
Parallel Mining of Frequent Patterns in
Transactional Databases

S.M. Fakhrahmad, G.H. Dastghaibi Fard

1Abstract—One of the important and well-researched
problems in data mining is mining association rules from
transactional databases, where each transaction consists of a
set of items. The main operation in this discovery process is
computing the occurrence frequency of the interesting set of
items. In practice, we are usually faced with large datasets,
and an exponentially large space of candidate itemsets. A
potential solution to the computation complexity is to
parallelize the mining algorithm. In this paper, firstly, we
introduce an already proposed sequential mining algorithm
for discovery of frequent itemsets, which requires just a
single scan of the database. In the next part, we present four
parallel versions of the algorithm. The parallel algorithms
will be compared analytically and experimentally, regarding
some important factors, such as time complexity,
communication rate, load balancing, etc.

Index Terms—Parallel Processing, Data Mining, Frequent
Itemsets, Association Rules, Load balancing

I. INTRODUCTION
One of the important and attractive problems in data
mining [1] is the discovery of Association Rules (ARs)
from transactional databases, where each transaction
contains a set of items. ARs are represented in the general
form of X → Y and imply a co-occurrence relation
between X and Y, where X and Y are two sets of items
(called itemsets). X and Y are called antecedent (left-
hand-side or LHS) and consequent (right-hand-side or
RHS) of the rule, respectively.

Many evaluation measures are defined to select
interesting rules from the set of all possible candidate
rules. The mostly used measures for this purpose are
minimum thresholds on support and confidence. The
Support of an AR, X → Y, is the percentage of
transactions that contain both X and Y, simultaneously.
This is the probability, P(A∩B). The Confidence of the
rule is the percentage of transactions containing X, which
also contain Y. This is equal to the conditional
probability, P (Y|X).

For huge datasets, which contain a large number of
distinct items and a large number of transactions, an
important factor that an AR mining algorithm is expected
to have, is scalability, i.e., the ability to handle massive
data stores. Sequential algorithms cannot provide

1 S.M. Fakhrahmad is with the Department of Computer

Engineering, School of Engineering, Islamic Azad University of Shiraz
(and PhD student in Shiraz University), Shiraz, Iran
(e-mail: mfakhahmad@cse.shirazu.ac.ir)

G.H. Dastghaibi Fard is with the Department of Computer Science &
Engineering, School of Engineering, Shiraz University, Shiraz, Iran
(e-mail: dstghaib@shirazu.ac.ir)

scalability, in terms of the data dimension, size, or
runtime performance, for large databases. A solution for
improving the performance and providing scalability is
parallel and distributed computing. Employing multi-
processor systems, mining of frequent itemsets can be
accomplished in a reasonable time. There are various
metrics to evaluate parallel algorithms, including
computational complexity, speedup, communication rate,
load balancing, etc.

In this paper, we first present a sequential algorithm for
mining ARs, which is based on bottom-up approach. The
algorithm is very suitable for sparse datasets (where the
probability of a specific item in a transaction is low, due
to the wide variety of items). It scans the database just
once and stores data in a new format within a special data
structure, in the main memory. When dealing with sparse
datasets, this structure is so compressed that can fit into
memory, even when the size of the original dataset is very
large. In other words, this sequential algorithm supports
scalability for sparse datasets. It is a key feature which is
not supported by other sequential algorithms. However,
for huge datasets, which have a dense nature, the
algorithm may encounter with the lack of memory for
holding the data structures. To give a solution for dense
datasets, we also present four parallel versions of the
algorithm and give an illustrating comparison on them.

The rest of this paper is organized as follows. Section 2
provides an overview of the sequential and parallel
algorithms for mining ARs. Section 3 describes the
proposed sequential algorithm. Section 4 is devoted to
presenting the parallel versions of the proposed algorithm
and an analytical comparison over them. Experimental
results are shown in Section 5. Finally, Section 6
concludes the paper.

II. RELATED WORK
As AR mining is an important issue in the field of data
mining, it has been well researched and several sequential
algorithms have already been proposed for this purpose.
However, there has been relatively less work in parallel
mining of ARs. In [3] a number of distributed data mining
algorithms for collective data mining, clustering, and AR
mining are introduced. [4] gives an overview of some of
the parallel AR mining methods. Three different parallel
versions of the Apriori method are presented in [5]. In all
of these methods, the database is supposed to be
distributed horizontally among the processors.

