

SCUR: Secure Communications in Wireless
Sensor Networks using Rabbit

Ruhma Tahir, Muhammad Younas Javed, Attiq Ahmad and Raja Iqbal

Abstract—In this paper we propose a Lightweight

Encryption Mechanism based on the Rabbit stream cipher for
providing confidentiality in Wireless Sensor Networks (WSNs)
that fulfils both requirements of security as well as energy
efficiency. Our proposed security protocol is an idea for
resource constrained WSNs, and can be widely used in the
applications of secure communication where the
communication nodes have limited processing and storage
capabilities while requiring sufficient levels of security. The
features of SCUR lead to the conclusion that this particular
scheme might be more efficient in terms of security and
resource consumption than the existing schemes for providing
data confidentiality for the domain of WSNs.

Index Terms—Confidentiality, SCUR, Wireless Sensor
Networks, Rabbit.

I. INTRODUCTION
 Wireless networks have been increasing in size and
complexity for quite some time now. WSNs have numerous
applications including ocean and wildlife monitoring,
manufacturing machinery performance monitoring, building
safety and earthquake monitoring, and many military
applications
 Security is still an emerging field, in some general-purpose
computing applications it is more developed, while in others
such as WSNs it is still underway. Security allows WSNs to
be used with confidence. Without security, the use of WSNs
in any application domain would result in undesirable
consequences [6]. Sensor networks pose unique challenges,
as a result of which traditional security techniques cannot be
applied. The security of WSNs poses these challenges
because of the criticality of the data sensed while having
severe constraints on these sensors nodes namely their
minimal energy, computational and communicational
capabilities. WSNs are exposed to various security threats
such as disruption which can be defeated by encrypting the

transmitted data. We have taken up this challenge and
introduce SCUR, a lightweight security scheme for WSNs
applications. We incorporate the Light Weight Rabbit based
Encryption/Decryption Module in WSNs referred to as
SCUR; a security architecture for providing confidentiality
of information in WSNs.

Manuscript received February 20, 2007.
R.T. Ruhma Tahir is with Department of Information Security, College of

Signals, National University of Sciences and Technology (NUST), Lalkurti,
Rawalpindi Cantt, Pakistan. (phone: 0092-051-2113672; fax:
0092-051-9257201; e-mail: ruhma@mcs.edu.pk).

M.Y. Muhammad Younas Javed is the Head of Computer Engineering
Department, College of Electrical and Mechanical Engineering, National
University of Sciences and Technology (NUST), Peshawar Road,
Rawalpindi, Pakistan. (e-mail: myjaved@ceme.edu.pk).

A.A. Attiq Ahmad is the Head of Department of Information Security,
College of Signals, National University of Sciences and Technology
(NUST), Lalkurti, Rawalpindi Cantt, Pakistan. (e-mail:
attiq-mcs@nust.edu.pk).

R. I. Raja Iqbal is with the Engineering Division, College of Signals,
National University of Sciences and Technology (NUST), Lalkurti,
Rawalpindi Cantt, Pakistan. (e-mail: rajaiqbal@mcs.edu.pk).

 SCUR will cover the data confidentiality needs of all
security critical applications in WSNs. For a security solution
to achieve high deployment rates in WSNs, it must use
minimal resources while providing maximum level of
security. Failure to meet either requirement creates a
justifiable reason for unsuitability. Our design choices for
SCUR are driven by the capabilities and realities of WSNs
that make it a perfect choice for WSN security.
 The rest of this paper is organized as follows. Section 2 lays
down the issue of security in WSNs which paves the way for
the proposed SCUR model. Section 3 throws light on the
design goals of the proposed scheme. Section 4 explains the
security primitives that generally characterize our SCUR.
Section 5 talks about the possible key mechanisms that can be
employed with SCUR. Section 6 explains the Rabbit Stream
Cipher and the appropriateness of utilizing Rabbit for WSN
security. Our SCUR is presented in Section 7, with details of
its working and analysis of its cost-effectiveness for security
in WSNs. Section 8 concludes our research, with our future
work presented in Section 9.

