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Abstract—In this paper we propose a Lightweight 

Encryption Mechanism based on the Rabbit stream cipher for 
providing confidentiality in Wireless Sensor Networks (WSNs) 
that fulfils both requirements of security as well as energy 
efficiency. Our proposed security protocol is an idea for 
resource constrained WSNs, and can be widely used in the 
applications of secure communication where the 
communication nodes have limited processing and storage 
capabilities while requiring sufficient levels of security. The 
features of SCUR lead to the conclusion that this particular 
scheme might be more efficient in terms of security and 
resource consumption than the existing schemes for providing 
data confidentiality for the domain of WSNs. 
 

Index Terms—Confidentiality, SCUR, Wireless Sensor 
Networks, Rabbit. 
 

I. INTRODUCTION 
  Wireless networks have been increasing in size and 
complexity for quite some time now. WSNs have numerous 
applications including ocean and wildlife monitoring, 
manufacturing machinery performance monitoring, building 
safety and earthquake monitoring, and many military 
applications  
  Security is still an emerging field, in some general-purpose 
computing applications it is more developed, while in others 
such as WSNs it is still underway. Security allows WSNs to 
be used with confidence. Without security, the use of WSNs 
in any application domain would result in undesirable 
consequences [6]. Sensor networks pose unique challenges, 
as a result of which traditional security techniques cannot be 
applied. The security of WSNs poses these challenges 
because of the criticality of the data sensed while having 
severe constraints on these sensors nodes namely their 
minimal energy, computational and communicational 
capabilities. WSNs are exposed to various security threats 
such as disruption which can be defeated by encrypting the 

transmitted data. We have taken up this challenge and 
introduce SCUR, a lightweight security scheme for WSNs 
applications. We incorporate the Light Weight Rabbit based 
Encryption/Decryption Module in WSNs referred to as 
SCUR; a security architecture for providing confidentiality 
of information in WSNs.  
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  SCUR will cover the data confidentiality needs of all 
security critical applications in WSNs. For a security solution 
to achieve high deployment rates in WSNs, it must use 
minimal resources while providing maximum level of 
security. Failure to meet either requirement creates a 
justifiable reason for unsuitability. Our design choices for 
SCUR are driven by the capabilities and realities of WSNs 
that make it a perfect choice for WSN security. 
  The rest of this paper is organized as follows. Section 2 lays 
down the issue of security in WSNs which paves the way for 
the proposed SCUR model. Section 3 throws light on the 
design goals of the proposed scheme. Section 4 explains the 
security primitives that generally characterize our SCUR. 
Section 5 talks about the possible key mechanisms that can be 
employed with SCUR. Section 6 explains the Rabbit Stream 
Cipher and the appropriateness of utilizing Rabbit for WSN 
security. Our SCUR is presented in Section 7, with details of 
its working and analysis of its cost-effectiveness for security 
in WSNs. Section 8 concludes our research, with our future 
work presented in Section 9. 

 

II. SECURITY IN WIRELESS SENSOR NETWORKS 

  WSNs consist of small resource-constrained devices called 
sensor nodes, which consist of an 8-bit processor with 
memory, sensors, radio unit and power supply that collect 
data from their surroundings and transmit that data on to a 
base station as shown in Fig. 1. Base stations have available 
more computing resources and a larger energy source. The 
base stations aggregate information from the sensor nodes 
and then pass them to the external world. The applications for 
WSNs, range from medical scenarios to agricultural, military 
and environmental monitoring [1]. A lot of the data in WSNs 
may be very critical so, security mechanisms are required to 
ensure secrecy of the sensed data [4].  
  WSNs require wireless communication links. Wireless 
media have broadcast nature because of which interception of 
transmitted data can be very easy for the adversary. So, 
WSNs must keep the information they are collecting secret 
from the adversary, so that no private information is 
accessible to adversaries [5]. 
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Figure 1. WSNs used in Military Applications 
 
  Security mechanisms in WSNs are devised based on a set of 
principles which are consequences of the hardware 
restrictions of sensor nodes. The principles that pave the way 
for our proposed SCUR architecture are described below: 
 
1) The hardware restrictions of sensor nodes suggest that, as 
communication is three orders of magnitude more expensive 
than computation, so security protocol which favors 
computation over communication will be privileged. But the 
superlative approach would be a security protocol requiring 
minimum communication as well minimal amounts of 
computation. 
 
2) Public-key algorithms remain prohibitively expensive on 
sensor nodes both in terms of storage and energy. Security 
schemes cannot completely rely on public-key cryptography. 
So a hybrid approach should be employed; public key 
cryptography for key establishment and symmetric key 
cryptography for future communications. 

