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Abstract—Lyapunov function is generally obtained based on 

trail and error. Systems with high complex nonlinearities and 
more dimensions are much more difficult to be dealt with and in 
many cases it leads to dull one. This paper proposes two 
straightforward methods for determining or approximating a 
Lyapunov function based on approximation theory and the 
abilities of artificial neural networks. The potential of the 
proposed methods are demonstrated by simulation examples. 

Index Terms—Approximation theory, Lyapunov function, 
nonlinear system, neural network.  
 

I. INTRODUCTION 
Stability of nonlinear dynamic systems plays an important 
role in systems theory and engineering. There are several 
approaches in the literature addressing this problem. The 
most useful and general approach for studying the stability of 
nonlinear control systems is the theory introduced in 
Alexandr Mikhailovich Lyapunov. Qualitatively, a system is 
described as stable if starting the system somewhere near its 
desired operating point implies that it will stay around the 
point ever after. Identifying a Lyapunov function (assuming 
it exists) for an arbitrary nonlinear dynamic system in order 
to demonstrate its stability in the Lyapunov sense is no trivial 
task. The vast majority of existing methodologies fall in one 
of the following two categories:1) methods which construct 
or search for Lyapunov function and 2) methods which try to  
approximate it [1], [2], [3]. Usually methods of the first 
category are only applicable to some classes of systems i.e. 
the given system is required to have some desired 
characteristics, e.g. the nonlinear system must have 
polynomial vector field [4]. Methods of latter category 
usually do not have a strong mathematical framework. 
Researchers developed a myriad of techniques and 
procedures to identify the Lyapunov function. Among the 
significant prior research works reported in the literature, we 
focus on methods that construct or approximate Lyapunov 
function by neural networks. Prokhorov in [1] suggests a 
Lyapunov Machine, which is a special-design artificial 
neural network, for approximating Lyapunov function. The 
author indicates that the proposed algorithm, the Lyapunov 
Machine, has substantial computational complexity among 
other issues to be resolved and defers their resolution to 
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future work. In [2] author suggests an algorithm for 
approximating Lyapunov function when system is 
asymptotically stable. In the other work, Genetic algorithms 
are used in [5] for learning neural networks. Based on this 
idea, two different approaches were used in order to calculate 
the appropriate network’s weights. Another recently reported 
studies are in [3],[6],[7]. 

In this paper, we propose two straightforward approaches 
for constructing or approximating a Lyapunov function based 
on approximation theory and the features of artificial neural 
networks. Our approaches are able to use for both explained 
categories. Both approaches are based on using some state 
trajectories of system for constructing or approximating a 
Lyapunov function. The potentials of the proposed methods 
are demonstrated by simulation examples. 

The remainder of this paper is organized as follows. In 
section 2, we introduce preliminaries related to Lyapunov 
theory, approximation theory. In section 3, we propose two 
approaches for constructing or approximating a Lyapunov 
function of asymptotically stable systems. In section 4, we 
illustrate our methods by two examples. Finally, section 5 
summarizes our accomplishments. 

II. PRELIMINARIES 
In this section, we introduce notation and definitions, and 

present some key results needed for developing the main 
results of this paper. Let R denote the set of real numbers, R+ 

denote the set of positive real numbers, ||.|| denote a norm on 
Rn, and nRD ⊂ be an open set containing x = 0. 
Consider the nonlinear dynamical system given by 
 

0)0(),( xxxfx ==&        (2-1) 

where  is the state vector, f(0) = 0, and f(.) is 
continuous on D. 

nRDtx ⊆∈)(

 
Theorem 2-1(Lyapunov Theory)[8] Let x = 0 be an 

equilibrium point for (2-1). Let  be a continuously 
differentiable function, such that 

RDV →:

 
V(0) = 0 and V(x) > 0 in D – {0}           (2-2) 

0)( ≤xV&  in D – {0}                           (2-3) 
 

Then, x = 0 is stable. Moreover, if 
 

0)( <xV& in D – {0}                             (2-4) 
 

then x = 0 is asymptotically stable. 
 

Theorem 2-2(Weierstrass Results)[9] Given a Banach 
space X with elements f, norm ||f|| , and a sequence 
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XN
iiN ⊂=Φ =1}{ϕ of basis elements, f is said to be 

approximable by linear combinations of with respect to 
the norm ||.|| if for each

NΦ
0>ε  there exists N  such that 

ε<− |||| NPf  where 
 

∑
=

∈=
N

i
iiiN RsomeforxP

1
.),( θϕθ          (2-5) 

 
Theorem 2-3[9] Each real function f that is continuous on 

D = [a, b] is approximable by algebraic polynomials with 
respect to the norm−∞ : M∃>∀ ,0ε such that if N > M a 
polynomial  with NPp ∈ ε<− ∞|||| NPf  for all Dx ∈ . 