II. SECURITY IN WIRELESS SENSOR NETWORKS

 WSNs consist of small resource-constrained devices called
sensor nodes, which consist of an 8-bit processor with
memory, sensors, radio unit and power supply that collect
data from their surroundings and transmit that data on to a
base station as shown in Fig. 1. Base stations have available
more computing resources and a larger energy source. The
base stations aggregate information from the sensor nodes
and then pass them to the external world. The applications for
WSNs, range from medical scenarios to agricultural, military
and environmental monitoring [1]. A lot of the data in WSNs
may be very critical so, security mechanisms are required to
ensure secrecy of the sensed data [4].
 WSNs require wireless communication links. Wireless
media have broadcast nature because of which interception of
transmitted data can be very easy for the adversary. So,
WSNs must keep the information they are collecting secret
from the adversary, so that no private information is
accessible to adversaries [5].

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

mailto:myjaved@ceme.edu.pk
mailto:attiq-mcs@nust.edu.pk

Figure 1. WSNs used in Military Applications

 Security mechanisms in WSNs are devised based on a set of
principles which are consequences of the hardware
restrictions of sensor nodes. The principles that pave the way
for our proposed SCUR architecture are described below:

1) The hardware restrictions of sensor nodes suggest that, as
communication is three orders of magnitude more expensive
than computation, so security protocol which favors
computation over communication will be privileged. But the
superlative approach would be a security protocol requiring
minimum communication as well minimal amounts of
computation.

2) Public-key algorithms remain prohibitively expensive on
sensor nodes both in terms of storage and energy. Security
schemes cannot completely rely on public-key cryptography.
So a hybrid approach should be employed; public key
cryptography for key establishment and symmetric key
cryptography for future communications.

III. DESIGN GOALS

 In this section, we formalize the three design goals of our
proposed SCUR which are described below:

A. Security Goals
 A security protocol should satisfy the basic security
property of message confidentiality. Confidentiality means
keeping information secret from unauthorized parties. It is
typically achieved with encryption in order to prevent
message recovery. We propose achieving message
confidentiality using the Rabbit Stream Cipher which is
discussed in more detail in Section VI.
 WSNs communicate highly sensitive data so a sensor node
should not leak sensor readings to neighboring networks. The
standard approach for keeping sensitive data secret is to
encrypt the data with a secret key that only intended receivers
possess, hence achieving confidentiality.

B. Performance
 Due to the extreme resource limitations in WSNs, it is
important to carefully adjust the security mechanisms
employed in a way that provides reasonable protection while
limiting the overhead. The primary reason being that a overly

conservative choice of security parameters will consume
resources too quickly. A security protocol for WSNs will
generally incur increased overhead in the length of messages
sent as well as in extra demands on the processor and RAM.
So a performance tradeoff has to be set which achieves the
required level of security with minimal resource usage.

C. Ease of Use
 An important design goal of SCUR is that it should be easy
for application programmers to adjust the security
performance tradeoffs if their WSNs applications have
greater security.

IV. SECURITY PRIMITIVES

 Considering the threats WSNs are exposed to, we aim to
provide privacy of data with our proposed SCUR, in WSNs.
This section gives an overview of the security primitives that
have been employed in our proposed SCUR:

A. Encryption Schemes
 Encryption schemes are classified into symmetric-key
encryption schemes and asymmetric encryption schemes. In
the symmetric-key encryption scheme, the data is encrypted
using the same encryption and decryption key. A secure
system, therefore, is required between the sender and
recipient of encrypted data for the shared key, as shown in
figure 2. The asymmetric key encryption scheme overcomes
the issues related to secure key-sharing, as the encryption key
and decryption key are different. The recipient provides
his/her encryption key to the sender, the sender encrypts the
data with this encryption key and sends the data to the
recipient, who then decrypts the data with his/her decryption
key. However, in public-key encryption schemes, since the
encryption key differ from the corresponding decryption key,
its encryption and decryption processes are complicated, and
is less efficient compared with symmetric-key encryption
scheme.
 Therefore, it is common to use a symmetric-key encryption
scheme to encrypt bulk data and to use an asymmetric key
encryption scheme to encrypt the encryption key which was
used for bulk data encryption [11]. Therefore we propose the
use a of symmetric key encryption scheme for encrypting
information between sensor nodes, once the keys have been
exchanged using a public key encryption scheme.

