

Abstract—The main purpose of most software produces, into

present a software system with high quality. Most of the experts
believe that to achieve this subject, performing all of the stages
of producing the software must be based on qualitative
programming and performing prepuces. These points specially
in producing the software architecture as one of the most
important stages of this process must be considered more
carefully. Regarding to different and various definitions for
quality and architecture of software, this essay must at first
investigate these two matters and there based on achieved
results, determine the Evaluable qualitative characteristics at
the architecture level.

Index Terms—Evaluating the software architecture,
Software architecture, Qualitative architecture factors,
Qualitative characteristics of software.

I. INTRODUCTION
 Most of the experts in software developing believe that

quality is nothing that can be added to software, but it is one
that must be in it. It means that the production levels must be
programmed and performed based on mentioned quality for
final production. On the other hand, today all of the software
industry developers are regarding a high quality production
as their own main purpose. The experiences have showed
that whenever it is necessary to design anything with high
demotions and complexities, a general view which is called
"architecture" is needed. The meaning of architecture is to
explain general construction of a system as if the behavioral
characteristics and defined in it. Architecture gives us an
overall point of view of the whole system that is necessary for
controlling and progressing. The main aim of this paper is to
present the qualitative characteristics which at architecture
level of a software, being investigable and evaluable. This
evaluation is performed to (predicate) anticipate the
qualitative characteristics of produced production based on
relative architecture.

In this paper at first we pass away the contents of software
quality. Then by the aim of making a better comprehension of
architecture content, the relative definitions are investigated.
At the end, regarding the mentioned matters in two previous
parts, the evaluable qualitative characteristics are
distinguished at the level of architecture.

 R. Khayami is Ph.D. student, Departement of Computer Science and
Engineering, Shiraz University, Shiraz, Iran (corresponding author
phone: 0098-917-1004856; fax: 0098-711-6271747; e-mail:
khayami@shirazu.ac.ir).

 Dr. A. Towhidi is with the Departement of Computer Sci. and Eng.,
Shiraz University, Shiraz, Iran, (e-mail: towhidi@shirazu.ac.ir).

 Dr. K. Ziarati is with the Departement of Computer Sci. and Eng., Shiraz
University, Shiraz, Iran, (e-mail: Ziarati@shirazu.ac.ir).

II. THE QUALITY OF SOFTWARE
Pressman in his book "software engineering" describes the

quality of a software system as follows [1]: Conformity of
software with operational and effective necessities which are
clearly presented, and also respecting the production
standards and software development which are clearly
supported, and the existence of implied characteristics which
are expected from all advanced professional software. So it is
distinguished that we should search for the characteristics
which exist in product software and has high concord with
above divination. Usually the necessities of a software
system are divided in to two groups: Functional requirements
and non-functional requirements are those which software is
designed for performing them and define the functional and
executive purpose of that system. The non-functional
requirements mostly focus on how a software system works
and performs. Affairs such as efficiency, extendibility,
maintenance, security and even the production expense are
located in domain of non-functional requirements.
Technically, these characteristics of a system are called
"software qualitative characteristics".

 To describe the qualitative characteristics usually the
qualitative models are used. Many models have been
suggested to describe the quality of software system, such as
Mc Call [2], Boehm [3], FURPS [1], IEEE [4], and ISO [5].
These models have been presented as tree-construction of
qualitative characteristics and their relationships.

The characteristics of the first level of these models are
called quality factors. Characteristics such as: efficiency,
reliability, maintainability, portability, usability,
functionality are in most models from the implied point of
view. The ISO/IEC qualitative model from the coverage
point of view of qualitative characteristics has more
expansion in comparison with other models and defines the
quality more precise. The quality factors and sub-factors of
this model are as follow:

Operation: suitability, interoperability accuracy and
security.

Reliability: Maturity, fault endurance and recovery.
Usability: Understandability, learnability and operability.
Performance: efficiency or time behavior in performing

the processes and best use from resource behavior.
Maintainability: analyzability, changeability, stability

and testability.
Portability: adaptability, install ability, replace ability,

interoperability.