The first method is named Count Distribution (CD)
algorithm, which is a straight- forward parallelization of
Apriori. In this method, each processor computes the
partial support of all candidate itemsets from its local
database partition. At the end of each iteration, the

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

processors exchange their partial supports to measure the
global supports.

The second is Data Distribution (DD) algorithm. It
partitions the candidate itemsets into disjoint sets and
assign them to different processors. In this algorithm,
each processor has to scan the entire database (not only
its local partition) in all iterations, to measure the global
support. Thus, the algorithm involves a high
communication overhead.

The Intelligent Data Distribution (IDD) algorithm is
the third parallel version of Apriori. Similar to the second
version, it partitions the candidates, but it selectively
replicates the database, so that each processor proceeds
independently. Among the three parallel versions of
Apriori, the COUNT DISTRIBUTION method is
reported to perform the best.

There are also some other parallel algorithms in the
literature, which outperform the Count Distribution
algorithm. The FDM (FAST DISTRIBUTED MINING)
[6] and DMA (DISTRIBUTED MINING OF
ASSOCIATION RULES) [7] algorithms generate fewer
candidate itemsets and involve smaller message sizes
compared to the COUNT DISTRIBUTION algorithm. In
[8], Schuster and Wolff propose the DDM
(DISTRIBUTED DECISION MINER) algorithm. They
report that DDM has a better scalability than COUNT
DISTRIBUTION and FDM with respect to the minimum
support threshold.

In [9], a new sequential AR mining algorithm called
FastARM has been proposed, which is shown to be
scalable and efficient when dealing with sparse datasets.
In order to support the scalability for dense datasets as
well, we developed four parallel versions of the
algorithm, which will be discussed in detail, in Section 4.
Before introduction of the parallelized methods, the
sequential algorithm will be presented in the next section.

III. THE SEQUENTIAL ALGORITHM

For ease of illustration, we assume the transaction
database as a binary-valued dataset having a relational
scheme. Each column in this scheme stands for a possible
item that can be found in any transaction of the data
warehouse and each tuple represents a transaction. Each 0
or 1 value indicates the presence or absence of an itemset
in a transaction, respectively. As an example the relation
shown in Fig. 1.(b) is the structured form of the dataset of
Fig. 1.(a), which contains four transactions.

 a) A transactional dataset

b) A structured presentation of transactions

Fig. 1. A market basket dataset

As the first step of the algorithm, we divide the relation
horizontally into some equi-size partitions, each
containing k tuples. We comment on choosing the best
value for k latter in this section. In this relation, each
column contains k bits in each partition, thus the group of
bits in each partition can be vowed as a k-bit binary code,
which is equivalent to a decimal number between 0 and
2k-1. These decimal numbers are the major elements of
our algorithm.

The partitioned relation is scanned just once and the
supports of singletons (1-itemsets) are measured to find
1-frequent itemsets. Meanwhile, for each partition, all
nonzero decimal values are extracted. For any column of
the dataset, which represents a frequent singleton, we
build a hash table in memory. Each value in this hash
table, is a non-zero decimal value extracted from a
partition and its access key is the number of that partition
(an integer number between 1 and m, where m is the
number of partitions). Since we do not insert zero values
into the hash tables, then the values recorded in the hash
table indicate the regions of the itemset occurrences and
limits the search space for the next steps.

The support of a compound itemset such as AB, is
easily measured by using the hash tables of its elements
(i.e., A and B), instead of scanning the whole database
again. In order to calculate the support of a compound
itemset, we begin with the smaller hash table (i.e., the one
having fewer values). For each key of this hash table, we
first verify if it also exists in the other hash table. This
verification does not involve any search due to the direct
access structure of hash table. If a key exists in both hash
tables, then we perform a logical AND operation between
the the corresponding values related to that key.