Figure 2. Symmetric Key Encryption

B. Stream Ciphers
 Stream ciphers refer to the symmetric-key encryption
schemes to encrypt bulk data using a pseudorandom number
generator which generates a random data stream. Since
stream ciphers have the advantage of being able to encrypt
the data bit by the bit it is very suitable for WSNs. Stream
ciphers are also superior to block ciphers in terms of
efficiency of encryption/decryption processing, and are
therefore very suitable for deployment in WSNs.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

C. Synchronous Ciphers
 These are stream ciphers, in which the state update
mechanism is updated independently of the plaintext as
shown in figure 3. If a digit is modified due to a transmission
error, only this digit will be decrypted erroneously. The
transmission error will not affect the decryption of other
digits. This is a useful property for WSNs, where bits are
often tripped due to channel noise [7].
 The fact that the plaintext does not affect the key stream
generator makes the security analysis of synchronous stream
ciphers radically different from the analysis of non
synchronous stream ciphers and block ciphers. For the two
latter, the attacker can mount chosen plaintext/ciphertext
attacks whereby he can influence the internal state or
intermediate variables. For synchronous stream ciphers, this
is of no use. The only attack scenario on the cipher during key
stream generation that is feasible is a known plaintext attack,
which is equivalent to a known key stream attack and a
chosen plaintext attack.

Figure 3. Synchronous Stream Cipher

D. Initialization Vector (IV)
 When there is little variation in the set of messages, or when
there are chances of identical messages being transmitted, as
in the case of WSNs where identical messages may be
transmitted repeatedly between two neighboring sensor
nodes, initialization vectors are used as side input to the
encryption algorithm so that encrypting the same plaintext
two times should give two different ciphertexts [3].

V. KEYING MECHANISMS

 Keying mechanisms determine how cryptographic keys are
distributed and shared throughout the network. The SCUR
protocol is not limited to any particular keying mechanism;
any keying mechanism can be used in conjunction with
SCUR. Table 1 mentions the positives and negatives
associated with different possible keying mechanisms in
WSNs. The appropriate keying mechanism for a particular
network depends on several factors such as the ease of
deployment and the security requirements of applications. A
keying mechanism can be selected on the basis of the
required level of security and the amount of resources which
can be expended for the application. So a tradeoff has to be
set between the resources and required security on the basis
of the requirements of the application.
 The simplest keying mechanism is to use a single network
wide symmetric key among the authorized nodes. A network-
wide shared key provides a baseline level of security with
minimal configuration complexity. Any authorized node can
exchange messages with any other authorized node, and all
communication is encrypted. However, in network-wide
keying if an adversary compromises a single node, the entire
network is overtaken by the adversary.

 To address the node capture threat, a keying mechanism
with finer granularity such as a group based keying
mechanism can be employed. Sensor nodes share keys on a
per group basis, hence making it a little complex in terms of
key distribution between each group but making node
capture less effective as compared to network wide key.
 A more robust option is for each node to share a key with
every other node only if they need to communicate with each
other. This provides between better resilience against node
capture attacks. But this approach has drawbacks in that key
distribution becomes challenging.

Table 1. Comparison of Keying Mechanisms

Keying Mechanism Positives Negatives

Network Wide key Low deployment
complexity

Network
compromise

Per Group key Medium complexity
in deployment Group compromise

Per link key High deployment
complexity

Only one link
compromise

VI. RABBIT STREAM CIPHER

 Rabbit [10] is a symmetric synchronous stream cipher
submitted to the European ECRYPT Stream Cipher Project.
It is selected as a Focus Phase 3 candidate as of April 2007.
Rabbit is designed with both security and efficiency in mind
to satisfy the need for lightweight algorithms, dedicated to
hardware environments where the available resources are
heavily restricted. It takes a 128-bit secret key and a 64-bit IV
(if desired) as input and generates for each iteration an output
block of 128 pseudo-random bits from a combination of the
internal state bits. Encryption/decryption is done by XOR'ing
the pseudo-random data with the plaintext/ciphertext as
shown in figure 4. The size of the internal state is 513 bits
divided between eight 32-bit state variables, eight 32-bit
counters and one counter carry bit. The eight state variables
are updated by eight coupled nonlinear functions.

Figure 4. Rabbit Cipher

 Rabbit was designed to be faster than commonly used

ciphers and to justify a key size of 128 bits for encrypting up
to 264 bytes of plaintext. This means that for an attacker who
does not know the key, it should not be possible to
distinguish up to 264 bytes of cipher output from the output of
a truly random generator, using less steps than would be
required for an exhaustive key search over 2128 keys [10].