III. METHOD 
Due to the lack of specific method to determine a 

Lyapunov function, this function is generally obtained based 
on trail and error. Systems with high complex nonlinearities 
and more dimensions make the human’s job more difficult 
and in many cases it leads to dull one. It will be productive, if 
we make the computer engaged in this trail and error so that 
with the application of algorithms and intelligent systems, it 
will gradually learn from previous iterations and learning at 
each stage it will come up with the answer which is a 
Lyapunov function for a given system. The following study 
is proposed two forward and backward intelligent algorithms 
to generate a Lyapunov function. 
 Based on theorem (2-2), a set of basis elements are capable 
of uniform approximation of continuous functions over a 
compact region XD ⊆ . In this study based on approximation 
theory, we intend to determine or approximate a Lyapunov 
function of an asymptotically stable system. In the function 
approximation literature there are various broad classes of 
function approximation problems. The class of problems that 
will be of interest herein the development of approximation to a 
Lyapunov function based on information related to their 
input-output samples. However, the key issue is that a 
Lyapunov function is ultimate goal to be achieved. So some 
assumptions need to be considered which will be explained 
later. 

A. Forward Method 
  Let us consider the system (2-1). Since a Lyapunov 
function is not accessible now, the state trajectories of the 
system are calculated for some initial conditions in both 
forward and backward algorithms which will be introduced 
later on. Then one positive real number is assigned to V(x) for 
each component of calculated state trajectory. The forward 
algorithm is as follows 
 

Step 1) Specify the form of the basis function in chosen 
neural network. 

 
Step 2) Select p points as initial conditions in D then 

calculate their state trajectories (suppose that all those state 
trajectories converge to the origin.). The state trajectories are 
calculated using numerical methods and are named as 
follows 

kjj xkx =)(    j = 1, 2,…, p 

where the index xj denotes jth state trajectory, and k denotes 
kth sample of state trajectory xj. Also n shows the number of 
components of the state vector xj. Moreover, the state 

trajectories are calculated up to 0)( ≅nx j . 

 Step 3) Consider an unknown candidate Lyapunov 
function V(x). Now for each of p initial conditions, positive 
real numbers are assigned to V(x0 j): 
 

{ }pj ,...,2,1∈∀  : jjxV 00 )( α=  , 00 >jα  

 
This set of points with V(0)=0 are chosen as training data for 
network learning. Note that it is likely 00 >>jx  therefore 

the origin is outlying point in the training data and in order to 
resolve this challenge, some solutions will be suggested in 
this section. 
 

Step 4) Train the network. 
 

 Step 5) Examine whether  is negative definite or 
not. If yes, go to step 6. If not, x

)(xV&

1 j and its assigned value 
V(x1j) are added to the training data. Therefore we have 

{ }pj ,...,2,1∈∀  : jkjkxV 11 )( ++ = α  , 01 >+ jkα  , 

01 <−+ kjjk αα  

and return to step 4. 
 
 Step 6) Finish. 
 
This algorithm is so general and its success depends on 
varying factors including, structure, learning method of 
network and method of choosing learning data. We can 
choose initial conditions based on the amount of sensitivity 
of state trajectories in relation to them [8]. A desired negative 
definite function can be used for choosing rate of decrease 
V(x) (i.e. ). This implies that the time derivative of the 
network tries to mimic the negative definite function. Also 
experimental results show that using a network with 
approximators with global influence functions is more 
effective. But forget that given approximation structure either 
local or global is dependent on the function that is being 
modeled. 

)(xV&

Studying different simulations show that forward method 
can approximate (or determine) a Lyapunov function after 
some iterations. However, we propose another algorithm to 
improve some challenges of forward algorithm. 

 B. Backward Method 
 The backward method is the reverse of forward method. 
Their main difference is related to choice of training data. In 
this algorithm p points in D as initial condition will be chosen 
then we calculate their state trajectories. Now x=0 and xj(n) 
are selected as the first training data. Then we train the 
network. After the training if the approximated function 
satisfies in theorem (2-1), we choose the trained network as a 
Lyapunov function. Otherwise, first we assign V(xj(n-1)) to 
xj(n-1) then we add it to the training data. Finally we retrain 
the network. This procedure is continued until the 
approximated function satisfies in theorem (2-1). The second 
proposed algorithm as follows 
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Step 1) Specify the form of the basis function in chosen 
neural network. 

 
Step 2) Select p points as initial conditions in D then 

calculate their state trajectories (suppose that all those state 
trajectories converge to the origin.). The state trajectories are 
calculated using numerical methods and are named as 
follows 

kjj xkx =)(    j = 1, 2,…, p 

where the index xj denotes jth state trajectory, and k denotes 
kth sample of state trajectory xj. Also n shows the number of 
components of the state vector xj. Moreover the state 

trajectories are calculated up to 0)( ≅nx j  

Step 3) Consider an unknown candidate Lyapunov 
function V(x). Consider a negative definite function as  
desired from which calculate V(x)(xV& nj). 

 
Step 4) Train the network. 
 

