

Abstract—This paper presents the speedup of the

computation of co-occurrence matrices and Haralick Texture
Features, as used for analyzing images of cells, by
general-purpose graphic processing units (GPU). The
computation sequence for the features is analyzed in a graph
and an optimized software version is derived. Afterwards, a
massive parallel software version for GPUs is designed. On a
single node of a cluster, a speedup of 216 was obtained
compared to an un-optimized software version, and speedup of
19 compared to an optimized software version.

Index Terms— Co-occurrence matrix, Graphics Processing

Unit, GPGPU, Haralick Texture Features extraction

I. INTRODUCTION
1973 Haralick introduced the co-occurrence matrix and his

Texture Features for automated classification of rocks into
six categories [1]. Today Haralick Texture Features are
widely used for different kinds of images, among others
microscope images of biological cells. One drawback is the
relatively high cost of the computation. It is however possible
to speed up the computation using general-purpose graphics
processing units (GPUs). Nowadays, GPUs (ordinary
computer graphics cards) are more and more used to
accelerate non-graphical software by highly parallel
execution.

In biological applications, features are extracted from
microscopy images of cells and are used for automated
classification as described in [2], [3]. Fig. 1 shows an
example of a microscopy image (1344 x 1024 pixels and 12
bit gray level depth), which includes several hundred cells
(typically 100-600). Usually a very large number of images
have to be analyzed so that computing the features takes

Manuscript received February 27, 2008. This work was supported in part

by the VIROQUANT project (http://viroquant.uni-hd.de).
Markus Gipp, Guillermo Marcus (group leader) and Reinhard Männer

(head of institute) are with the Institute of Computer Science V, Scientific
Computing Group, University of Heidelberg located at B6, 26, 68161
Mannheim, Germany (phone: +49 621 181-3585); (e-mails: markus.gipp,
guillermo.marcus, reinhard.maenner ..@ziti.uni-heidelberg.de).

Nathalie Harder, Apichat Suratanee, Karl Rohr, and Rainer König are
with IPMB, BIOQUANT and DKFZ Heidelberg, Dept. Bioinformatics and
Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 267,
69120 Heidelberg, Germany. Nathalie Harder and Karl Rohr belong to the
Biomedical Computer Vision Group. (e-mails: n.harder, a.suratanee, k.rohr,
r.koenig ..@dkfz-heidelberg.de).

several weeks or months. Hence, there is a demand to speed
up the computation by orders of magnitude.

Fig. 1 Microscopy image with several hundred cells.

Our approach consists in using a GPU to accelerate the
computation by a factor of 10 to 100 compared to optimized
CPU code that meets the demand and opens new possibilities
for the biologists. Earlier image processing algorithms have
often been accelerated using reconfigurable hardware (field
programmable gate arrays, FPGAs). From our experience,
the development time for GPU programs is however much
shorter than for reconfigurable hardware. Moreover, a
common off the-shelf high-end graphics card is much less
expensive than a reconfigurable hardware board with more
expensive ICs on it. In addition, the computing power of
GPUs grows much faster than that of FPGAs or CPUs.

Below, we present shortly recent approaches to solve the

problem, then the formulas that have to be computed, a graph
that represents the interdependence of them and allows to
extract an optimal sequence of computation, and finally two
software versions that use parallelization of the CPU resp.
GPU. Afterwards, we present the speedup of these versions.
We finally discuss the results and draw conclusions.

II. METHODS

A. State of the Art
Speedup of the computation of the co-occurrence matrix

Accelerating the Computation of
Haralick’s Texture Features using
Graphics Processing Units (GPUs)

Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl Rohr,
Rainer König, Reinhard Männer

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

and the Haralick Texture Features using reconfigurable
hardware has been described in [4]. There only a subset of the
14 features was chosen and a speedup compared to a CPU of
4.75 for the co-occurrence matrix and 7.3 for the texture
features was obtained. More recent FPGAs (Xilinx Virtex4,
Virtex5) would provide more space to implement more
features at a higher clock speed.