 

III. DESIGN GOALS 

  In this section, we formalize the three design goals of our 
proposed SCUR which are described below:  

A. Security Goals 
  A security protocol should satisfy the basic security 
property of message confidentiality. Confidentiality means 
keeping information secret from unauthorized parties. It is 
typically achieved with encryption in order to prevent 
message recovery. We propose achieving message 
confidentiality using the Rabbit Stream Cipher which is 
discussed in more detail in Section VI. 
  WSNs communicate highly sensitive data so a sensor node 
should not leak sensor readings to neighboring networks. The 
standard approach for keeping sensitive data secret is to 
encrypt the data with a secret key that only intended receivers 
possess, hence achieving confidentiality. 

B. Performance 
  Due to the extreme resource limitations in WSNs, it is 
important to carefully adjust the security mechanisms 
employed in a way that provides reasonable protection while 
limiting the overhead. The primary reason being that a overly 

conservative choice of security parameters will consume 
resources too quickly. A security protocol for WSNs will 
generally incur increased overhead in the length of messages 
sent as well as in extra demands on the processor and RAM. 
So a performance tradeoff has to be set which achieves the 
required level of security with minimal resource usage. 

C. Ease of Use 
  An important design goal of SCUR is that it should be easy 
for application programmers to adjust the security 
performance tradeoffs if their WSNs applications have 
greater security. 
 

IV. SECURITY PRIMITIVES 

 
  Considering the threats WSNs are exposed to, we aim to 
provide privacy of data with our proposed SCUR, in WSNs. 
This section gives an overview of the security primitives that 
have been employed in our proposed SCUR: 

A. Encryption Schemes 
  Encryption schemes are classified into symmetric-key 
encryption schemes and asymmetric encryption schemes. In 
the symmetric-key encryption scheme, the data is encrypted 
using the same encryption and decryption key. A secure 
system, therefore, is required between the sender and 
recipient of encrypted data for the shared key, as shown in 
figure 2. The asymmetric key encryption scheme overcomes 
the issues related to secure key-sharing, as the encryption key 
and decryption key are different. The recipient provides 
his/her encryption key to the sender, the sender encrypts the 
data with this encryption key and sends the data to the 
recipient, who then decrypts the data with his/her decryption 
key. However, in public-key encryption schemes, since the 
encryption key differ from the corresponding decryption key, 
its encryption and decryption processes are complicated, and 
is less efficient compared with symmetric-key encryption 
scheme.  
  Therefore, it is common to use a symmetric-key encryption 
scheme to encrypt bulk data and to use an asymmetric key 
encryption scheme to encrypt the encryption key which was 
used for bulk data encryption [11]. Therefore we propose the 
use a of symmetric key encryption scheme for encrypting 
information between sensor nodes, once the keys have been 
exchanged using a public key encryption scheme. 
 

 
Figure 2. Symmetric Key Encryption 

 

B. Stream Ciphers 
  Stream ciphers refer to the symmetric-key encryption 
schemes to encrypt bulk data using a pseudorandom number 
generator which generates a random data stream. Since 
stream ciphers have the advantage of being able to encrypt 
the data bit by the bit it is very suitable for WSNs. Stream 
ciphers are also superior to block ciphers in terms of 
efficiency of encryption/decryption processing, and are 
therefore very suitable for deployment in WSNs. 
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C. Synchronous Ciphers 
  These are stream ciphers, in which the state update 
mechanism is updated independently of the plaintext as 
shown in figure 3. If a digit is modified due to a transmission 
error, only this digit will be decrypted erroneously. The 
transmission error will not affect the decryption of other 
digits. This is a useful property for WSNs, where bits are 
often tripped due to channel noise [7].  
  The fact that the plaintext does not affect the key stream 
generator makes the security analysis of synchronous stream 
ciphers radically different from the analysis of non 
synchronous stream ciphers and block ciphers. For the two 
latter, the attacker can mount chosen plaintext/ciphertext 
attacks whereby he can influence the internal state or 
intermediate variables. For synchronous stream ciphers, this 
is of no use. The only attack scenario on the cipher during key 
stream generation that is feasible is a known plaintext attack, 
which is equivalent to a known key stream attack and a 
chosen plaintext attack.  
 

 
Figure 3. Synchronous Stream Cipher 

D. Initialization Vector (IV) 
  When there is little variation in the set of messages, or when 
there are chances of identical messages being transmitted, as 
in the case of WSNs where identical messages may be 
transmitted repeatedly between two neighboring sensor 
nodes, initialization vectors are used as side input to the 
encryption algorithm so that encrypting the same plaintext 
two times should give two different ciphertexts [3]. 