Step 5) Examine whether  is negative definite or 
not. If yes, go to step 6. If not, x

)(xV&

n-1 j and its assigned value 
V(xn-1 j) are added to the training data and return to step 4. 

 
 Step 6) Finish. 

 
Both algorithms could be unsuccessful based on some 
reasons. The followings are the most important ones: 
 

1) The given system is unstable. 
 
2) The number of initial conditions is not enough. 

 
3) The network structure or its training method is not 

suitable. 

IV. SIMULATION RESULTS 
In this section, we give two simulation examples to 

demonstrate the effectiveness of proposed algorithms. Both 
examples are chosen from [8]. In these examples the 
sigmoidal and polynomial neural network approximator are 
used. As we will see later, the algorithm success depends on 
location and number of initial conditions. 

A. Example 1 
Let us consider the following system 
 

⎩
⎨
⎧

−+=
+−=

21212

211
3)sin()( xxxxx

xxx
&

&      (4-1) 

 
The forward method is used in this example. As shown in 

Fig.1, 16 points are chosen as initial condition 

where 1)0(
1

=jx ,  j=1, 2,..., 16.  

A-1- Approximation of Lyapunov Function by Polynomial 
Neural Network 

As we know, algebraic polynomials are universal 
approximators [9]. Also a quadratic function is an 
appropriate Lyapunov candidate for many groups of dynamic 
system [5], [10], [11]. Therefore polynomials can 
approximate or construct a Lyapunov function. So we choose 
a quadratic polynomial function with unknown coefficients 

as a candidate for Lyapunov function. 
 

V(x) = a1x1
2+a2x2

2+a3x1x2             (4-2) 
 

where ai , 31 ≤≤ i  , is an unknown coefficient which is 
determined during learning. Decreasing rate of V(xk) 
describes as follows: 

 
V(xk+1) = V(xk) – b*rand[0,1]         (4-3) 

 
where rand[0,1] is a random value with uniform distribution 
and b is a learning factor, 0<b<1. According to previous 
section, the forward algorithm is implemented. After 25 
iterations, we have 
 

0581.0
0144.1
807.0

3

2

1

−=
=
=

a
a
a

 

 
The obtained Lyapunov function and its time derivative are 
shown in figures 2 and 3, respectively. 

 

 
Fig. 1.” ” denotes the location of initial conditions 

 
 

 
Fig. 2. The constructed Lyapunov function for the system (4-1) 
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Fig. 3. The time derivative of the constructed Lyapunov function 

 
 

 A-1- Approximation of Lyapunov Function by Sigmoidal 
Neural Network 
In this case, the training data is chosen like previous section. 
The network is consisted of one hidden layer and 10 nodes in 
it. After 25 iterations, the approximation of Lyapunov 
function is obtained. Since obtaining the closed form of the 
calculated function is difficult, if the number of initial 
conditions have selected enough then the neural network 
gives local generalization [9], therefore V(x) in the vicinity of 
the training data is approximated correctly. Figure 4 indicates 
the approximate Lyapunov function. The behaviors of V(x) 
for three state trajectories of the system are shown in figures 
5 through 7. 
 

 
Fig. 4. The approximate Lyapunov function for the system (4-1) 

 
 

 
Fig. 5. The approximate Lyapunov function trajectory for initial 

condition (-1,1) 
 
 

 
Fig. 6. The approximate Lyapunov function trajectory for initial 

condition (0,-1) 
 
 

 
Fig. 7. The approximate Lyapunov function trajectory for initial 

condition (-1,0) 
 

B. Example 2 
In this example the backward method and polynomial 

neural network are used to generate a Lyapunov function for 
the following system. 

 

)sin(2
)sin(

)sin(

3213

32

311

xxxx
xx

xxx

−+−=
−=

+−=

&

&

&

                (4-4) 

 

Around the origin 26 points are selected as initial conditions 
such that 10 =

∞jx . Consider the following quadratic 

function as a candidate Lyapunov function: 
 

V(x) = a1x1
2+a2x2

2+a3x3
2+a4x1x2+a5x1x3+a6x2x3    (4-5) 

 
where ai , 61 ≤≤ i  , is an unknown coefficient which is 
determined during learning. The following negative definite 
function is considered as a desired time derivative of 
Lyapunov function  )(xVd

&

 

xxxV T
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After 21 iterations, we have 
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a1 = 8.2021 

  a2 = 29.0620 
  a3 = 25.4311 

                    a4 = -23.5342                 
  a5 = -5.5971 

    a6 = -16.3772 
 

We can easily check that the trained network is a Lyapunov 
function for the system (4-4). Therefore the origin of the 
system is asymptotically stable.  

V. CONCLUSION 
In this paper two algorithms have been proposed to 

construct a Lyapunov function based on approximation 
theory and the abilities of artificial neural networks. As we 
know, neural networks found wide application in many fields, 
both for function approximation and pattern recognition. 
However, in this study with considering some assumptions 
the network solved a problem subject to a few conditions 
which showed potentials of neural network for solving 
inequalities. 
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