
 
 

  
Abstract—This paper presents the speedup of the 

computation of co-occurrence matrices and Haralick Texture 
Features, as used for analyzing images of cells, by 
general-purpose graphic processing units (GPU). The 
computation sequence for the features is analyzed in a graph 
and an optimized software version is derived. Afterwards, a 
massive parallel software version for GPUs is designed. On a 
single node of a cluster, a speedup of 216 was obtained 
compared to an un-optimized software version, and speedup of 
19 compared to an optimized software version.  

 
Index Terms— Co-occurrence matrix, Graphics Processing 

Unit, GPGPU, Haralick Texture Features extraction 
 

I. INTRODUCTION 
1973 Haralick introduced the co-occurrence matrix and his 

Texture Features for automated classification of rocks into 
six categories [1]. Today Haralick Texture Features are 
widely used for different kinds of images, among others 
microscope images of biological cells. One drawback is the 
relatively high cost of the computation. It is however possible 
to speed up the computation using general-purpose graphics 
processing units (GPUs). Nowadays, GPUs (ordinary 
computer graphics cards) are more and more used to 
accelerate non-graphical software by highly parallel 
execution. 

In biological applications, features are extracted from 
microscopy images of cells and are used for automated 
classification as described in [2], [3]. Fig. 1 shows an 
example of a microscopy image (1344 x 1024 pixels and 12 
bit gray level depth), which includes several hundred cells 
(typically 100-600). Usually a very large number of images 
have to be analyzed so that computing the features takes 
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several weeks or months. Hence, there is a demand to speed 
up the computation by orders of magnitude. 
 

 
Fig. 1 Microscopy image with several hundred cells. 

Our approach consists in using a GPU to accelerate the 
computation by a factor of 10 to 100 compared to optimized 
CPU code that meets the demand and opens new possibilities 
for the biologists. Earlier image processing algorithms have 
often been accelerated using reconfigurable hardware (field 
programmable gate arrays, FPGAs). From our experience, 
the development time for GPU programs is however much 
shorter than for reconfigurable hardware. Moreover, a 
common off the-shelf high-end graphics card is much less 
expensive than a reconfigurable hardware board with more 
expensive ICs on it. In addition, the computing power of 
GPUs grows much faster than that of FPGAs or CPUs.  

 
Below, we present shortly recent approaches to solve the 

problem, then the formulas that have to be computed, a graph 
that represents the interdependence of them and allows to 
extract an optimal sequence of computation, and finally two 
software versions that use parallelization of the CPU resp. 
GPU. Afterwards, we present the speedup of these versions. 
We finally discuss the results and draw conclusions. 

 

II. METHODS 

A. State of the Art 
Speedup of the computation of the co-occurrence matrix 
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and the Haralick Texture Features using reconfigurable 
hardware has been described in [4]. There only a subset of the 
14 features was chosen and a speedup compared to a CPU of 
4.75 for the co-occurrence matrix and 7.3 for the texture 
features was obtained. More recent FPGAs (Xilinx Virtex4, 
Virtex5) would provide more space to implement more 
features at a higher clock speed. 

Using GPUs for general-purpose computation is more and 
more common. During the last years the peak computing 
power of GPUs rose dramatically. As an example, the NVidia 
GeForce 8800 GTX reached over 518 GFLOPS with 128 
thread processors and 1.35 GHz clock speed. It can process 3 
operations concurrently, two multiply-add operations in the 
computing unit and one multiply operation in the texture 
interpolation. Hence the maximum of the computing unit is 
only 128 * 1.35GHz * 2 floating point operations = 345.6 
GFLOPS, in some cases less than half for costly operations. 
A state of the art CPU (Intel QX6850, quad core with 3GHz) 
reached around 48 GFLOPS [5], i.e. 12 GFLOPS for each 
core. Reference [6] presents various applications in which 
GPUs provide a speedup of 3…59 compared to CPUs. 
Especially n-body simulations achieve a GPU performance 
over 200 GFLOPS. One should mention that the total peak 
performance depends on the application itself and how to 
count the GFLOPS. Only applications using multiply-add 
operations without divisions and other costly operations 
come close to the theoretical maximum performance. The 
better an application can be parallelized and partitioned in 
identical small computational units, the better the architecture 
of a GPU is utilized. 

The NVidia graphic card we used (GeForce 8800 GTX) 
has 16 multiprocessors. Each of them has 8192 registers and 
16 kbytes of shared memory, and consists of 8 processing 
elements. These processing elements are arranged in a single 
instruction multiple data (SIMD) fashion. In total the GPU 
provides 128 parallel pipelines that can be operated most 
efficiently if a much higher number of light-weight program 
threads are available. 