Using GPUs for general-purpose computation is more and
more common. During the last years the peak computing
power of GPUs rose dramatically. As an example, the NVidia
GeForce 8800 GTX reached over 518 GFLOPS with 128
thread processors and 1.35 GHz clock speed. It can process 3
operations concurrently, two multiply-add operations in the
computing unit and one multiply operation in the texture
interpolation. Hence the maximum of the computing unit is
only 128 * 1.35GHz * 2 floating point operations = 345.6
GFLOPS, in some cases less than half for costly operations.
A state of the art CPU (Intel QX6850, quad core with 3GHz)
reached around 48 GFLOPS [5], i.e. 12 GFLOPS for each
core. Reference [6] presents various applications in which
GPUs provide a speedup of 3…59 compared to CPUs.
Especially n-body simulations achieve a GPU performance
over 200 GFLOPS. One should mention that the total peak
performance depends on the application itself and how to
count the GFLOPS. Only applications using multiply-add
operations without divisions and other costly operations
come close to the theoretical maximum performance. The
better an application can be parallelized and partitioned in
identical small computational units, the better the architecture
of a GPU is utilized.

The NVidia graphic card we used (GeForce 8800 GTX)
has 16 multiprocessors. Each of them has 8192 registers and
16 kbytes of shared memory, and consists of 8 processing
elements. These processing elements are arranged in a single
instruction multiple data (SIMD) fashion. In total the GPU
provides 128 parallel pipelines that can be operated most
efficiently if a much higher number of light-weight program
threads are available.

NVidia offers an Application Programmable Interface
(API), an extension to the programming language C called
Compute Unified Device Architecture (CUDA), to use the
highly parallel GPU architecture. One CUDA block contains
a program code in a SIMD fashion and is executed on one
multiprocessor. All threads within a block share the total
amount of registers and shared memory of one
multiprocessor. Using a high number of threads has the
advantage of hiding latency of memory accesses for a
maximum occupation of the multiprocessor computational
units. Blocks are arranged in a block grid so that they can be
dispatched between the multiprocessors. [7] discusses the
architecture and CUDA.

B. Equation Analysis
We have analyzed the calculation in two steps, the

co-occurrence matrices (co-matrices) and the Haralick
Texture Features (features). The co-matrix is computed from
an image and the features are computed based on the
co-matrices. Prior to feature extraction we segmented the
images using the adaptive thresholding algorithm in [2].

1) Co-Matrix

The generation of the co-occurrence matrices is based on
second order statistics as described in [1] and [8]. This
approach computes histogram matrices for different pixel
pair orientations. Using pixel pairs along a specific angle
(horizontal, diagonal, vertical, co-diagonal) and distance
(one to five pixels) together, a two-dimensional symmetric
histogram of the gray levels is generated. The gray levels of
the pixel pair address the indexes in the co-matrix and
increment it by one, an example can be found in [8]. For each
specific angle/distance combination a separate matrix must
be generated. That means one side of the square co-matrix is
as long as the gray level range in the image.

The microscope generates multi cell images (Fig. 1) with a
gray level depth of 12 bits corresponding to 4096 different
gray levels. Hence each co-matrix needs 4096 x 4096 x 4
bytes = 64 Mbytes of storage capacity. The graphic device is
equipped with 768 Mbytes of memory. Therefore we cannot
calculate more than 12 matrices at once and the features on
the corresponding image, which does not fully use the GPU.
For a massive parallel approach we need to reduce the size of
the co-matrices and the size depends on the existing gray
range of each extracted cell image out of the multi cell image.

Actually the co-matrices contain almost everywhere zeros,
because the combinations of two neighbored pixels have a
small gray range. Especially the plane background has the
gray tone zero (black) with only one combination of gray
levels (zero/zero) apart from the background cell border
combinations.