A. Key Setup Scheme
 The algorithm is initialized by expanding the 128-bit key
into both the eight state variables and the eight counters such
that there is a one-to-one correspondence between the key
and the initial state variables and the initial counters. The key

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

is divided into eight subkeys and the state and counter
variables are initialized from the subkeys. The system is
iterated four times, according to the next-state function
defined in section 6.3, to diminish correlations between bits
in the key and bits in the internal state variables. Finally, the
counter variables are modified to prevent recovery of the key
by inversion of the counter system.

B. Initialization Vector Scheme
 The IV setup scheme works by modifying the counter state
as function of the IV. The system is iterated four times
according to the next-state function defined in the
sub-section C, to make all state bits non-linearly dependent
on all IV bits. The modification of the counter by the IV
guarantees that all 264 different IVs will lead to unique
keystreams.

C. Next-state function
 The core of the Rabbit is the Next-state function which can
be referred to in [10].Next state function is involved in both
key setup and keystream generation. It takes eight counter
variables as input and produces a 128 bit keystream block
after going through system iteration, counter modification
and iteration of the g-function. The good diffusion and
non-linearity properties of next-state function prevent against
all known attacks.

VII. DESIGN OF SCUR

 In our design, we aim to improve the security and
performance properties without increasing too much energy
consumption [8]. We construct an encryption scheme called
SCUR which performs confidentiality of each message. Due
to the restrictions imposed on WSNs, our major objective in
designing a new security model is to minimize cost-effect of
the following while maintaining required levels of security
[9]:

1) Communication overhead, in case of communicating the

encrypted packet.
2) Computation overhead, in securing the network, in order

to save sensor’s lifetime.
3) Utilized key space.

A. Encryption
 Rabbit was designed with both security and efficiency in
mind to satisfy the need for lightweight algorithms, dedicated
to hardware environments where the available resources are
heavily restricted. The simplicity and small size of Rabbit
makes it suitable for WSN platform. The exact specification
can be referred to [10]. The algorithm is initialized by
expanding the 128-bit key into both the eight state variables
and the eight counters such that there is a one-to-one
correspondence between the key and the initial state
variables, and the initial counters. Key and IV is fed into the
internal states and going through four iterations of the next
update function, to minimize the correlations between the bits
in the key, IV and the bits in the internal state variables.
Keystream generation uses the same components for further
modification of the state and counters variables. In each
iteration eight state variables, eight counter variables and a
counter carry stored between each iteration supplies input to

the Next-state function. A smaller number of rounds translate
directly into high rekeying performance.
 To send an encrypted packet, a sender encrypts the packet
with the agreed symmetric key (EKey) and IV as input to the
Rabbit algorithm as shown in Figure 5. When a receiving
node gets a decrypted packet, it can perform decryption with
the symmetric key Ekey and IV from the packet header, to get
the recovered plaintext.

Figure 5. SCUR Design

B. Packet Format
 We based SCUR's packet format on the current packet
format in TinyOS as in figure 6. The fields common to
TinyOS are destination address, active message (AM) type,
group and length. We propose appending the source address
(Src) and counter (Ctr) field in addition to the standard
TinyOS header fields for the SCUR packet format.

Dest AM Len Src Ctr Data CRC

Figure 6. SCUR Packet Format

 These fields are unencrypted because the benefits of
sending them in the clear generally outweigh the advantages
of keeping them secret. To detect transmission errors,
TinyOS senders compute a 16-bit cycle redundancy check
(CRC) over the packet. The receiver recomputes the CRC
during reception and verifies it with the received CRC field.
The TinyOS packet format contains a group field which has
been replaced by a source address field, so at the cost of just
one extra byte, the packet format of SCUR has brought a
variation on per link basis. The IV will be computed on the
basis of source and destination address, so now there are even
less chances of IV repetition. Table 2 below specifies the size
of each field which is part of the SCUR packet format in
bytes.

Table 2. Packet Field Size

Field Name Number of Bytes
Destination Address(Dest) 2

Active Message(AM) 1
Length(Len) 1

Source Address(Src) 2
Counter (Ctr) 2

Data 0…29

Cyclic Redundancy Code(CRC) 2

C. IV Format
 To further cut down the cost-effect of communication while
maintaining security our scheme uses frame header as the IV

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

for each packet. The IV is taken from the packet header of the
radio packet format and sent in clear to the decrypting party.
This saves the overhead of communicating a secured IV to
the receiving sensor node.