Measurable Quality Characteristics of a
Software System on Software Architecture Level

S.R. Khayami, A. Towhidi, K. Ziarati

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

III. SOFTWARE ARCHITECTURE

A. Definition of Software Architecture
The word "architecture" has a Latin root and it means

"master in making". Architecture of a system shows the
collection of technical maps of different aspects of that
system. In fact it is a high definition of the system that
presents the purposes and operation of system for designers
and makers and also users and shows the conformity with
customers' necessities. On the other hand, architecture shows
a single definition of performing of software system. In
general, the focus of architecture in one point is after the
analysis and before designing, and through the analysis of
analytical model into sub-systems and their mediators and
finally determining the main parts and identifying the system
processes are defined. In fact, architecture is high designation
of mentioned software that above points have essential
effects on its totality. The details which are just related to one
part of the system are presented in low level designation. We
can say any "system architecture" is a "design", but every
"design" cannot be "system architecture". Architecture is the
first stage of system alternation presented by stock holders as
the operation of technical elements are defined in it. As it is
showed in Fig. 1 an effective model represented by user
sequence diagram of alternation process and then by
refinement and making it exacter, this diagram is presented at
the level of architecture system. Decisions made from the
point of system and have a wide domain are called
architecture decisions. But those decisions made in a limited
stage and have a local view are not considered as architecture
decisions. This grouping let us make a difference between
designation and performing the details and architecture
decisions. The architecture decisions define the
constructional and important elements of system and also the
observable characteristics and their relationships. For
example, style selection, selecting the number of indicators,
or the observable indicators from outside, qualitative
considerable characteristics, each of them is an architecture
decision. Architecture decisions happened or made at the first
level of architecture [7].

Fig. 1. Refinement of System Architecture

There is no exact definition for software architecture. In

some references there are more than 100 definitions. The
most famous definitions are as follow [8, 9, 10]:

- Software architecture is a collection of design
architecture that has a specific frame. These elements are 3
groups: processing elements, data elements and connecting
elements.

- Software architecture is a collection of indicators and

connectors with the definitions of their interoperation.
- Software architecture for a program or for an accounting

system is construction (s) of that system which includes of
software indicators, external manifest characteristics of those
indicators and their relationships.

- Architecture is a collection of important decisions about
organization of a software system, selecting the
constructional elements and their mediator, with behaviors of
elements which by means of them can have some cooperating
with other elements. Composition of constructional and
behavioral elements in big and under-developing
sub-systems and also a method to guide and organize them
are presented in architecture.

- Essential organization of a system which includes of
indicators, the relations of each of them with the other
indicators and with environment and the principles of
completion and designation.

{ } { } []
;

; ; , 1..i ij

Arch Comp Connect

Comp C Connect C i j n

= ∪

= = ∈ (1)

Fig. 2. Component and Connection in Software
Architecture

As it is clear in these definitions, different words and

expressions have been used. These definitions are showed in
(1) by mathematical relations. In mentioned Fig. 2 Ci is the
ith indicator Cij as a connector between i and j; and n is the
number of system indicators and Arch is the architecture
which includes of the collection of elements and their
relations. Inshore, software architecture means to present
construction of the system which shows the software
indicators and observable characteristics from the external
side of these indicators and their relations [11]. In other word,
software architecture is construction of indicators in one
system, their internal relation and principles and guidance
lines which make designing and evaluating a system
possible.

B. Architecture Presentation
Software architecture is as a complex matter that cannot be

explained in a simple one dimension frame. To make this
subject clear, we can use the same or equivalent concept of it
in the domain of building. There is not only one map of
architecture but also many maps from different aspects for a
building must be considered. For example, designation of
rooms, designation of classification, electronically institution
maps and building ventilation, pipe-laying and the security
design of the building can be mentioned here. None of those
above mentioned overviews is not by itself architecture, and
all of them together make the concept "architecture". One
orthopedist, nerve specialist, psychologist, gland specialist
and other medical specializations, each of them identifies one
aspect of complex construction of human body. For a
complete explanation, although the explanation of each of