The result of the AND operation is another integer
value, which gives the co-occurrences of A and B in that
partition. If the result is zero, it means that there is no
simultaneous occurrence of A and B in that partition. We
build a similar hash table for the compound itemset, AB,
and insert the non-zero integer values resulted from AND
operations in this table. The size of this hash table is at
most equal to the size of the smaller hash table of the two
elements. Each number stored in this hash table is
equivalent to a binary number, which contains some 1's.
The total number of 1's indicates the co-occurrence
frequency of A and B. Thus we should just enumerate the
total number of 1's for all integer values, instead of
scanning the whole database. This measurement can be
done using logical Shift Left (SHL) or Shift Right (SHR)
operations over each value and adding up the carry bits
until the result is zero (i.e., there is no other 1-bits to be
counted).

The efficiency of this structure becomes clearer for
measuring the support of higher dimensional itemsets. As
we proceed to higher dimensional itemsets, the size of
hash tables becomes smaller due to new zeros emerging
from AND operations. These zeros are not inserted into
the result hash table.

To measure the support of an itemset, such as AB, the
number of 1's in the value field of this hash table (in the
binary form) has to be counted. If this value is equal to 1
(i.e., 0001), just one SHR operation and thus one
comparison is enough to count 1's. However, if we had
searched all the data to find the co-occurrences of A and
B, the number of required comparisons would have been

Cheese Coke Egg Beer
1 1 1 0
1 0 1 0
1 1 0 1
0 1 0 1

Cheese, Coke, Egg
Cheese, Egg
Coke, Cheese, Beer
Coke, Beer

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

48 (for reading the value of A and B in all 24 tuples). In
general, this improvement is much more apparent for
itemsets of higher dimensions.

In a similar way, the hash tables of 2-frequent itemsets
are then used to mine 3-frequent itemsets and in general,
n-frequent itemsets are mined using (n-1)-frequent
itemsets. However, we do not use all combinations of
frequent itemsets to get (n+1)-frequent itemsets. The
Apriori principle [10] is used to avoid verifying useless
combinations: "An n-dimensional itemset can be frequent
if all of its (n-1)-dimensional subsets are frequent". Thus,
for example if AB and AC are two frequent itemsets, their
combination is ABC, but we do not combine their hash
tables unless the itemset BC is also frequent. If all the n-1
subsets of an n-dimensional itemset are frequent,
combining two of them is enough to get the hash table of
the itemset.

IV. THE PARALLELIZED VERSIONS OF THE MINING
ALGORITHM

In the previous section, we introduced a new algorithm
for discovery of frequent itemsets, in a transactional
dataset. The structures used in this method are so that it
has a very good performance, when the database is
sparse. When the dataset is sparse, the hash tables are
very small, i.e., we have a high rate of data compression
and will rarely run out of memory. Moreover, the small
size of hash tables leads to the efficient measurement of
the support values. In this case, the algorithm is supposed
to be scalable. However, when the dataset is dense, the
size of hash tables is not as compressed as it is for sparse
datasets. Thus, in some cases we may be faced with lack
of memory. In other words, the algorithm may not be
scalable for dense datasets. To provide scalability, in this
section we introduce four parallel versions of the
algorithm. The parallel algorithms will be compared
analytically and experimentally, with respect to some
important factors, such as time complexity,
communication rate, load balancing, etc.

A. 1st method: Assigning each partition to a processor
The first method has a work-pool approach. In this
method, the database is supposed to be distributed
horizontally among different processors. If not, we
assume that the master processor distributes (using
scatter) the database among the other processors. Each
processor can be assigned one or more partitions of the
data. For ease of illustration, let's assume that each
processor is given just one partition, as shown in Fig. 2. A
slave processor is responsible for measuring the
occurrence frequency of all items (columns) in its local
partition. For each item, a processor generates two
numbers. The first is a decimal number, which is the
equivalent to the binary number of that item in the
assigned partition (as described in Section 3). The other
number is the local support value of the item. The support
values are returned to the master processor.

After the master processor receives the local support
values related to a specific item from all slaves, it is just
time to measure the global frequency of the item.
However, it does not measure the global support for all
items. The following principle is used in order to avoid

useless measurements for items which are not likely to be
frequent: In a distributed dataset, an item can be globally
frequent only if it is frequent in at least one of the local
parts. Thus, the master processor computes the overall
support for an item if at least one of the support values
(received from the slave processors) is greater than the
MinSupp.