Dest AM Len Src Ctr

Figure 7. SCUR IV Format

D. Security Analysis
 The security of SCUR reduces to the length of the IV. With
an 8 byte IV, avoiding repetition is relatively easy. Although
SCUR uses an 8 byte IV, we limited ourselves to 4 additional
bytes of overhead in the packet to represent the IV. The other
4 bytes of the IV borrow from the existing header fields: the
destination address, the AM type, and the length. SCUR
partitions the last 4 bytes of the IV into src||ctr, where src is
the source address of the sender and ctr is a 16 bit counter
starting at 0 [3]. Our format for the last 4 bytes strives to
maximize the number of packets each node can send before
there is a global repetition of an IV value. The src||ctr format
of the last 4 bytes guarantees each node can send at least 216
packets before IV reuse occurs.
 We specifically selected Rabbit for SCUR because of its
simplified design, hence providing required level of security
with minimal resource consumption. The first 6 bytes of the
IV, dest||AM||len||src, help prevent information leakage
during the unfortunate event of a counter on a node repeating.
If a counter value for a particular source address is reused,
there is only potential information leakage when the
dst||AM||len||src values are exactly the same for both
messages. The means both messages were sent to the same
group, destination and AM type, and both messages have the
same length.

VIII. CONCLUSION

 In this paper, we have proposed a lightweight encryption
scheme SCUR, which we expect will outperform existing
security protocols for WSNs in terms of security as well as
resource consumption. Rabbit is very suitable to safeguard
WSNs because of its security properties and simplicity. The
main contribution of the proposed SCUR scheme is to ensure

confidentiality using Rabbit Encryption Scheme for the
domain of WSNs.

IX. FUTURE WORK

 As of the future work, we will incorporate our SCUR into
TinyOS, the light-weight operating system designed
specially for small embedded systems with limited resources.
This will help us prove through experimental results whether
the proposed scheme works up to mark. In future we plan to
implement our proposed scheme in real sensor test bed, to
determine the flexibility that our SCUR is able to cope with.

REFERENCES

[1] Mayank Saraogi, “Security in Wireless Sensor Networks” Department
of Computer Science, University of Tennessee, Knoxville.

[2] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J.D.
Tygar. “SPINS: Security protocols for Sensor Networks.” In The
Seventh Annual International Conference on Mobile Computing and
Networking (MobiCom 2001), 2001.

[3] Chris Karlof, Naveen Sastry, David Wagner, “TinySec: A Link Layer
Security Architecture for Wireless Sensor Networks”, Proceedings of
the 2nd ACM Conference on Embedded Networked Sensor Systems
(SenSys 2004), Baltimore, MD, November 2004.

[4] A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless Sensor
Networks,” Commun. ACM, vol. 47, no. 6, pp. 53–57, 2004.

[5] Hill, Jason, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. “System Architecture directions for Networked
Sensors.” In Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS IX) (November 2000).

[6] Chris Karlof and David Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures”, IEEE International
Workshop on Sensor Network Protocols and Applications, 2003.

[7] B. Schneier, "Applied Cryptography”.
[8] Elaine Shi and Adrian Perrig, “Designing Secure Sensor Networks”,

IEEE Wireless Communications, pp 38-43 December 2004.
[9] Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari,

Alexander Dean, Frank Mueller and Mihail Sichitiu, “Analyzing and
Modeling Encryption Overhead for Sensor Network Nodes" Workshop
on Wireless Sensor Networks and Applications (WSNA '03) with
MobiCom'03, Sep 2003.

[10] Martin Boesgaard, Mette Vesterager, Thomas Christensen, Erik Zenner
“The Stream Cipher Rabbit” ECRYPT Stream Cipher Project Report
2005/006.

[11] http://www.hitachiappliances.com

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

	INTRODUCTION
	SECURITY IN WIRELESS SENSOR NETWORKS
	The hardware restrictions of sensor nodes suggest that, as c
	Public-key algorithms remain prohibitively expensive on sens

	DESIGN GOALS
	Security Goals
	Performance
	Ease of Use

	SECURITY PRIMITIVES
	Encryption Schemes
	Stream Ciphers
	Synchronous Ciphers
	Initialization Vector (IV)

	KEYING MECHANISMS
	RABBIT STREAM CIPHER
	Key Setup Scheme
	Initialization Vector Scheme
	Next-state function

	DESIGN OF SCUR
	Communication overhead, in case of communicating the encrypt
	Computation overhead, in securing the network, in order to s
	Utilized key space.

	Encryption
	Packet Format
	IV Format
	Security Analysis

	Conclusion
	FUTURE WORK