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

them is necessary but their entire set together makes a
complete explanation. So, architecture is a collection of
technical maps that each map includes of explaining of one
specific aspect of the system. To explain the different aspects
of architecture, a series of model is used and each model uses
specific rules, signs, semantics and syntactic. In the method
of architecture presenting, the most important matter is to
consider the readers' point of views. A documentation which
at the level of production is easy but unclear and hard for the
readers is not used. About software architecture
documentation, our readers are those who have gotten a
profit from architecture and architecture tokes effectiveness
of the readers that these groups are called software
architecture stock holder. So the documentations must be
produced in such ways that for all of the stock holders are
understandable. In other word any stack holder depending on
the level of his information should comprehend his own
understandable information. To understand this matter that
what kind of people are these stock holders and how they
want to use the documentation helps you to organize and use
these architectural documentations. Requirements engenders,
designers, performing specialists, experimenters, quality
guarantee group, project manage, customer and find user are
the examples of architectural stuck holders. The stockholders
are divided in to two groups: experienced and inexperienced.
The experiences have showed that the inexperienced
necessary information from the point content are like these
who are experienced and have the some specialization but at
the lower level and at the more primary level. One of the
organization methods of representing the required concepts
in frame architecture is 1 + 4 view [12]. This method defines
many keys and essential views of a system in order to achieve
a complete explanation of a system. These views are as
follow:

Logical view: This view gives a logical presentation of
groups and main sub-systems in under designing software
system. This view connives at any performing or any
physical details. At the next stages logical indicators are
being changed to physical processes and hardware.

Process view: this view shows that how different
processes interact with each other and how their relationship
is.

Establishment view: this view shows any way to define
real processes and explains how these processes are
established on the physical hardware.

Performing view: This view shows that how real software
performs and usually includes of contents such as: real
resource code, code construction and construction of used
libraries in system. Many efforts have been done in order to
present graphical presentation of this view but none of them
had a well-formed affection on it.

Applied cases view: This view includes of the body of
applied case which must be defined for understanding to
system behavior. Another point about how to present the
considerable contents is software architecture. In order to do
this fact, there are different ways. Engineering software
diagrams like data flow diagram (DFD), Majors connection
diagram, entity relationship diagram (ERD), are diagrams
which are used to present some considerable views. One of
the most common methods is to show different views by

means of UML diagrams.

C. Uses and Reasons of Software Architecture Importance
For investigating the importance of software architecture

from the technical point of view, we can give three reasons
[13]:
1) Architecture as a means of relation between the system

stock holders: Software architecture system can be a
common view of all stuck holders. If they have the same
idea about that software, it can be as a basis for
reciprocal understanding, consultation and also a
connecting factor among them. As it is said before, in
fact architecture makes a common language between
them which is understandable for everyone and helps to
understand the system better.

2) Early decision making of designation: Software
architecture includes of high level decisions and trade
–off in designation that leads to produce a software
system and define its characteristics. The studies show
that the expense of correcting a discovered error a long
the requirements recognition phase or in architecture
phase is more less than correcting that error when the
error is distinguished in experiment phase.

3) Possible re-usability in architecture: We said that the
high level architecture defines the high level designation
and indicator recognition and their construction in a
system. So it is possible that in one similar system with
those requirements and characteristics, the indicators can
be again used and as you know, this matter has specific
importance in production process and developing
software systems.

IV. INVESTIGABLE QUALITY OF SOFTWARE ARCHITECTURE
In part one, the importance of quality and quality

characteristics in software production has been mentioned. In
part two, software architecture, as one of the most important
software production stages was investigated and its different
aspects have been discussed. This part tries to show the
effects of these two contents on each other. In fact we want to
show that how much quality of final production can measure
in architecture, also could produced software quality
characteristics be estimated by its architecture or not?, or are
these considerable quality purposes in final system
observable in architecture level or not?

The aim of this part is not to present the exact measurable
standards in architecture or define the relative characteristics
of any sub-factors. The aim of this part is to show investigate
ability and evaluate ability of quality factors or sub-factors at
the level of architecture. In fact we show that in order to
evaluate the quality of production, can use the architecture.
So it is showed that which collection of qualities if intends to
be in final production must be investigated at the level of
architecture. In this stage to investigate the software system
quality we have used ISO/IEC model. This model not only
covers the main common factors between the different
models, but also considers its sub-factors, regarding many
other factors and sub-factors of other models. In this way if
we can show the evaluate ability of quality factors for this
model at the architecture level, we can generate it for all of

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

the models too. So in continue investigation of factors and
sub-factors of ISO/IEC model has been discussed.

