analogue
Modelling

I. INTRODUCTION
During the last few years, high level modelling (HLM)

techniques have been proposed for modern complex
analogue and mixed-mode system design. These models
can be obtained in two ways: manual and automatic. This
paper focuses on the latter. There are several broad
methodologies for automated model generation (AMG),
which have been discussed and utilized in many papers.
Initially a designer decides the model structure, which
includes linear time-invariant (LTI), linear time-variant
(LTV), nonlinear time-invariant and nonlinear time-variant.
An estimation algorithm is then required in order to obtain
parameters for these models. This algorithm may be
regression [7],[8], lookup tables [1], radial basis functions
(RBF) [2], and artificial neural networks (ANN) [3],[4] and
its derivations such as fuzzy logic (FL) [5] and neural-fuzzy
network (NF) [6]. They may be categorized into the
black-box or grey-box approach. The grey-box is used when
some knowledge of the internal structure of the model is
known. The white-box is also one of these approaches, but
structures and parameters of models are already known.
Automated model generation can be realized with these
approaches.

Unfortunately, some of the models generated are of high
order (e.g., [9]–[11]) resulting in excessive complexity, so
model order reduction (MOD) techniques are required [12].
Many papers have summarized these techniques based on
MOR (e.g., [13]): LTI MOR [14], LTV MOR [15],[16] and
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weakly nonlinear methods including polynomial-based -
NORM [17],[18] and piecewise approximation method -
trajectory piecewise linear (TPWL) [19], piecewise
polynomial (PWP) [20]. PWP is further employed [21],[22]
to capture different loading effects, simultaneous switching
noise (SSN), crosstalk noise and so on, faster modelling
speed is achieved, but multiple training data have to be
required [22] to cover various regions.

A previous work termed MMGS (multiple model
generation system) was developed based on training data
from pseudorandom binary sequence generator (PRBSG)
[23]. This system generates new models by observing
variation in output error voltage. The advantage is that the
estimated signal can be adjusted recursively in time to
handle nonlinearity. However, this approach is based on
discrete-time operation, so its parameters have a strong
dependence on the sampling interval, incurring
disadvantages such as aliasing and slow simulation speed.

For straightforward system simulation relatively simple
models may be adequate, must most published approaches
have not proven their models work well under system fault
simulation. Faulty behaviour may force (non-faulty)
subsystems into highly nonlinear regions of operation,
which may not be covered by their models.

In this paper we developed a novel approach named
multiple model generation system using delta operator
(MMGSD) for generating either single-input single-output
(SISO) or multiple-input single-output (MISO)
macromodels. It is similar to MMGS except that we employ
delta transform instead of discrete-time transform, i.e., this
model generation process still detects nonlinearity through
variations in output error. By using the delta operator the
coefficients produced relate to physical quantities as in the
continuous-time domain model and are less susceptible to
the choice of sampling interval provided it is chosen
appropriately [24].

II. OVERVIEW OF MMGSD
There are two parts in the MMGSD: an automated model

estimator (AME) and an automated model predictor (AMP).
The former implements the model generation algorithm.
The AMP is use to implement these generated models. The
AME includes three stages illustrated in Fig. 1:
pre-analysis, estimator and post-analysis. Pre-analysis is
mainly to set up conditions such as input range
measurement and the number of intervals for model
location. In the whole algorithm, this stage is only run once.
Post-analysis is the critical step because procedures for
creating models are run here.
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Fig. 1 The algorithm for the AME system

Estimator is based on modified recursively maximum
likelihood (RML) estimation [8], which is an extension of
the recursive least square (RLS) estimate using delta
transformed signal data. The model structure is related to
the Laplace transfer function of process as follows. Initially
a continuous time transfer function is considered in (1).
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When sampling interval is sufficiently short, the
continuous time transfer function G(s) is equal to the delta
transfer function G(δ) [7] shown in (2).
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After arranging this equation, (3) is obtained:
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It is known that error is related to the quality of
estimation, i.e., a smaller error indicates that a better
estimated signal has been achieved. Thus the variation in
output error against the input amplitude is analyzed in the
MMGSD to decide if a new model needs to be generated. In
RML there are two error parameters: the innovation error
epsi and residual error epsilon, both involve the difference
between the original signal and the estimated one. However,
epsi is not only related to the value at current time but also
the one at previous time, which is difficult to observe.
Therefore, epsilon is selected for observing its variation.