 A B C

I

1
0
0
1

0
1
1
1

0
0
0
0

II

0
1
1
1

0
0
0
0

1
0
0
0

III

1
1
1
0

0
0
0
0

1
1
0
1

IV

0
0
0
0

1
1
0
1

1
0
1
0

V

1
0
1
1

0
0
0
0

0
1
0
0

VI

0
0
0
0

1
1
1
1

1
0
0
0

 Fig. 2. Horizontally distributing data among the processors

The responsibilities of the master and the slaves will
change (as follows) when mining compound frequent
itemsets. When the 1-frequent items are detected, the list
of frequent items is broadcasted to all slaves, to enable
them starting discovery of 2-frequent itemsets. For each
pair of 1-frequent items (whose combination is a
candidate 2-itemset), a slave processor performs the
logical AND operation over the decimal numbers related
to the two items (These decimal numbers had been
generated during the previous stage). The local support
value of the candidate 2-itemset is computed by counting
the 1-bit frequency over the resulting number of AND
operation. The local supports of each 2-itemset, measured
by each slave processor are returned to the master
processor. If at least one of the local support values of an
itemset is greater than the MinSupp threshold, the master
computes the global support value of the itemset.

When all 2-frequent itemsets are detected, the master
broadcasts the list of them to all processors. To find 3-
frequent itemsets, the slave processors should measure
the local support values of all candidate 3-itemsets. Each
candidate 3-itemset is the combination of a 1-frequent
itemset and a 2-frequent itemset. Hence, the decimal
number equivalent to a 3-itemset is resulted by
performing AND operation over the decimal numbers of
its elements (a singleton and a 2-itemset), which have
been generated in the first and second stages,
respectively. The global support value for a 3-itemset is
similarly computed by the master processor.

In general, for finding n-frequent itemsets, the master
processor broadcasts the list of all (n-1)-frequent itemsets
to all processors. The decimal number of an n-itemset
(within a partition) is computed by performing AND
operation over the decimal numbers of a singleton and an
(n-1)-frequent itemset. So, each slave processor has to
hold just the locally computed decimal numbers of 1-
frequent and (n-1)-frequent itemsets, which had been

P1

P2

P3

P4

P5

P6

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

generated by itself during the first and the last stages,
respectively. The numbers generated during the
intermediate stages are not required to be held.

It should be noted that in each iteration, the slave
processors must operate synchronously, because the
master requires the results from all of them before
proceeding.

1) Discussion
The first method presents a load-balanced parallelism. In
this method, all slave processors relatively do the same
amount of work. The slaves are responsible for measuring
the local support values of different itemsets, while the
master processor presents the list of itemsets, which are
globally frequent.

This method can be used by two approaches. The first
approach aims at reducing the number of
communications. In this approach, a slave processor first
measures the local support values for all items and then
sends the results to the master through a single send
command. On the other hand, the goal of the second
approach is to minimize the idle times of the processors.
In this approach, a slave processor measures the local
support value of an itemset and sends the result to the
master, immediately. So, the master does not have to
remain idle until all the values are measured. However,
the second approach involves a large number of
communications, compared to the first approach. To
present a reasonable solution, we can make a trade-off
among the two mentioned approaches. For this purpose,
slave processors should measure the local support values
of a number of items (instead of one item) and each time
sends a list of support values to the master.

As mentioned in the previous sections, many sequential
algorithms can not be used for dense datasets, since they
generally run out of memory. The sequential method
proposed in this paper, does not also have a good
performance when applying to dense datasets. This
challenge was the main reason we decided to present the
parallelized versions of the algorithm. It will be shown
through experiments that the first parallelized method
properly overcomes the lack of memory and has the best
performance for dense datasets.