In our algorithm we cut all rows (because of symmetry
columns too) with all zero elements to a smaller packed
co-matrix. For the feature calculation we store the gray value
index of the full co-matrix in a lookup table corresponding to
the index of the packed co-matrix. So the gray value can be
reconstructed from the index of the packed co-matrix, which
is necessary for some feature equation. This co-matrix
reduction strategy is a compromise between less storage
capacity and direct accessibility in memory.

This step, using packed co-matrices, works well in our
algorithm for real cell images. Additionally, we count the
memory required for the generated packed co-matrices, to
avoid overflow of the device memory.

2) Features

The Haralick Texture Features comprise 14 features
summarized in [9]. In our implementation we optimize the
first 13 Haralick Texture Features (1) to (13). In our
application we do not compute Feature number 14
(Maximum Correlation Coefficient).

∑∑
= =

=
Ng

i

Ng

j
jiPf

1 1

2
),(1 (1)

kjiNg

k

Ng

j
ji

Ng

i

Pkf
=−−

= ==
∑ ∑∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

||1

0 1
),(

1

2
2 (2)

∑∑
= =

−=
Ng

i

Ng

j
jiPijf

1 1

2
),(23)(1 μ

σ
 (3)

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

∑∑
= =

)−=
Ng

i

Ng

j
jiPif

1 1
),(

2
4 (μ (4)

∑∑
= = −+

=
Ng

i

Ng

j

ji

ji
P

f
1 1

2
),(

5)(1
 (5)

∑
−

=
+=

22

0
6)(

Ng

k
yx kPkf (6)

∑
−

=
+−=

22

0

2
67)()(

Ng

k
yx kPfkf (7)

∑
−

=
++−=

22

0
8)](log[)(

Ng

k
yxyx kPkPf (8)

∑∑
= =

−=
Ng

i

Ng

j
jiji PPf

1 1
),(),(9]log[(9)

∑ ∑
−

=

−

=
−− ⎥

⎦

⎤
⎢
⎣

⎡
−=

1

0

1

0

2
||||10))(()(

Ng

k

Ng

l
yxyx kPlkkPf (10)

∑
−

=
−−−=

1

0
||||11)](log[)(

Ng

k
yxyx kPkPf (11)

H
HXYff 19

12
−

= (12)

]|2|2exp[1 913 fHXYf −−−=
 (13)

The definitions for the Haralick Texture Features are

defined in (14) to (21).

jik
Ngk

Ng

i

Ng

j
jiyx Pkp +=

−=
= =

+ ∑∑= 22,..3,2
1 1

),()((14)

||
2..2,1,0

1 1
),(||)(jik

Ngk

Ng

i

Ng

j
jiyx Pkp −=

−=
= =

− ∑∑= (15)

∑
=

=
Ng

j
jii Pp

1
),()((16)

∑
=

=
Ng

g
gpg

1
)(μ (17)

2

1
)(

2)(μσ −= ∑
=

gp
Ng

g
g (18)

∑∑
= =

−=
Ng

i

Ng

j
jiji ppPHXY

1 1
)()(),(]log[1 (19)

∑∑
= =

−=
Ng

i

Ng

j
jiji ppppHXY

1 1
)()()()(]log[2 (20)

∑
=

=
Ng

g
gg ppH

1
)()(]log[(21)

Most of the features (1) - (13) have a visual meaning, e.g.

(1) the angular second moment is a measure of the
smoothness and (2) a measure of contrast in the image. This
is discussed in more detail in [9], [10].

The feature list in the book is for the common case,
symmetric and asymmetric co-variance matrices. Our
matrices are symmetric, so we could simplify some equations
base on common results for row wise and column wise
computations. We have changed (3) correlation, (12)
information measure I, (17) mean, (18) variance and (21)
entropy.