NVidia offers an Application Programmable Interface 
(API), an extension to the programming language C called 
Compute Unified Device Architecture (CUDA), to use the 
highly parallel GPU architecture. One CUDA block contains 
a program code in a SIMD fashion and is executed on one 
multiprocessor. All threads within a block share the total 
amount of registers and shared memory of one 
multiprocessor. Using a high number of threads has the 
advantage of hiding latency of memory accesses for a 
maximum occupation of the multiprocessor computational 
units. Blocks are arranged in a block grid so that they can be 
dispatched between the multiprocessors. [7] discusses the 
architecture and CUDA. 

 

B. Equation Analysis 
We have analyzed the calculation in two steps, the 

co-occurrence matrices (co-matrices) and the Haralick 
Texture Features (features). The co-matrix is computed from 
an image and the features are computed based on the 
co-matrices. Prior to feature extraction we segmented the 
images using the adaptive thresholding algorithm in [2]. 

 
1) Co-Matrix 

The generation of the co-occurrence matrices is based on 
second order statistics as described in [1] and [8]. This 
approach computes histogram matrices for different pixel 
pair orientations. Using pixel pairs along a specific angle 
(horizontal, diagonal, vertical, co-diagonal) and distance 
(one to five pixels) together, a two-dimensional symmetric 
histogram of the gray levels is generated. The gray levels of 
the pixel pair address the indexes in the co-matrix and 
increment it by one, an example can be found in [8]. For each 
specific angle/distance combination a separate matrix must 
be generated. That means one side of the square co-matrix is 
as long as the gray level range in the image. 

The microscope generates multi cell images (Fig. 1) with a 
gray level depth of 12 bits corresponding to 4096 different 
gray levels. Hence each co-matrix needs 4096 x 4096 x 4 
bytes = 64 Mbytes of storage capacity. The graphic device is 
equipped with 768 Mbytes of memory. Therefore we cannot 
calculate more than 12 matrices at once and the features on 
the corresponding image, which does not fully use the GPU. 
For a massive parallel approach we need to reduce the size of 
the co-matrices and the size depends on the existing gray 
range of each extracted cell image out of the multi cell image.  

Actually the co-matrices contain almost everywhere zeros, 
because the combinations of two neighbored pixels have a 
small gray range. Especially the plane background has the 
gray tone zero (black) with only one combination of gray 
levels (zero/zero) apart from the background cell border 
combinations. 

In our algorithm we cut all rows (because of symmetry 
columns too) with all zero elements to a smaller packed 
co-matrix. For the feature calculation we store the gray value 
index of the full co-matrix in a lookup table corresponding to 
the index of the packed co-matrix. So the gray value can be 
reconstructed from the index of the packed co-matrix, which 
is necessary for some feature equation. This co-matrix 
reduction strategy is a compromise between less storage 
capacity and direct accessibility in memory. 

This step, using packed co-matrices, works well in our 
algorithm for real cell images. Additionally, we count the 
memory required for the generated packed co-matrices, to 
avoid overflow of the device memory.  

 
2) Features 

The Haralick Texture Features comprise 14 features 
summarized in [9]. In our implementation we optimize the 
first 13 Haralick Texture Features (1) to (13). In our 
application we do not compute Feature number 14 
(Maximum Correlation Coefficient).  
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The definitions for the Haralick Texture Features are 

defined in (14) to (21). 
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Most of the features (1) - (13) have a visual meaning, e.g. 

(1) the angular second moment is a measure of the 
smoothness and (2) a measure of contrast in the image. This 
is discussed in more detail in [9], [10].  

The feature list in the book is for the common case, 
symmetric and asymmetric co-variance matrices. Our 
matrices are symmetric, so we could simplify some equations 
base on common results for row wise and column wise 
computations. We have changed (3) correlation, (12) 
information measure I, (17) mean, (18) variance and (21) 
entropy.  

Feature (1), angular second moment, (2) contrast, (4) 
variance, (5) inverse difference moment, (6) sum difference 
average, (7) sum variance, (8) sum entropy, (9) entropy, (10) 
difference variance, (11) difference entropy and (13) 
information measurement II are unchanged as the rest of the 
definitions.  

Most of the features (1)-(4), (6)-(8) and (10)-(13) depend 
on other features as well as on intermediate results. To avoid 
expensive computations we calculate these results only once. 
Therefore the features have to be calculated in the right 
sequence, e.g. (7) demands the result of (6). The complex 
dependency of the computation sequence is shown in Fig. 2. 
It contains several graphs with the preferred sequence of 
intermediate result and feature computation. 
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Fig. 2 The computation dependency graph of the 
Haralick Texture Features (circles) and intermediate 
results (boxes). All features and intermediate results 
marked with an asterisk (*) depend on the co-occurrence 
matrices.  

