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Abstract1 
      This paper presents a mathematical model for Tube-ball 
mills which is developed based on the previous work. The 
Particle Swarm Optimization (PSO) method is used to 
identify the unknown parameters of the coal mill model 
with the on-line measurement data provided by EDF 
Energy. Simulation studies are carried out and the results 
are encouraging although it is still in the early stage of the 
model development. 
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identification; system modeling; nonlinear systems; coal 
mill modeling. 

I. INTRODUCTION 

Four well known paradigms currently exist in 
evolutionary computation: Genetic Algorithms, Evolutionary 
Programming, Evolution strategies and Genetic 
Programming. Particle Swarm Optimization (PSO) is newly 
developed evolutionary computation technique that was 
originally proposed by Eberhant and Kennedy [1]. It is based 
optimization algorithm motivated from the simulation of the 
social behaviour of birds within a flock, wherein each 
particle (individual) adjusts its “flying” according to its own 
flying experience and its companions flying experience. A 
traditional PSO can be classified into three different 
versions, namely, Individual Best, Global Best and the Local 
Best versions [2, 3]. In the Individual Best PSO, each 
particle compares its current position to its own best position 
to tune the velocity of “moving”. No information from other 
particles is used. In the Global Best PSO, the social 
knowledge used to drive the movement of particles includes 
not only its own best position thus far but also the position of 
the best particle from the entire swarm. In the Local Best 
PSO, the particles are influenced by the best position with 
their neighbourhood, as well as their own past experience. 
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Similar to other population-based algorithms, such as 
evolutionary algorithms, PSO can solve a variety of difficult 
optimization problems with a faster convergence rate than 
other evolutionary algorithms [4, 5].  

Coal-fired stations are now obliged to vary their outputs 
in response to changing electricity demand (load following 
operation) and are required to operate more flexibly with 
more varied coal specifications. Mill controls need to 
respond effectively to changes in plant load and coal quality 
[6].  

         The Tube Ball mill used by EDF is a motor driven 
tumbling barrel charged with steel grinding balls as shown in 
Figure 2. The mill drive is via a 1.6MW, 740 RPM, 3.3KV 
3ph 50 Hz constant speed electric motor through a reduction 
gearbox. The speed of the mill barrel is 15 RPM being 75% 
of the critical speed. Raw coal is delivered to the mill via 
drag link variable speed coal feeders. The coal feeder outlet 
chute delivers the coal. Hot air is swept through the mill by 
two 1.75mtr diameter variable speed exhauster fans. Hot air 
at 280OC is available to the mills from the main boiler 
airheaters and facilities for raising this temperature up to 
500OC are available by the use of boost gas. Pulverised fuel 
(p.f.) flows via the discharge end of the mill to two static 
vane type M.E.L classifiers before being delivered by the 
variable speed exhausters to the p.f. burners. There are 4 p.f. 
burners per exhauster and the p.f. is equally distributed by 
splitter box arrangements at the exhauster discharge [6, 7, 8].   

  
Figure 1 Tube Ball Mill Principle of Operation 
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Figure 2 Tube Ball Mill Structure 

II. MATHEMATICAL MODEL OF TUBE-BALL MILL 

The procedure for coal mill modelling can be broken 
down into the following steps:  

1) To derive the basic mill model dynamic equations 
through analyzing the milling process, applying physics and 
engineering principles and integrating the knowledge of 
experienced engineers 
2) To identify unknown parameters using PSO techniques 
based on-site measurement data 
3)     To analyze the simulation results and interpret the 
parameters identified through the discussions between the 
researchers and experienced engineers 
4) To return back to step 2 if any modification is required 
in order to improve the mill model or to conduct further 
simulation in order to validate the model. 
 The variables are divided into three groups, the inputs, 
intermediates and outputs.  
A full list of the variables is shown by Table 1. 
 

Table 1 List with Tube-Ball Mill Variables 
Coal mill variables 

Input variables Intermediate variables Output variables 
- A1 feeder Actuator 

Position 1PA (%) 

- A2 feeder Actuator 

Position 2PA (%) 

- Mill outlet pressure 

OutPΔ  

- Primary air 
temperature  inlet 

the mill inT  

- Mass of coal in mill 

cM  

- Mass of pulverised 

coal in mill pfM  

- Mill product 

pressure mpdPΔ  

- Mass flow rate of 
pulverized coal out 

of mill pfW  

- Mill inlet 
pressure 

InPΔ  

- Mill outlet 
temperature 

outT  

- Mill power 
consumed  P 

 
With this organization of the data sets, the modelling study 
for the Tube-Ball mill has been carried out. The initial 
results are described in the following subsections.   