Feature (1), angular second moment, (2) contrast, (4)
variance, (5) inverse difference moment, (6) sum difference
average, (7) sum variance, (8) sum entropy, (9) entropy, (10)
difference variance, (11) difference entropy and (13)
information measurement II are unchanged as the rest of the
definitions.

Most of the features (1)-(4), (6)-(8) and (10)-(13) depend
on other features as well as on intermediate results. To avoid
expensive computations we calculate these results only once.
Therefore the features have to be calculated in the right
sequence, e.g. (7) demands the result of (6). The complex
dependency of the computation sequence is shown in Fig. 2.
It contains several graphs with the preferred sequence of
intermediate result and feature computation.

f1

P

P|x-y|Px+y

σ2

µ

H

f5

f9

HXY2

f11

f10

f2 MacP|x-y|

f7

f8 f6

Pij

HXY1

f12 f4

f3

f13

*

* *

*

**

*

*

*

Fig. 2 The computation dependency graph of the
Haralick Texture Features (circles) and intermediate
results (boxes). All features and intermediate results
marked with an asterisk (*) depend on the co-occurrence
matrices.

The aim is to split the whole feature calculation in small
computing steps with intermediate results and to recognize
which other results or intermediate results can be reused.
That graph is the basis of following optimizations. It shows

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

roots, branches and leaves. E.g., all leaves twigged to the
same root, can be computed in one loop for reading the same
source once. For computation optimization the graph can also
be grouped in several graphs for less arbitrary memory
accesses. The advantage is that the computation of e.g. (6),
(7) and (8) only reads from the intermediate result Px+y.
Thus linear reading from memory provides fast access to a
small area in memory, providing good cache hit rates for
architectures with caches.

C. Software Optimization
In our first step, we analyzed the existing software version

that computes the Haralick Texture Features. The goal was to
optimize the code and run it on a single node. The single run
version can also be used to run it on a ten node cluster with
different data. Therefore, we implemented the analyzed
equation graph shown above, changed the loop behavior,
optimized cash hit rates and saved expensive double
computations.

The next step was to obtain a better speedup by using
CUDA from NVidia for a GPU implementation.

D. GPU Parallelization
There are several ways to parallelize the application, to

compute several cell images in parallel (C), to generate all
co-occurrence matrices for each angle/distance combination
in parallel (AD) and to compute each feature by summing and
multiply several elements in parallel.

We iterate over the multi cell image to compute AD
co-occurrence matrices with a step width C. The generation
work for each step is C * AD, equal to the dimensions of the
block grid in CUDA used as parallelization size. In each
CUDA block several threads can be allocated executing the
same code on different data. During the generation process
we serialized the increment part for each CUDA block. Using
one thread only grants access to the increment results in each
matrix element during counting. For more threads in
execution we could not ensure a mutual exclusive access to
the increment results.

For each of the C * AD generated matrices, 13 features are
computed in the sequential manner of the graph. A special
sequence has been worked out to compute every feature as
well as intermediate result successively. Therefore, each
feature and intermediate result corresponds to an individual
kernel on the GPU with its own optimized thread count
determined by the NVidia CUDA_Occupancy_calculator
sheet [11]. The threads parallelize the computation (often
multiply and logarithmic operation) inside the sum. The
whole feature computation is divided in six parts, shown in
Table 1. Part 1 to 5 contain kernel functions which read from
the same source, to grant linear reading for each part.
Altogether our computation is split into 24 kernel functions
which run on the GPU. Small and highly parallel kernel
functions are ideal for mapping onto the single instruction
multiple data (SIMD) architecture of each multiprocessor of
the GPU, and thus promise ideal GPU occupancy.