 

V. KEYING MECHANISMS 

  Keying mechanisms determine how cryptographic keys are 
distributed and shared throughout the network. The SCUR 
protocol is not limited to any particular keying mechanism; 
any keying mechanism can be used in conjunction with 
SCUR. Table 1 mentions the positives and negatives 
associated with different possible keying mechanisms in 
WSNs. The appropriate keying mechanism for a particular 
network depends on several factors such as the ease of 
deployment and the security requirements of applications. A 
keying mechanism can be selected on the basis of the 
required level of security and the amount of resources which 
can be expended for the application. So a tradeoff has to be 
set between the resources and required security on the basis 
of the requirements of the application.  
  The simplest keying mechanism is to use a single network 
wide symmetric key among the authorized nodes. A network- 
wide shared key provides a baseline level of security with 
minimal configuration complexity. Any authorized node can 
exchange messages with any other authorized node, and all 
communication is encrypted. However, in network-wide 
keying if an adversary compromises a single node, the entire 
network is overtaken by the adversary.  

  To address the node capture threat, a keying mechanism 
with finer granularity such as a group based keying 
mechanism can be employed. Sensor nodes share keys on a 
per group basis, hence making it a little complex in terms of 
key distribution between each group but making node 
capture less effective as compared to network wide key. 
  A more robust option is for each node to share a key with 
every other node only if they need to communicate with each 
other. This provides between better resilience against node 
capture attacks. But this approach has drawbacks in that key 
distribution becomes challenging. 
 

Table 1. Comparison of Keying Mechanisms 
 

Keying Mechanism Positives Negatives 

Network Wide key Low deployment 
complexity 

Network 
compromise 

Per Group key Medium complexity 
in deployment Group compromise 

Per link key High deployment 
complexity 

Only one link 
compromise 

 

VI. RABBIT STREAM CIPHER 

  Rabbit [10] is a symmetric synchronous stream cipher 
submitted to the European ECRYPT Stream Cipher Project. 
It is selected as a Focus Phase 3 candidate as of April 2007. 
Rabbit is designed with both security and efficiency in mind 
to satisfy the need for lightweight algorithms, dedicated to 
hardware environments where the available resources are 
heavily restricted. It takes a 128-bit secret key and a 64-bit IV 
(if desired) as input and generates for each iteration an output 
block of 128 pseudo-random bits from a combination of the 
internal state bits. Encryption/decryption is done by XOR'ing 
the pseudo-random data with the plaintext/ciphertext as 
shown in figure 4. The size of the internal state is 513 bits 
divided between eight 32-bit state variables, eight 32-bit 
counters and one counter carry bit. The eight state variables 
are updated by eight coupled nonlinear functions. 
 

 
Figure 4. Rabbit Cipher 

 
  Rabbit was designed to be faster than commonly used 

ciphers and to justify a key size of 128 bits for encrypting up 
to 264 bytes of plaintext. This means that for an attacker who 
does not know the key, it should not be possible to 
distinguish up to 264 bytes of cipher output from the output of 
a truly random generator, using less steps than would be 
required for an exhaustive key search over 2128 keys [10]. 

A. Key Setup Scheme 
  The algorithm is initialized by expanding the 128-bit key 
into both the eight state variables and the eight counters such 
that there is a one-to-one correspondence between the key 
and the initial state variables and the initial counters. The key 
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is divided into eight subkeys and the state and counter 
variables are initialized from the subkeys. The system is 
iterated four times, according to the next-state function 
defined in section 6.3, to diminish correlations between bits 
in the key and bits in the internal state variables. Finally, the 
counter variables are modified to prevent recovery of the key 
by inversion of the counter system. 

B. Initialization Vector Scheme 
  The IV setup scheme works by modifying the counter state 
as function of the IV. The system is iterated four times 
according to the next-state function defined in the 
sub-section C, to make all state bits non-linearly dependent 
on all IV bits. The modification of the counter by the IV 
guarantees that all 264 different IVs will lead to unique 
keystreams. 

C. Next-state function 
  The core of the Rabbit is the Next-state function which can 
be referred to in [10].Next state function is involved in both 
key setup and keystream generation. It takes eight counter 
variables as input and produces a 128 bit keystream block 
after going through system iteration, counter modification 
and iteration of the g-function. The good diffusion and 
non-linearity properties of next-state function prevent against 
all known attacks. 

VII. DESIGN OF SCUR 

 
  In our design, we aim to improve the security and 
performance properties without increasing too much energy 
consumption [8]. We construct an encryption scheme called 
SCUR which performs confidentiality of each message. Due 
to the restrictions imposed on WSNs, our major objective in 
designing a new security model is to minimize cost-effect of 
the following while maintaining required levels of security 
[9]: 
 
1) Communication overhead, in case of communicating the 

encrypted packet. 
2) Computation overhead, in securing the network, in order 

to save sensor’s lifetime. 
3) Utilized key space. 
 