The aim is to split the whole feature calculation in small 
computing steps with intermediate results and to recognize 
which other results or intermediate results can be reused. 
That graph is the basis of following optimizations. It shows 
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roots, branches and leaves. E.g., all leaves twigged to the 
same root, can be computed in one loop for reading the same 
source once. For computation optimization the graph can also 
be grouped in several graphs for less arbitrary memory 
accesses. The advantage is that the computation of e.g. (6), 
(7) and (8) only reads from the intermediate result Px+y. 
Thus linear reading from memory provides fast access to a 
small area in memory, providing good cache hit rates for 
architectures with caches.   

 

C. Software Optimization 
In our first step, we analyzed the existing software version 

that computes the Haralick Texture Features. The goal was to 
optimize the code and run it on a single node. The single run 
version can also be used to run it on a ten node cluster with 
different data. Therefore, we implemented the analyzed 
equation graph shown above, changed the loop behavior, 
optimized cash hit rates and saved expensive double 
computations.  

The next step was to obtain a better speedup by using 
CUDA from NVidia for a GPU implementation.  
 

D. GPU Parallelization 
There are several ways to parallelize the application, to 

compute several cell images in parallel (C), to generate all 
co-occurrence matrices for each angle/distance combination 
in parallel (AD) and to compute each feature by summing and 
multiply several elements in parallel.  

We iterate over the multi cell image to compute AD 
co-occurrence matrices with a step width C. The generation 
work for each step is C * AD, equal to the dimensions of the 
block grid in CUDA used as parallelization size.  In each 
CUDA block several threads can be allocated executing the 
same code on different data. During the generation process 
we serialized the increment part for each CUDA block. Using 
one thread only grants access to the increment results in each 
matrix element during counting. For more threads in 
execution we could not ensure a mutual exclusive access to 
the increment results.  

For each of the C * AD generated matrices, 13 features are 
computed in the sequential manner of the graph. A special 
sequence has been worked out to compute every feature as 
well as intermediate result successively. Therefore, each 
feature and intermediate result corresponds to an individual 
kernel on the GPU with its own optimized thread count 
determined by the NVidia CUDA_Occupancy_calculator 
sheet [11]. The threads parallelize the computation (often 
multiply and logarithmic operation) inside the sum. The 
whole feature computation is divided in six parts, shown in 
Table 1. Part 1 to 5 contain kernel functions which read from 
the same source, to grant linear reading for each part. 
Altogether our computation is split into 24 kernel functions 
which run on the GPU. Small and highly parallel kernel 
functions are ideal for mapping onto the single instruction 
multiple data (SIMD) architecture of each multiprocessor of 
the GPU, and thus promise ideal GPU occupancy. 

 
 

Initialisation part 
Function 0A generate index / gray level lookup tables 
Function 0B clear co-occurrence matrices 
Function 0C compute co-occurrence matrices 
Function 0D normalize co-occurrence matrices 
Part 1, read from co-occurrence matrices 
Function 1A compute f1 
Function 1B compute f5 
Function 1C compute f6 
Function 1D compute P 
Function 1E compute P|x-y| 
Function 1F compute Px+y 
 
Part 2, read from P 
Function 2A compute mean 
Function 2B compute var 
Function 2C compute H 
 
Part 3, read from P|x-y| 
Function 3A compute f2 
Function 3B compute f11 
Function 3C compute MacP|x-y| 
Function 3D compute f10 
 
Part 4, read from Px+y 
Function 4A compute f6 
Function 4B compute f8 
Function 4C compute f7 
 
Part 5, read from co-occurrence matrix 
Function 5A compute Pij and f3 
Function 5B compute f4 
Function 5C compute HXY1, f12, read from P 
Function 5D compute HXY2, f13, read from P only  

Table 1 List of all kernel functions in their order of 
execution. Left column contains the function names; 
right column contains the computational task. 

 
All 128 pipelines (16 multiprocessors each with 8 

processing elements) process all C * AD CUDA blocks. Each 
CUDA block executes the presented kernel functions to 
generate one co-occurrence matrix and to compute all 13 
features. The dispatcher of the GPU chooses a number of 
CUDA blocks and switches between them so that the 
computing units are occupied best and memory transfers are 
mostly hidden. The execution model is discussed in [7]. 
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III. RESULTS 
We compared three versions of the Haralick Texture 

Feature computation, the original version, an optimized 
software version and a CUDA version using one GPU. 
Results are shown in Table 2.  