A.  Modelling Study of Tube Ball Mills 

1.  Initial Model of the Tube-Ball Mill 

 The mathematical model of the Tube-Ball mill was 
developed based on fluid mechanics; principles electrical 
engineering, thermodynamics and aerodynamics  
 

1 1 2 2( ) ( ) ( )c f P f PW t K A t K A t= ⋅ + ⋅         (1) 

 
As the total mass of coal fed into the mill per hour is given in 
the manual from EDF [5], these two coefficients can be 
estimated to be 51.6 kg/s and 25.8kg/s.  
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Following the above analysis, the complete coal mill model 
can be described as follows, which does not cover the start up 
and shut down processes, where  

1PA : A1 feeder actuator position (%) 

2PA : A2 feeder actuator position (%) 

:ρ  Primary air density (kg/m3) 

cM : Mass of coal in mill (kg) 

:pfM  Mass of pulverized coal in mill (kg) 

:outT  Outlet temperature of coal mill (oC) 

:OutPΔ   Mill outlet differential pressure (mbar) 

:mpdPΔ  Mill product differential pressure (mbar) 

:pfW  Mass flow rate of pulverized coal outlet from mill (kg/s) 

:P  Mill current (Amp) 

:InPΔ  Mill inlet differential pressure (mbar) 

:cW  Mass flow rate of coal into mill (kg/s) 

:inT  Inlet temperature of coal mill (oC) 

:airW  Primary air flow rate into coal mill (kg/s) 

1 2,f fK K : A1 A2 feeder coefficients 

1 17,... :K K Unknown coefficients to be identified 

1.  Modification of the Initial Model 
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Equations (7) & (8) are developed based on the working 
principle of a vertical spindle mill. There is a rotating 
mechanism that acts like a paddle spinning inside the mill 
and the mill product pressure mpdPΔ  is generated due to 

influences of aerodynamics. Equation (8) represents the 
dynamic characteristic of this mill produced pressure inside 
the mill, which is similar to a first order linear system and 
also the pulverised coal in mill and the raw coal fed into the 
mill contribute to the variation of the pressure.  
 
From the working principle of a Tube-Ball mill [7], it is 
known that there is actually no rotation mechanism like 
paddles spinning inside of the mill. The mill outlet pressure 
is a compromised aerodynamic result among the mill inlet 
pressure, suction pressures generated by the Exhauster Fan 
A1 & A2, mass of raw coal inside of the mill, and mass of 
pulverized coal inside of the mill. So, the mill pressure 
model is modified and presented in Equation (14). 

outin

cpfEEout

PKPK

MKMKPKPKP

Δ⋅+Δ⋅+

⋅+⋅+⋅+⋅=Δ
⋅

1813

121121019    (14) 

where PE1 is the mill A1 exhauster motor current, PE2 is the 
mill A1 exhauster motor current, K9 ~ K18 are the coefficients 
to be identified. 

III. PARAMETER IDENTIFICATION USING PSO 

The particle swarm optimization (PSO) algorithm is a 
population-based search algorithm based on the simulation 
of the social behaviour of birds within a flock. The initial 
intent of the particle swarm concept was to graphically 
simulate the graceful and unpredictable choreography of a 
bird flock [5], the aim of discovering patterns that govern 
the ability of birds to fly synchronously, and to suddenly 
change direction with a regrouping in an optimal formation. 
From this initial objective, the concept evolved into a 
simple and efficient optimization algorithm. 

Similar to other population-based algorithms such as 
evolutionary algorithms, PSO can solve a variety of 
difficulty optimization problems but has shown a faster 
convergence rate than other evolutionary algorithms on 
some problems [4]. Another advantage of PSO is that it has 
very few parameters to adjust which makes it particularly 
easy to implement. 