Initially the number of intervals on the input voltage is set
up to determine where the models should be. The decision
to add a new model on one of the intervals is based on three
equations shown in (4):
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where the medium range mediumRange is the half of

difference between the maximum amplitude of error
maxInterval and the minimum amplitude of error
minInterval in the same interval; criticalRange is equivalent
to the half of summation to maxInterval and minInterval;
the variable criteria is the difference between the
mediumRange and criticalRange at the same interval and
then subtracts mediumRange; smallestindex is the index
appointing to the interval where minimum range of epsilon
is.

A new model is required in an interval when criteria is
greater or equal to zero, otherwise no action is taken. Only
one model is created per iteration (figure 1), which is
necessary because the shape of the error changes when a
model is added. This process is complete when the number
of models does not increase any more.

The two-stage CMOS operational amplifier (op amp)
shown in Fig. 2 is used to illustrate our methodology. The
input state is realized as a CMOS differential amplifier
using p-channel MOSFETs. The differential amplifier is
biased with the current mirror M13&M14. Three NMOS
diodes (M4, M5 and M6) are used to keep the gate to source
voltage of the current mirror small (VGS = -1.175V). The
output stage (M7 and M10) is a simple CMOS push-pull
inverter.
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Fig. 2 Schematic of the two-stage CMOS operational amplifier

The input signal used to produce training data for the
estimator is a 93.34 Hz, 0.25V triangle waveform with a
0.04V and a time interval of 10us pseudorandom binary
sequence (PRBS) superimposed on it. The similar signal but
with different amplitude and frequency is applied to the
non-inverting input.

During simulation (estimation) some quantities in the
system need to be either deltarised or undeltarised, for
example, epsilon in the AME and AMP is already
deltarised, but during the vector update the undeltarised
value is required. Therefore, we create two functions in the
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MMGSD: the Deltarise function and Undeltarise function.
The former is to generate derivative vectors based on
original vectors. The undeltarise function requires original
data during the estimation. These two functions are used in
different places in the MMGSD.

A. The Deltarise Function
The deltarise function is used to achieve deltarised value

based on the Delta operator seen in (5), where delta (δ) is
related to both the present and future values, Ts is the
sampling rate, q is the forward shift operator used to
describe discrete models, which is shown in (6).
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The equivalent form of (6) is obtained in (7), the
relationship between δ and q is a simple linear function, so δ
can offer the same flexibility in the modelling of
discrete-time systems as q does.
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The use of delta operator and its relationship is illustrated
in the following example. It is a discrete-time model but
only output vectors are displayed in (8). Initially each vector
except the last one is subtracted from the one next to it, and
is then divided by Ts, so deltarised value is obtained, as seen
in (9). The same procedure for (9) is then repeated in order
to achieve fully deltarised vectors seen in (10).

y(t) y(t-1) y(t-2) y(t-3) (8)
δy(t-1) δy(t-2) δy(t-3) (9)
δ2y(t-3) δ1y(t-3) δ0y(t-3) (10)

B. The Undeltarise Function
This function is based on (5) but with modification, that

is, q = δTs+1, in order to model at the current time. An
example is also used to demonstrate this reverse algorithm.
It is a model in delta transform, but only output vectors are
displayed in (11). Firstly each vector, except for last one, is
multiplied by Ts in (12), because it is already undeltarised,
and then adds ones in (13), so undeltarised vectors are
obtained in (14), i.e., y(t-2) is obtained. It is noticed that (13)
is similar to (11) without the highest order vector δ3y(t-3).

δ3y(t-3) δ2y(t-3) δ1y(t-3) δ0y(t-3) (11)
Tsδ

3y(t-3) Tsδ
2y(t-3) Tsδ

1y(t-3) (12)
+ + +

δ2y(t-3) δ1y(t-3) δ0y(t-3) (13)
|| || ||

δ2y(t-2) δ1y(t-2) y(t-2) (14)

The same process is then implemented to achieve y(t-1)
or y(t), respectively.