A. Encryption 
  Rabbit was designed with both security and efficiency in 
mind to satisfy the need for lightweight algorithms, dedicated 
to hardware environments where the available resources are 
heavily restricted. The simplicity and small size of Rabbit 
makes it suitable for WSN platform. The exact specification 
can be referred to [10]. The algorithm is initialized by 
expanding the 128-bit key into both the eight state variables 
and the eight counters such that there is a one-to-one 
correspondence between the key and the initial state 
variables, and the initial counters. Key and IV is fed into the 
internal states and going through four iterations of the next 
update function, to minimize the correlations between the bits 
in the key, IV and the bits in the internal state variables. 
Keystream generation uses the same components for further 
modification of the state and counters variables. In each 
iteration eight state variables, eight counter variables and a 
counter carry stored between each iteration supplies input to 

the Next-state function. A smaller number of rounds translate 
directly into high rekeying performance. 
  To send an encrypted packet, a sender encrypts the packet 
with the agreed symmetric key (EKey) and IV as input to the 
Rabbit algorithm as shown in Figure 5. When a receiving 
node gets a decrypted packet, it can perform decryption with 
the symmetric key Ekey and IV from the packet header, to get 
the recovered plaintext.  

 
 

Figure 5. SCUR Design 

B. Packet Format 
  We based SCUR's packet format on the current packet 
format in TinyOS as in figure 6. The fields common to 
TinyOS are destination address, active message (AM) type, 
group and length. We propose appending the source address 
(Src) and counter (Ctr) field in addition to the standard 
TinyOS header fields for the SCUR packet format. 

 
Dest AM Len Src Ctr Data CRC  

 
Figure 6. SCUR Packet Format 

 
  These fields are unencrypted because the benefits of 
sending them in the clear generally outweigh the advantages 
of keeping them secret. To detect transmission errors, 
TinyOS senders compute a 16-bit cycle redundancy check 
(CRC) over the packet. The receiver recomputes the CRC 
during reception and verifies it with the received CRC field. 
The TinyOS packet format contains a group field which has 
been replaced by a source address field, so at the cost of just 
one extra byte, the packet format of SCUR has brought a 
variation on per link basis. The IV will be computed on the 
basis of source and destination address, so now there are even 
less chances of IV repetition. Table 2 below specifies the size 
of each field which is part of the SCUR packet format in 
bytes. 
 

Table 2. Packet Field Size 
 

Field Name  Number of Bytes 
Destination Address(Dest)  2 

Active Message(AM)  1 
Length(Len)  1 

Source Address(Src)  2 
Counter (Ctr)  2 

Data  0…29 

Cyclic Redundancy Code(CRC)  2 

 

C. IV Format 
  To further cut down the cost-effect of communication while 
maintaining security our scheme uses frame header as the IV 
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for each packet. The IV is taken from the packet header of the 
radio packet format and sent in clear to the decrypting party. 
This saves the overhead of communicating a secured IV to 
the receiving sensor node. 
 

Dest AM Len Src Ctr 
 

Figure 7. SCUR IV Format 

D. Security Analysis 
  The security of SCUR reduces to the length of the IV. With 
an 8 byte IV, avoiding repetition is relatively easy. Although 
SCUR uses an 8 byte IV, we limited ourselves to 4 additional 
bytes of overhead in the packet to represent the IV. The other 
4 bytes of the IV borrow from the existing header fields: the 
destination address, the AM type, and the length. SCUR 
partitions the last 4 bytes of the IV into src||ctr, where src is 
the source address of the sender and ctr is a 16 bit counter 
starting at 0 [3]. Our format for the last 4 bytes strives to 
maximize the number of packets each node can send before 
there is a global repetition of an IV value. The src||ctr format 
of the last 4 bytes guarantees each node can send at least 216 
packets before IV reuse occurs.  
  We specifically selected Rabbit for SCUR because of its 
simplified design, hence providing required level of security 
with minimal resource consumption. The first 6 bytes of the 
IV, dest||AM||len||src, help prevent information leakage 
during the unfortunate event of a counter on a node repeating. 
If a counter value for a particular source address is reused, 
there is only potential information leakage when the 
dst||AM||len||src values are exactly the same for both 
messages. The means both messages were sent to the same 
group, destination and AM type, and both messages have the 
same length. 
 

VIII. CONCLUSION 

  In this paper, we have proposed a lightweight encryption 
scheme SCUR, which we expect will outperform existing 
security protocols for WSNs in terms of security as well as 
resource consumption. Rabbit is very suitable to safeguard 
WSNs because of its security properties and simplicity. The 
main contribution of the proposed SCUR scheme is to ensure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

confidentiality using Rabbit Encryption Scheme for the 
domain of WSNs. 
 

IX. FUTURE WORK 

  As of the future work, we will incorporate our SCUR into 
TinyOS, the light-weight operating system designed 
specially for small embedded systems with limited resources. 
This will help us prove through experimental results whether 
the proposed scheme works up to mark. In future we plan to 
implement our proposed scheme in real sensor test bed, to 
determine the flexibility that our SCUR is able to cope with. 
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