 
 1. Original 

SW 
Version 

2. Optimized  
SW 

Version 

3. CUDA 
GPU 

Version 
Execution 
time [s] 2378 214 11.0 

Speed up 
factor to 1. 1x 11x 216x 

Speed up 
factor to 2. - 1x 19x 

Table 2 Execution times and speedup factor comparison 
of all introduced versions  

 
The execution times have been compared on a Intel Core 2 

Quad machine with 2.4 GHz and 8 MBytes L2 cache, 4 
GBytes DDR2 Ram with 1066MHz clock speed and a 
NVidia 8800GTX 1350MHz shader clock, 768 MByte 
GDDR3 900MHz 384Bit, PCIe v1.0 16x graphic adapter. 
The operating system was Linux Ubuntu x64 with kernel 
version 2.6.20 and gnu C-compiler version 4.1.2. For 
software version 1 and 2 we used one CPU core only. 

In the GPU version we chose C=8, eight cells are 
calculated in parallel. With AD=20, i.e. 4 angles times 5 
directions for the matrices per cell we got best results. The 
total grid size is 160 blocks in CUDA for each feature 
computing kernel.  

For a performance comparison we measured the GFLOPS 
for the GPU and the optimized CPU implementation as 
shown in Table 3.  

 
 CPU  

Version 
GPU  

Version 
Maximum 
GFLOPS 12 345.6 

Achieved 
GFLOPS 0.18 3.36 

Used fraction of 
maximum 
performance 

1.5% 0.97% 

Table 3 Theoretical and achieved GLFOPS in the one 
core optimized software version and the GPU version. 

 

IV. DISCUSSION 
The speedup of a factor of 216 for the GPU version 

compared to the original un-optimized software version 
meets the demand of the biologists. Compared to the 
optimized software version the speedup is still around a 
factor of 19. A look at the performance of only 3.36 GFLOPS 
shows that the GPU is not well utilized. This small number 
results from the fact that the code contains many integer 

operations that we have not counted and it contains many 
expensive floating point operations (DIV, LOG, SQRT and 
EXP). Additionally, the Haralick Texture Feature 
computation includes a complex memory access pattern so 
that the computational amount is too small to hide completely 
the memory transfers. Also the serialized nature of the matrix 
generation equations as well as some kernel functions 
without any floating point operations further reduce the total 
achieved number of GFLOPS. Counting operations per 
seconds instead of FLOPS would be more accurate for the 
GPU. 

Using more CUDA blocks than 160 to hide memory 
transfers by the computing units still raises the speedup factor 
and number of GFLOPS. To increase the grid block, AD or C 
can be used. AD is already the needed maximum with the 
combination of four angle and five distances. Only C, the 
parallel computation of the single cell images, is usable but 
the limited device memory of the GPU board enforces to use 
C=8 to keep the algorithm stable. 

A second look on Table 3 shows that the CPU has a similar 
low performance value. Consequently, the CPU 
computational power is also reduced by the complex memory 
accesses pattern. The last row in the table shows which 
fraction of the peak performance has been achieved on both 
hardware architectures, or how much overhead (non-floating 
point operations) it contains. In our implementation the CPU 
deals with our complex memory access pattern better than the 
GPU.  

For the complexity of the Haralick Texture Features it 
delivers still very good results. 

 

V. CONCLUSION 
This paper has shown that the costly computation of the 

co-occurrence matrix generation and the Haralick Texture 
Features can be sped up by a factor of 216 in comparison to 
the original un-optimized software version. This allows 
biologists to perform much more tests to acquire novel 
knowledge in cell biology. 

To compute the features, we developed a graph which can 
be used to find an optimized way. Furthermore, it shows 
which path is not needed to calculate if some features are 
uninteresting or which branch can be completely skipped.   

Graphics Processing Units are inexpensive alternatives to 
reconfigurable hardware with an even higher computational 
capability, a much shorter implementation development time 
and much faster (in orders of magnitudes) than Central 
Processing Units. Furthermore, Graphics Processing Units 
can deal with complex memory access patterns and complex 
expensive computation with still a reasonable speedup 
compared to CPUs. 

Recently we tested a newer, less powerful and cheaper 
graphic device (NVidia 8800GT) with the Haralick 
Algorithm. First results showed that this GPU is only 11% 
slower than the device we used earlier. To equip each node of 
a cluster with these cards is a very inexpensive way to 
increase the computational power to current and future 
demands. 
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