Initialisation part
Function 0A generate index / gray level lookup tables
Function 0B clear co-occurrence matrices
Function 0C compute co-occurrence matrices
Function 0D normalize co-occurrence matrices
Part 1, read from co-occurrence matrices
Function 1A compute f1
Function 1B compute f5
Function 1C compute f6
Function 1D compute P
Function 1E compute P|x-y|
Function 1F compute Px+y

Part 2, read from P
Function 2A compute mean
Function 2B compute var
Function 2C compute H

Part 3, read from P|x-y|
Function 3A compute f2
Function 3B compute f11
Function 3C compute MacP|x-y|
Function 3D compute f10

Part 4, read from Px+y
Function 4A compute f6
Function 4B compute f8
Function 4C compute f7

Part 5, read from co-occurrence matrix
Function 5A compute Pij and f3
Function 5B compute f4
Function 5C compute HXY1, f12, read from P
Function 5D compute HXY2, f13, read from P only

Table 1 List of all kernel functions in their order of
execution. Left column contains the function names;
right column contains the computational task.

All 128 pipelines (16 multiprocessors each with 8

processing elements) process all C * AD CUDA blocks. Each
CUDA block executes the presented kernel functions to
generate one co-occurrence matrix and to compute all 13
features. The dispatcher of the GPU chooses a number of
CUDA blocks and switches between them so that the
computing units are occupied best and memory transfers are
mostly hidden. The execution model is discussed in [7].

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

III. RESULTS
We compared three versions of the Haralick Texture

Feature computation, the original version, an optimized
software version and a CUDA version using one GPU.
Results are shown in Table 2.

 1. Original

SW
Version

2. Optimized
SW

Version

3. CUDA
GPU

Version
Execution
time [s] 2378 214 11.0

Speed up
factor to 1. 1x 11x 216x

Speed up
factor to 2. - 1x 19x

Table 2 Execution times and speedup factor comparison
of all introduced versions

The execution times have been compared on a Intel Core 2

Quad machine with 2.4 GHz and 8 MBytes L2 cache, 4
GBytes DDR2 Ram with 1066MHz clock speed and a
NVidia 8800GTX 1350MHz shader clock, 768 MByte
GDDR3 900MHz 384Bit, PCIe v1.0 16x graphic adapter.
The operating system was Linux Ubuntu x64 with kernel
version 2.6.20 and gnu C-compiler version 4.1.2. For
software version 1 and 2 we used one CPU core only.

In the GPU version we chose C=8, eight cells are
calculated in parallel. With AD=20, i.e. 4 angles times 5
directions for the matrices per cell we got best results. The
total grid size is 160 blocks in CUDA for each feature
computing kernel.

For a performance comparison we measured the GFLOPS
for the GPU and the optimized CPU implementation as
shown in Table 3.

 CPU

Version
GPU

Version
Maximum
GFLOPS 12 345.6

Achieved
GFLOPS 0.18 3.36

Used fraction of
maximum
performance

1.5% 0.97%

Table 3 Theoretical and achieved GLFOPS in the one
core optimized software version and the GPU version.

IV. DISCUSSION
The speedup of a factor of 216 for the GPU version

compared to the original un-optimized software version
meets the demand of the biologists. Compared to the
optimized software version the speedup is still around a
factor of 19. A look at the performance of only 3.36 GFLOPS
shows that the GPU is not well utilized. This small number
results from the fact that the code contains many integer

operations that we have not counted and it contains many
expensive floating point operations (DIV, LOG, SQRT and
EXP). Additionally, the Haralick Texture Feature
computation includes a complex memory access pattern so
that the computational amount is too small to hide completely
the memory transfers. Also the serialized nature of the matrix
generation equations as well as some kernel functions
without any floating point operations further reduce the total
achieved number of GFLOPS. Counting operations per
seconds instead of FLOPS would be more accurate for the
GPU.

Using more CUDA blocks than 160 to hide memory
transfers by the computing units still raises the speedup factor
and number of GFLOPS. To increase the grid block, AD or C
can be used. AD is already the needed maximum with the
combination of four angle and five distances. Only C, the
parallel computation of the single cell images, is usable but
the limited device memory of the GPU board enforces to use
C=8 to keep the algorithm stable.