III. MULTIPLE MODEL CONVERSION SYSTEM
The multiple model conversion system (MMCS) is

implemented in the MATLAB environment. The
conversion is from MATLAB to VHDL-AMS and the
format of the behavioural model is based on a behavioural
model illustrated in Fig. 3.

- ro
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+

gnd

Vin
MMGSD

out

Voffin

Voffout

Fig. 3 The structure of the behavioural op amp model

It comprises two resistors ir and or that represent the
input impedance and output impedance, respectively, voffin

and voffout model input and output offsets, respectively. The
models from MMGSD are implemented using a voltage
controlled voltage source (VCVS), i.e., )(VinfVo  .
Output voltages are selected simultaneously depending on
the input range to achieve the bumpless transfer. This model
selection algorithm is described in Fig. 4.

If the input signal is within the range for the first model
The first model is selected

Else if the input signal is within the range for the second model
The second model is selected

.

.

.

Else the input signal is not included in these ranges
Either the first or the last model is selected

Fig. 4 The algorithm for model selection

IV. EXPERIMENTAL RESULTS

A. System Test
In this section we demonstrate that the MMGSD is able

to detect a single model. A linear lead-lag circuit is
employed with a high-pass filter and low-pass filter with
frequencies of 1kHz and 10Hz seen in Fig. 5, where R1 =
1kΩ, Rf = 10kΩ, Cf = 0.15915uF, R4 = 10kΩ and Cip =
15.915nF.

R1

R4

vo

vin

vip

Rf

Cf

Cip

V(inn)
V(inp)

z2

z3

z4

z1

Fig. 5 A linear system with the low-pass and high-pass filters
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Its transfer function is shown in (15):
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The system was analysed using the system identification
toolbox in MATLAB to generate the polynomial based
model seen in Fig. 6 with the same PRBS signals as above,
where B1 and B2 are coefficients for inputs, F1 and F2
represent the output.

Continuous-time IDPOLY model:
y(t) = [B(s)/F(s)]u(t) + e(t)
B1(s) = -62.83 s - 3.948e004

B2(s) = s^2 + 69.12 s
F1(s) = s^2 + 634.6 s + 3948

F2(s) = s^2 + 634.6 s + 3948

Fig. 6 Coefficients from the analytical simulation

Both input and output data are then stored in a text file.
The MMGSD was used to generate a model based on this
data, as seen in (16). The output coefficients are very close
to F1 and F2 in Fig. 6 and the two input coefficients are very
close to B1 and B2.
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This proves that the MMGSD is able to handle various
circuits including high-pass and low-pass filters, whereas
[23] is only able to handle low-pass filters.

B. Verification on the Multiple Model Generation
Approach
In this section we verify that multiple models generated

by the MMGSD can achieve the bumpless transfer. Initially
we set up three stable models with different poles for the
AMP, as shown in (17). Each of them has two input
parameters and one offset parameter.
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The same PRBS stimulus as above is used. The intervals
used to divide the range of this stimulus for these models
are: [-0.25V 0.0V 0.095V 0.25V], the sampling rate Ts is
0.1ms. After simulation both input and output data are
stored in a text file. The AME then loads this data to
produce the models shown in (18). These coefficients
generated are close to ones in (17), although the third model
is not as accurate as the others because as the pole value is

gets higher, instability is more likely. This is improved by
selecting a smaller value such as 1200 instead of 1500.
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An accurate result is also obtained when the same
procedure is implemented but based on four models with
different poles. This proves that the MMGSD is able to
generate various suitable models.

C. Nonlinearity Modelling
In this section the open-loop op amp SPICE netlist from

Fig. 2 is modelled using training data which creates strong
nonlinearity (into saturation). A new stimulus used is a
2.5V, 83.33Hz triangle waveform with a 0.5V, 100kHz
PRBS superimposed on it. A similar signal but with
different amplitude and frequency is applied to the
non-inverting input. The estimated single yEstimate is
illustrated in Fig. 7 (last 2000 samples). Seven models are
generated using the MMGSD. Where x axis indicates the
number of samples, the y axis shows the amplitude (V).
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Fig. 7 The estimated signal with nonlinearity

It is seen that yEstimate is able to match the original y,
even though there is some noise due to the character of delta
transform (high sample rate). The difference between two
signals is measured using an average difference
measurement in (19).
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where Average_dif is the percentage of average
difference. y(i) - yP(i) is the difference between the original
signal and predicted signal at ith point. N represents the
number of samples. y_peak-to-peak is the peak-to-peak
amplitude of the original signal y. According to (19) the
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average difference is 9.5768% for the simulation described
above.