B. 2nd method: Assigning each column to a processor
In this approach, the data is assumed to be distributed
vertically among the processors (one or more columns for
each processor). Let's assume that each processor is
responsible for one column. Unlike the previous method,
in this case all the processors start their work
simultaneously. Each processor constructs the hash table
and meanwhile measures the support value (as discussed
in Section 3) for its assigned column. Having n
processors, the processor Pi sends its constructed hash
table to all of its subsequent processors (i.e., processors
Pi+1 to Pn), if the measured support satisfies the MinSupp
threshold. In the next step, each processor combines its
own hash table with each of the hash tables received from
its prior processors in order to detect 2-frequent itemsets.
Similarly, the processors send the hash tables of the
discovered 2-frequent-itemsets to their subsequent
processors, to enable them detecting 3-frequent itemsets.
This process continues until the maximal frequent itemset
is found by one of the processors. As an example,

consider four processors (P0 to P3) which are used to mine
frequent itemsets in a dataset containing four distinct
items (A, B, C and D). Fig. 3 monitors the load of each
processor through the worst case of this parallel process,
i.e., when all itemsets (all combinations of items) are
found out as frequent. However, this situation rarely
occurs in practice, unless the MinSupp threshold has a
very low value (i.e., about zero). Each row in this Fig. 4
belongs to one processor and each cell represents an
itemset whose support is measured by the processor.

A
B AB
C AC BC ABC

P0
P1
P2
P3 D AD BD CD ABD ACD BCD ABCD

Fig. 3. Monitoring loads of the processors when each one is

initially responsible for a distinct item
1) Discussion
The second method has some advantages and some
disadvantages in comparison with the first method. The
main advantage of this method is that it needs too much
fewer communications among the processors. It has a
significant effect on the speedup value of the parallelism,
as will be shown through the experiments. The main
disadvantage of this method is that the workloads of the
processors are not balanced. In general, the amount of
work a processor has to do is related to the sequence
number of the processor. Thus, the processors of higher
ranks usually have to do much more work than their
counterparts. On the other hand, the processors having
smaller numbers have very light work-load. Another
reason for imbalanced load is a problem called early
stopping. This problem occurs when a processor finds out
that the item assigned to it (for measuring the support
value) is not frequent. Thus, it will not proceed on
measuring the support of its combinations. In this
situation, the processor stops its co-operation, while there
may exist some other processors, which have a large
amount of work to do.
2) Load balancing
As mentioned in the last subsection, the main
shortcoming of the second method is that the work-loads
of different processors are not balanced. The worst case
occurs when the item assigned to the last processor (Pn) is
the most frequent singleton. As shown in Fig. 4, the
processor has to measure the support of this item in
combination with all other frequent items. So, in this
case, many combinations of this item are likely to be
frequent. Thus, a high amount of work has to be
performed by Pn. On the other hand, if the least frequent
item is assigned to Pn, most combinations will be
infrequent and Pn will have a relatively balanced work-
load. For ease of illustration, consider the example shown
in Fig. 4. Assume that the attribute D is the most frequent
item, which is assigned to the last processor (P3). Since D
is a frequent item, many of the combinations containing
D (such as BD, ABD, ABCD, etc) are likely to be
frequent, and so, P3 has a large amount of work
compared to the other processors.

In order to overcome the discussed problem and to
balance the workloads of the processors, we use a
technique called index swapping. As the first step, each

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

processor is responsible for measuring the support value
of a single item. When the support values for all
singletons are measured and before going on measuring
the support values of combinations, we swap the indices
of processors such that: Pn is the processor which is
responsible for the least frequent item,… and P0 is the
processor which is responsible for the most frequent one.

C. 3rd method: Using processor Pk for k-itemsets
The third method introduces a pipeline approach. In this
approach the k-th processor, say Pk is responsible for
mining k-frequent itemsets. For example, the first
processor (P1) just finds frequent singletons, builds hash
tables for them and sends the hash tables to the next
processor. The hash tables built by each processor are
immediately forwarded to the next processor. Each
processor (say Pk), except the first one, receives hash
tables from its prior processor (Pk-1) and constructs new
hash tables from their combinations (using AND
operation). Fig. 5 shows the worst case of this pipeline
process (when all itemsets have an acceptable support
value) using 4 processors for a dataset containing 4
distinct items (A, B, C and D).

Fig. 4. Monitoring loads of the processors when the k-th
processor searches for k-itemsets

1) Discussion
As the experimental results will show, the third method
generally requires the least amount of communications
among the three parallel methods. This is the main reason
of the improved speedup value of this method compared
to the second method. It also has another advantage in
comparison with the second method. The third method is
safe from the problem of early stopping which is a typical
challenging problem of the second method, as discussed
in the previous section. The main disadvantage of the
third method is the imbalanced loads of the processors.
Let n be the number of all distinct items. The number of
potential candidate k-itemsets is obtained from C(k,n). As
we know, the value of C(k,n) equals the value of C(n-
k,k). In other words, by increasing k from 1 to n/2, the
value of C(k,n) also increases, while it decreases for
values of k increasing from n/2 to n. That's why in
general, by increasing the rank of processors along the
pipeline, the workload first increases and then begins
decreasing. This general case can be seen in Fig. 4.