In the previous project, the genetic algorithm (GA) has 
been employed for the coefficients identification while 
modelling the vertical spindle coal mill. As an intelligence 
search algorithm, the GA was first introduced in 1950s, and 
it offers fast converge and pretty good results. For the newly 
born PSO algorithm, it ages younger than 10 years, and has 
make great influence in the computational intelligence 
engineering. The motivation for studying and using PSO are 
as follows: 

a. looking for alternative and possible better 
algorithms that can perform faster and robust 

b. it is possible fast alogrithms to be used for on-line 
update the parameter identification 

c. finally using PSO better or more accurate results 
are expected comparing with GAs 

The authors anticipate that this newly algorithm will 
offer great help to our current project. Theoretical and 
simulation studies of the PSO algorithm are carried out in 
this paper. As mentioned in the above section, PSO is a 
population-based optimization algorithm. The population of 
PSO is called a swarm and individual in the population of 
PSO is called a particle, where each particle represents a 
potential solution. 

 While applying PSO, the particles are flown through 
the hyperspace, and the position of each particle changes 
according to its own experience and that of its neighbours. 
Let ( )ix t

�
 denote the position of particle Pi in hyperspace, at 

time step t. The position of Pi is then changed by adding a 

velocity ( )iv t
�

 to the current position, i.e. 

( ) ( 1) ( )ii ix t x t v t= − +
�� �

  (15) 

Depend on different velocity updating scheme which 
reflects how the social information exchange, the PSO can 
be divided into three different algorithms, which are the 
Individual Best PSO, Global Best PSO, and the Local Best 
PSO. Simulation studies show that the Global Best PSO 
offers the best performance and fastest convergence. The 
evolutionary process of the Global Best PSO is described 
below:  

1. Initialize the swarm, ( )P t  of particles such that the 

position ( )ix t
�

 of each particle ( )iP P t∈  is random 

within the hyperspace, with 0t = . Each particle 
represents a possible solution. 

2. Evaluate the objective function ObjF of each particle, 
using its current position ( )ix t

�
. 

3. Compare the performance of each individual to its best 
performance. If ( )( )iObjF x t

�  is less than its own best 

performance
ipbest , then: 

ipbest  is set to be ( )( )iObjF x t
� , 

and its own best position 
ipbestx

�
 is set to be ( )ix t

�
. 

4. Compare the performance of each particle to the global 
best particle. If ( )( )iObjF x t

�  is less than the global best 

performance gbest  then: gbest is set to be 

( )( )iObjF x t
� , and the global best position gbestx

�
 is set 

to be  ( )ix t
� . 

5. Change the velocity vector for each particle ( )iv t
�

 

using the formula:  

1 2( ) * ( 1) ( ) ( )i i ii i pbest gbestv t v t x x t x x tω ρ ρ� � � �= − + − + −� � � �
� � � � � �  (16) 

where,  the 1ρ  and 2ρ  are random variables defined as 

1 1 1r cρ =  and 2 2 2r cρ = , with 1 2, (0,1)r r U∈ , and the 

cognitive acceleration 1c  and the social acceleration 

2c  are positive constants; ω  is velocity weight, which 

is linearly decreased from a relatively large value startω  
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to a small value endω  through the course of the PSO run. 

If the velocity ( )iv t
�

 is bigger than the upper limit of 

the velocity maxv
�

, then ( )iv t
�

 is set to be maxv
�

. 

6. Move each particle to a new position using the 
following formulas: 

   ( ) ( 1) ( )ii ix t x t v t= − +
�� �     (17)

 1t t= +      (18) 

7. Go to step 2, and repeat until termination criteria 
reaches. 

 
Figure 6 Schematic of the model’s coefficients 

identification 
 

 
Figure 7 Swarm fly – Psychosocial Compromise 

Each particle has 3 tendencies: 

a. Audacious, flows its own way (just using its own 
velocity) 

b. Conservative, going back more or less towards its 
best previous position 

c. Sheep like, going more or less towards its best 
neighbour 

What PSO formalizes is how to combine these tendencies in 
order to be globally efficient. 

To achieve faster and robust results as a first step the 
authors decrease the swarm size from 40 to 30 and later on to 
20. The authors believe that more modifications to the PSO 
algorithms are needed and they are working to improve 
further the PSO algorithm. The simulation results suing PSO 
are presented in Figure 8 and Figure 9. Figure 8 shows the 
variables which can be measured for the current mill system 
so the estimated values can compare with the measured 
values. Figure 9 displays the immeasurable variables which 
are considered as the intermediate variables.  