This is improved by employing a system without strong
nonlinearity. A differential amplifier with the gain of -2 is
employed. The same PRBS as above is connected to the
circuit, and the estimated signal is shown in Fig. 8:

0.25

0.35

0.45

0.55

0.65

0.75

1 21 41 61 81 101 121 141 161 181 201
Size

A
m

pl
itu

de
(V

)

y yEstimator

Fig. 8 The estimated signal from a differential amplifier

The average difference between the estimated signal
yEstimator and original signal y is 0.0102%.

D. High Level Modelling
High level modelling (HLM) is implemented based on

the behavioural model in Fig. 3. The same models described
in section D are converted by the MMCS and then put into
this behavioural model. Both transistor level simulation and
high level simulation are run in SystemVision.

An inverting amplifier was modelled. The stimulus is a
sine waveform with the amplitude of 0.1V and the
frequency of 120kHz, and the transient analysis is
implemented. Output voltage signals are plotted in Fig. 9.

Fig. 9 The signal from the inverting amplifier

It is seen that the signal from the transistor level
simulation (TLS) vout_TLS can be matched by the high
level simulation (HLS) vout_HLM. The cpu time of TLS
and HLS are about 1.891s and 1.672s, respectively. HLS is
about 0.22s faster than TLS. Compared with the similar
result based on the MMGS [23] speed-up has been
achieved.

Secondly a quadratic low-pass filter seen in Fig. 10 was
used investigated. It consists of a lossy integrator, an

integrator and an inverting amplifier in series. Global
feedback provided by R1 and R5. A low pass filter
characteristic (output of op2) and bandpass filter
characteristic (output of op1) can be realized with this filter.

op1 op2 op3
in

out

R5

R1

R2 C2

R3 R4

R6

C1
100k

100k 100k 100k

100k0.01u

0.01u

70.7k

1 2 3 4 5

Fig. 10 The quadratic low-pass filter

The transfer function from the input node ‘in’ to the
output node ‘out’ is shown in (19).
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The same behavioural model as above replaces the first
operational amplifier (op amp) and the rest of them remain
at transistor level. A sine waveform with amplitude 2.5V at
80Hz was used. A transient analysis was performed; output
signals from TLS vout_sp and HLS vout_mix are plotted in
Fig. 11. It is seen that these models are able to model
saturation with good accuracy. The total cpu time for HLS
is 2.03s, and 1.2s for TLS.

Fig. 11 The output signals from the low-pass filter

A sine waveform with the amplitude of 2.5V at 40Hz is
also connected to this circuit. The output signals are plotted
in Fig. 12. It is shown that the nonlinearity can be modelled
correctly. The total cpu time for the behavioural model is
1.625s, for TLS is 1.2s.

Accuracy can remain when the behavioural model
replace other op amps in this filter. Unfortunately,
significant speed-up is not achieved compared with TLS.
Because model selection process in the MMGSD is time
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consuming. The high order of models may reduce the
simulation speed, this can be improved by using model
order reduction (MOR) approaches.

Fig. 12 The output signals from the low-pass filter

V. CONCLUSION AND FUTURE WORK

In this paper the multiple model generation system using
Delta operator (MMGSD) is developed for either SISO or
MISO models from transistor level SPICE simulations. It is
able to converge twice as fast as discrete-time models. We
have proved that generated models can achieve bumpless
transfer, handle both low-pass and high-pass filters
accurately, and model nonlinear behaviours. A multiple
model conversion system (MMCS) is developed to convert
these models into continuous-time VHDL-AMS
behavioural models. High level modelling (HLM) is
implemented based on this behavioural model.

Results have shown these models are able to model
nonlinear signals with good accuracy. Speed-up may hardly
be obtained compared with the transistor level simulation.
We are currently investigating model order reduction
(MOR) approaches to obtain higher modelling speed. In the
future high level fault modelling (HLFM) based on our
models will be studied.
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