A second look on Table 3 shows that the CPU has a similar
low performance value. Consequently, the CPU
computational power is also reduced by the complex memory
accesses pattern. The last row in the table shows which
fraction of the peak performance has been achieved on both
hardware architectures, or how much overhead (non-floating
point operations) it contains. In our implementation the CPU
deals with our complex memory access pattern better than the
GPU.

For the complexity of the Haralick Texture Features it
delivers still very good results.

V. CONCLUSION
This paper has shown that the costly computation of the

co-occurrence matrix generation and the Haralick Texture
Features can be sped up by a factor of 216 in comparison to
the original un-optimized software version. This allows
biologists to perform much more tests to acquire novel
knowledge in cell biology.

To compute the features, we developed a graph which can
be used to find an optimized way. Furthermore, it shows
which path is not needed to calculate if some features are
uninteresting or which branch can be completely skipped.

Graphics Processing Units are inexpensive alternatives to
reconfigurable hardware with an even higher computational
capability, a much shorter implementation development time
and much faster (in orders of magnitudes) than Central
Processing Units. Furthermore, Graphics Processing Units
can deal with complex memory access patterns and complex
expensive computation with still a reasonable speedup
compared to CPUs.

Recently we tested a newer, less powerful and cheaper
graphic device (NVidia 8800GT) with the Haralick
Algorithm. First results showed that this GPU is only 11%
slower than the device we used earlier. To equip each node of
a cluster with these cards is a very inexpensive way to
increase the computational power to current and future
demands.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

REFERENCES
[1] R. M. Haralick and K. Shanmugam, "Computer Classification of

Reservoir Sandstones," IEEE Transactions on Geoscience Electronics,
vol. 11, pp. 171-177, 1973

[2] N. Harder, B. Neumann, M. Held, U. Liebel, H. Erfle, J. Ellenberg, R.
Eils, and K. Rohr, ''Automated recognition of mitotic patterns in
fluorescence microscopy images of human cells'', Proc. IEEE Internat.
Symposium on Biomedical Imaging: From Nano to Macro (ISBI'06),
Arlington/VA, USA, April 6-9, 2006, 1016-1019

[3] C. Conrad, H. Erfle, P. Warnat, N. Daigle, T. Lörch, J. Ellenberg, R.
Pepperkok, and R. Eils, "Automatic identification of subcellular
phenotypes on human cell arrays," Genome Research, vol. 14, pp.
130-1136, 2004.

[4] M. A. Tahir, A. Bouridane, F. Kurugollu, and A. Amira, "Accelerating
the computation of GLCM and Haralick texture features on
reconfigurable hardware," in Image Processing, 2004. ICIP '04. 2004
International Conference on, 2004, pp. 2857-2860 Vol. 5.

[5] Intel® microprocessor export compliance metrics, (10. February 2008)
http://www.intel.com/support/processors/sb/cs-023143.htm

[6] H. Nguyen, GPU Gems 3. Upper Saddle River, NJ, USA:
Addison-Wesley, 2007, pp. 771-891.

[7] NVIDIA CUDA Programming Guid Version 1.1, (10. February 2008)
http://www.nvidia.com/object/cuda_develop.html

[8] R. M. Haralick, "Statistical and structural approaches to texture,"
Proceedings of the IEEE, vol. 67, pp. 786-804, 1979.

[9] S. Theodoridis and K. Koutroumbas, Pattern Recognition Third
Edition. San Diego, CA, USA: Academic Press An imprint of Elsevier,
2006.

[10] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural Features
for Image Classification," Systems, Man and Cybernetics, IEEE
Transactions on, vol. 3, pp. 610-621, 1973.

[11] CUDA Occupancy Calculator v1.2, Excel sheet, (10. February 2008)
http://www.nvidia.com/object/cuda_develop.html

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