Figure 8 (Top) presents the comparisons between the 
systems measured mill outlet temperature and the model 
simulated mill outlet temperature. From the figure, it can be 
seen that simulated mill outlet temperature can follow the 
trends of variations in the measured mill outlet temperature 
well. However, at the middle of the data, the simulated mill 
outlet temperature vibrates away from the measured mill 
outlet temperature, and causes errors. Further improvement is 
required for further work.  

Figure 8 (Middle) presents the comparisons between 
the systems measured mill motor current and the model 
simulated mill motor current. From the figure, it can be seen 
that the model simulated mill motor current can follow the 
general variation trends of the measured mill motor current. 
Again, some discrepancies can be seen in the diagram 
although they are in the tolerance range.  

Figure 8 (Bottom) presents the comparisons between the 
systems measured mill inlet pressure and the model simulated 
mill inlet pressure. From the figure, it can be seen that the 
model simulated mill inlet pressure approaches to the 
measured mill inlet pressure until the middle of the data. The 
main problems observed from the results are that the 
simulated results are more violent in variations. 
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Figure 8 measured (solid lines) and simulated (broken lines) 
using PSO 

 In Figure 9, the first row of the figure presents the 
model simulated raw coal flow rate inlet by feeders and the 
model simulated pulverised coal flow outlet by exhausters. 
The inlet raw coal flow rate values at around 18 kg/s (64.8 
ton/h) in steady state period, and the outlet pulverised coal 
flow follows the trends of the inlet raw coal flow very well. 
The second row of the figure presents the model simulated 
mass of raw coal and the mass of pulverised coal inside of 
the mill. In steady state working condition, the model 
predicts about 18 tons of raw coal and 9 tons of pulverised 
coal inside of the mill. These have been discussed with the 
combustion engineers.  
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Figure 9: Model simulated 

Figure 10 presents the comparisons between the system 
measured mill outlet temperature and the model simulated 
mill outlet temperature, the systems measured mill motor 
current and the model simulated mill motor current, and the 
system measured mill inlet pressure and the model 
simulated mill inlet pressure using GA respectively. 

Comparing the results between PSO (Figure 8) and GA 
(Figures 10) we can see that using PSO the model simulated 
results are better than the GA. In PSO the model simulated 
results follow the trends of variation of the measured 
results. In GA the model simulated results follow the 
general variation of the measured results but at some points 
there is a striking discrepancy between the measured and 
simulated results. 

 
Table 2 Unknown Parameter Identification for initial model 

K1 = 0.00005 K10 = 0.007966 

K2 = 0.008108 K11 = 0.0001 

K3 = 0.0109 K12 = 0.000007 

K4 = 0.00002 K13 = 0.01 

K5 = 0.0015 K14 = 0.005525 

K6 = 0.0001 K15 = 0.0015 

K7 = 0.00001 K16 = 0.00012 

K8 = 343.44 K17 = -0.03 

K9 = 0.005795 K18 = -0.1 
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Figure 10 measured (solid lines) and simulated (broken 
lines) using GA 

 
Table 3 Unknown Parameter Identification after modification 

K1 = 0.00005 K10 = 0.007244 

K2 = 0.0088 K11 = 0.0001 

K3 = 0.02 K12 = 0.000007 

K4 = 0.00002 K13 = 0.01 

K5 = 0.0015 K14 = 0.006366 

K6 = 0.0001 K15 = 0.0015 

K7 = 0.00001 K16 = 0.00012 

K8 = 345.86 K17 = -0.03 

K9 = 0.00659 K18 = -0.1 
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Figure 11 measured and simulated results using the initial 
model  

It can be observed from the results that are shown on figures 
11 and 12 after the modification of the tube-ball mill model 
are better and especially on the mill outlet pressure. 
Comparing the values of the unknown parameters it can be 
observe that there differences can be neglected. These 
changes can not affect the model. 
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Figure 12 measured and simulated results after the 
modification 
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IV. CONCLUDING REMARKS 

The paper presented the initial - early stage of 
mathematical model development for a Tube-ball mill. The 
PSO optimization method is chosen for system parameters 
identification. Also the PSO method is compared with Gas 
method. Finally some improvements are included. The 
results are encouraging although the improvement is 
required. The project is still on-going in collaboration with 
EDF Energy and E.ON UK. The results presented in the 
paper indicated the project methodology is suitable and 
practical. The future work will focus on improvement of the 
model and PSO and on-line implementation.  
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