V. EXPERIMENTAL RESULTS
We conducted a set of experiments to evaluate the
performances of the proposed parallel methods with
respect to different factors, and also compare them with
other parallel algorithms. The algorithms were
implemented in C++ and run concurrently on 5 systems
with 3GHz Intel processor and 1 GB RAM. For
communication, we used the message passing interface
(MPI). Data used in different parts of our experiments
were generated randomly, such that the probability of an

item being present in a transaction is 0.002 (if we need a
sparse dataset) or 0.2 (if we need a dense dataset).

A. Comparison in terms of the communication rate
Communications between the processors in order to
transfer a piece of data are performed by some MPI
functions such as MPI_Send, MPI_Recv, MPI_Scatter
and MPI_Gather. There is also another MPI function,
named MPI_WTime, which can be used for measuring
the response time of a set of instructions within the
program code. We used this function in the code
wherever a communication between the processors was to
be performed. The total communication time was then
computed by gathering the total communication times
from all processors and summing them up by one of the
processors.

For message passing, it is desirable to reduce the
communication rate because of its time overhead. For
networks of workstations (as in our experiment), this
challenge is more important rather than in multiprocessor
systems, since the communication latency is more
significant in such environments.

In the first part of this experiment, we used a synthetic
sparse dataset having 100k transactions and 100 distinct
items. The dataset was generated randomly, such that the
probability of an item being present in a transaction is
0.002. Using this dataset we compared the
communication times of the proposed parallel mining
methods, proposed in this paper. In the next step, we
repeated the experiment using a dense dataset of the same
number of items and transactions. This dataset was also
generated randomly. Each Item was generated by the
probability of 0.2 to be present in transactions. Figures 5
and 6 present the results of the two parts of this
experiment, for different values of MinSupp.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45
MinSupp (%)

C
om

m
un

ic
at

io
n

Ti
m

e
(m

se
c)

M1
M2_Primary
M2_LoadBalanced
M3

Fig. 5. Communication times of the parallel mining methods, for

different values of MinSupp, using a sparse dataset

0
200
400
600
800

1000

1200
1400
1600

0 5 10 15 20 25 30 35 40 45
MinSupp (%)

C
om

m
un

ic
at

io
n

Ti
m

e
(m

se
c)

M1
M2_Primary
M2_LoadBalanced
M3

Fig. 6. Communication times of the parallel mining methods, for

different values of MinSupp, using a dense dataset
Comparing Figures 6 and 7, we see a high gap between

the relative efficiency of the first method in two cases. As

P1 A B C D
P2 AB AC BC AD BD CD
P3 ABC ABD ACD BCD
P4 ABCD

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

shown in Section 4, the first method is the only method
(among the three) in which the dataset is distributed
horizontally. In this method, a processor has to return the
decimal numbers computed from its local data, even if
they are all zero. In other words, it does not efficiently
make use of the hash tables. Thus, it performs
approximately similar on dense and sparse data. On the
other hand, the other two methods, which distribute the
dataset vertically, use hash tables just similar to the
sequential algorithm and throw away any zero value
resulting in any stage. When the dataset is dense, the
probability of emerging zero decimal numbers in a
partition decreases. So, the hash tables lose their
interesting feature of data compression, since they contain
too many entries. When a hash table which is going to be
sent is too large, the processor will have to split and send
it through more than one transfer. That's why the second
and the third methods are sensitive to the nature of the
dataset, whether it is dense or sparse.

B. Comparison in terms of the Speedup factor
Speedup is a measure of relative performance between a
multiprocessor system and a single processor system,
which is defined in equation (1).

Speedup = ts/tp , (1)

where ts and tp are the execution times on a single
processor and a multiprocessor, respectively.