A. The Analysis of Operation Factor at the Level of
Architecture
The first sub-factor operation is suitability. This sub-

factor measures the conformity of operation system with
stock holders’ requirements. So regarding these defined
matters by system stack holders and their refinement and
making this case more recognizable define the indicators and
by investigating the characteristics of these indicators,
evaluate the amount of behavioral conformity with required
reactions. Next sub-factor is accuracy. This sub-factor shows
that how the correct and exact result is made by the system.
Although the exact measurement must be based on the affairs
in code system, but investigating the general affair and
activity at the level of architecture was possible and readable.
Therefore by studying defined processes in architecture and
following the affairs by indicators, the accuracy of these
processes can be evaluated. The next sub-factor is
interoperability with other systems. If a system has such a
characteristic, at the level of architecture, the indicator(s) in
order to give relating mediator role must be considered. The
indicators which have middle ware role in connections
system. The last sub-factor is security. Security means to
control accessibility and to do the affairs in defined permitted
domains. So the first matter is to recognize the volunteers
identity who wants to do the affairs and then to control the
accessibility level. So the indicator or the mechanisms in
processes of system must be designed and exists in relative
architecture. Then the existence or non-existence of relative
elements are defined by investigating the indicators duty or
their operations. Also the suggested mechanisms could be
compared with the standard mechanisms for security.

B. The Analysis of Reliability Factor at the Level of
Architecture
Three aspects of this factor are: maturity, Fault tolerance

and Recovery. Although most of these sub-factors have been
defined based on the events of run time, but we can anticipate
the possibility of fault occurrence in run time of system by
investigating the system indicators and their operations in
different situations. Fault endurance emphasis ion this aspect
of system that, the system is capable to continue it work in
spite of the fault existence. This matter is defined at the level
of architecture by investigating the existence or
non-existence of exception handling methods or elements of
redundancy. A system which has not considered any
mechanism to do this fact, it is easily anticipated that how it
encounters with faults of performance time. Recovery from
fault manner, emphasizes on reversibility of data and
performance to previous situation of fault appearance and
also on amount of time and consumed resource. When such
mechanisms are in a software system, surely in its
architecture exist relative recognizable methods. In fact in
order to provide this factor, there must be designed the
components or mechanism for any aspect, and this matter is
well observable at the architecture level.

C. The Analysis of Usable Factor at Architecture Level
Usability is defined by means of understandability,

learning and using the system this faction emphasizes on one
aspect of software which shows the comfort and simplicity of
affair by means of user. User mediator architecture and
divisions of service presentation to the user are the most
important matters which are effective in mentioned
sub-factors. User mediator architecture from the conformity
point of view with user mental contents of operation,
possibility of error correction and guide mechanisms are
subjects that can provide the aims of this factor. Using the
standard design user mediator methods can have a good
emphasis on providing the aims of this factor. Investigating
the existence of such indications in software architecture can
be a good and suitable proof to anticipate the quality do final
production.

D. The Analysis of Output Factor at Architecture Level
Sub-factors related to efficiency or time output of system

in performing the processes and best use of resource system
are two fields which recognize the output. Performing
processes at minimum time with minimum resources are
always the most important purposes of software designers.
Times included in this matter are divided in to three groups:
necessary time to show a reaction to an occurrence,
processing length of time and decision making and finally
time of reply arrival anticipating these times based on
included indicators in any stage and their performance is
possible. Also the best use of resources in performing the
affairs is another point which should be considered in
investigating the system replier situations. Doing
unnecessary affairs, unnecessary use of resources like data
redundancy and also improper delay (retardation) in
releasing the resources are reducer samples of system output.
So by investigating and controlling these points in system
indicators, the output situation can be participated and the
amount of this factor in proposed architecture can be defined.

E. The Analysis of Maintainability in Architecture Level
This factor has been expressed in many scientifically

te4xts as the main important quality factor. In researches it is
defined that more that 50% to 70% of life cycle expense of a
software system belong to performed expressions on the first
coy of system [14]. The importance of this factor is too much
that some evaluating methods of soft ware architecture have
just investigated this quality factor or sub-factors [15]. As
mentioned before most techniques of software production by
the aim of increasing the maintainability, has been
developed. Relative sub-factors include of analyzability,
changeability, amount of confirmation, and testability.
Analyzability emphasizes on possible recognition of manners
and deficiencies of a system. Also this factor tries to define
those parts which must be corrected. Simplicity of
performing the required reforms in a system is called change
ability. The possibility of preventing the non-required
affections in one part on other parts is defined by amount of
system confirmation. Testability affects on amount of
possibility of experiment and its operation test. To evaluate
this diagnostic at architecture level, the system can be
analyzed according to indicators characteristics and their
relations with each other. The amount of modularity of
system and the modules properties from the external coupling
point view with other indicators and internal parts cohesion
of any these system indicators can define the relative