In order to compare the speedup factors of the methods
in different cases, in this experiment, we generated some
dense datasets, each containing a different number of
items. For each case, we first executed the sequential
algorithm and measured the response time. Then using 5
processors, each of the parallel algorithms were run and
the execution times were measured. The speedup factor of
each parallel method was then calculated using equation
(1). Fig. 7 presents a comparison between the methods in
terms of the speedup factor.

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200
no. of items

Sp
ee

du
p

M1
M2_Primary
M2_LoadBalanced
M3

Fig. 7. Speedup factors of the parallel mining methods, for

different numbers of items, using a dense dataset

It can be seen in Fig. 8 that for datasets having not too
many items (attributes), the first parallel method provides
the best speedup value. The most likely reason is the
optimal load balancing it supports. Another reason is that
this method is not as sensitive to dense datasets as the
others are. On the other hand, when the dataset has a large
no. of items, the load balanced version of the second
method outperforms the first method. This is probably
due to the increasing of the no. of communications in the
first method, as the number of items increases.

VI. CONCLUSION
In this paper, first, we introduced a sequential mining
algorithm for mining of frequent itemsets, which requires
just a single scan of the database. Then, we presented four
parallel versions of the algorithm. The parallel algorithms
were compared analytically and experimentally, with
respect to some factors, such as communication rate,
response time, computation/communication ratio and load
balancing. We Showed that each of the proposed methods
has some advantages and of course a number of
disadvantages. For sparse datasets, the load balanced
version of the second method seemed to be more efficient
than the others. However, when the database is dense, it
was illustrated why the first method is the best to be used
as a parallel mining algorithm, especially where the no. of
items is not too large.

REFERENCES
[1] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and

A. Reuter. DBMS research at a crossroads: The vienna
update. In Proc. of the 19th VLDB Conference, pages
688–692, Dublin, Ireland, 1993.

[2] Xiao, Y. and Dunham, M. H., Considering main memory
in mining association rules. In Proc. of Intl. Conf. on Data
Warehousing and Knowledge Discovery (DAWAK),
1999.

[3] Byung-Hoon Park and Hillol Kargupta. Distributed data
mining: Algorithms, systems, and applications. In Nong
Ye, editor, Data Mining Handbook, 2002.

[4] M. J. Zaki. Parallel and distributed association mining: A
survey. IEEE Concurrency, 7(4):14.25, December 1999.

[5] R. Agrawal and J. Shafer. Parallel mining of association
rules. In IEEE Trans. on Knowledge and Data Engg.,
volume 8, pages 962.969, 1996.

[6] D. Cheung, J. Han, V. Ng, A. Fu, , and Y. Fu. A fast
distributed algorithm for mining association rules. In 4...
Int'l. Conf. Parallel and Distributed Info. Systems, 1996.

[7] D. Cheung, V. Ng, A. Fu, , and Y. Fu. Ef_cient mining of
association rules in distributed databases. In IEEE Trans.
on Knowledge and Data Engg., volume 8, pages 911.922,
1996.

[8] A. Schuster and R. Wolff. Communication ef_cient
distributed mining of association rules. In ACM SIGMOD
Int'l. Conf. on Management of Data, 2001.

[9] S.M. Fakhrahmad, M.H. Sadreddini and M. Zolghadri
Jahromi, Mining Frequent Itemsets in Large Data
Warehouses: A Novel Approach Proposed for Sparse
Datasets. In Proc. Of: IDEAL 2007, pp. 517-526, 16-19
Dec 2007, Birmingham, UK.

[10] Agrawal, R., Srikant, R., Fast Algorithms for Mining
Association Rules in Large Databases, In Proc. of the
20th International Conference on Very Large Data Bases,
pp. 487-499, 1994

[11] Webb., G.I., Efficient search for association rules. In
Proceedings of the Sixth ACM-SIGKDD International
Conference on Knowledge Discovery and Data Mining,
New York, NY: ACM, 99-107.

[12] Zaki, M.J., Generating non-redundant association rules. In
Proceedings of the Sixth ACM-SIGKDD International
Conference on Knowledge Discovery and Data Mining,
New York, NY: ACM, 34-43.

[13] Pei, J., Han, J. and Yin, Y., Mining frequent patterns
without candidate generation. In Proceedings of ACM-
SIGMOD International Conference on Management of
Data

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