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

sub-factors of this factor. If the system has been divided
correctly to suitable modula, the system can be analyzed
more easily, the changes are performed by specific
affections, recoveries are simply performed in indicators and
we can test any part in suitable form. So this factor can be
evaluated by controlling the modularity level of the system.

F. The Analysis of Portability Factor at Architecture
Level
In order to evaluate the portability factor of sub-factors

adaptability, we should investigate the install ability and
interoperability. To increase adaptability it is necessary to
have layers or indicators in one system, to adapt the main
core of system with different environments. This layer must
provide relative messages of system with its affair
environment in suitable form, or provide the possible
recovery of this part without any affection on other parts. In
order to install easily a not automatically, the indicators in
architecture must be considered. And finally in order to
interoperability, the system must do the required exchanges
in affair environment with systems and associate the
resources.

 This property, according to using software systems and
saving the time and firms’ investment, is necessary. Because
usually any system in one firm in different times and by
different producers are performed , so non-existence of
associability or non-existence of adaptability, their processes
can make many problems along performing the mentioned
firm’s affairs. So we should consider for any mentioned
sub-factor in this part, one component or mechanism. A
suitable evaluation of portable quality factor can be obtained
by investigating and analyzing the capacity of these
components or mechanisms.

V. CONCLUSION
This essay follows two main purposes. By considering

different definitions which exists for software architecture,
the first purpose is connected to introduce and to clarity the
relative contents in order to not only remove the ambiguity,
but also to provide a suitable view of main contents. But the
main purpose of this essay is to define software quality
factors which are evaluable at architecture level. In this essay
by analyzing the quality factors and sub-factors model
(ISO/IEC) at architecture level, a method to evaluate them
has been suggested. So it is showed that all quality properties
of software final production are under the impression of
decisions at software architecture level. The quality aim of
final production is provided when at architecture level some
suitable alternatives are considered. Based on final quality
aims we can evaluate proposed architectures for a software
system and recognize their strength and weakness. This
matter provides not only a comparative aspect but also
provides a method to evaluate independently architecture.
With such evaluation, some parts of system which need to be
revised and improved could be determined and give suitable
suggestion to remove disadvantages of them.

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner approach,

McGraw-hill, 2000.
[2] J.P. Cavano and J.A. McCall, "A Framework for the Measurement of

Software Quality", Procs. ACM Software Quality Assurance
Workshop, 1978, pp.133-139.

[3] B.W. Boehm, J.R. Brown, H. Lipow, G.J. Macleod and M.J. Merrit,
"Characteristics of Software Quality", Elsevier North-Holland, 1978.

[4] IEEE Std 1061-1992, "IEEE Standard for a Software Quality Metrics
Methodology", IEEE, 1992.

[5] ISO/IEC 9126, "Information Technology-software Product Evaluation:
Quality Characteristics and Guideline for Their Use", ISO/IEC, 1991.

[6] Wikipedia, the free encyclopedia, 2207.
[7] S. T. Albin, The Art of Software Architecture: Design Methods and

Techniques, John Wiley & Sons, 2003.
[8] Software Engineering Institute (SEI), Carnegie Mellon University,

www.sei.cmu.edu, 2007.
[9] R. Kazman, L. Bass and P. Clements, Software Architecture in Practice

2Ed, Addison Wesley, 2003.
[10] IEEE Std 1471-2000, "IEEE standard recommended practice for

architecture description", IEEE, 2000.
[11] F. Losavio, L. Chirinos, A. Matteo, N. Levy and A. Ramdane-Cherif,

"ISO quality standards for measuaring architectures", The Journal of
System and Software, Elsevier, 2004.

[12] P.B. Kruchten, "The 4+1 view model of architecture", IEEE Software,
12(6), 1995, pp.:42_50.

[13] M. Klein, P. Clements and R. Kazman, Evaluating Software
Architectures: Methods and Case Studies, Addison Wesley, 2002.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

