
 

 

 

  

Abstract—A fuzzy approach is proposed here for restoring 

color images that are corrupted with additive noise. The 

proposed fuzzy approach consists of two sub-filters, where the 

first fuzzy sub-filter computes the fuzzy distances between the 

color components of the central pixel and its neighborhood 

using Gaussian combination membership function, and the 

second sub-filter corrects the pixels where color component 

differences are corrupted so much. The performance of the 

proposed approach is compared with conventional filters, both 

visually and quantitatively, and experimental results show the 

feasibility of the new approach. 

 

Keywords—Additive Noise, filter, fuzzy, distance measure, 

color images. 

I. INTRODUCTION 

MAGES are often degraded by random noise. Noise can 

occur during image capture, transmission or processing, 

and may be dependent on or independent of image 

content. Noise is usually described by its probabilistic 

characteristics. Gaussian noise is a very good approximation 

of noise that occurs in many practical cases [1]. The ultimate 

goal of restoration techniques is to improve an image in 

some pre-defined sense. Although there are areas of overlap, 

image enhancement is largely a subjective process, while 

image restoration is for the most part an objective process. 

Restoration attempts to reconstruct or recover an image that 

has been degraded by using a priori knowledge of the 

degradation phenomenon [2]. Thus restoration techniques 

are oriented toward modeling the degradation and applying 

the inverse process in order to recover the original image. 

This approach usually involves formulating a criterion of 

goodness that will yield an optimal estimate of the desired 

result. By contrast, enhancement techniques basically are 

heuristic procedures designed to manipulate an image in 

order to take advantage of the psychophysical aspects of 

human visual system. For example, histogram equalization is 

considered an enhancement technique because it is primarily 

on the pleasing aspects it might present to the viewer, 

whereas removal of image blur by applying a deblurring 

function is considered a restoration technique. 
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The degradation process is usually modeled as a 

degradation function that, together with an additive noise 

term, operates on an input image f(x, y) to produce a 

degraded image g(x, y). Given g(x, y), some knowledge 

about the degradation function H, and some knowledge 

about the additive noise term η(x, y), the objective of 

restoration is to obtain an estimate ),(ˆ yxf  of the original 

image. The estimate needs to be as close as possible to the 

original input image and, in general, the more about H and η 

is known, the closer ),(ˆ yxf  will be to f(x, y). If H is a 

linear, position-invariant process, then the degraded image is 

given in the spatial domain by 

g(x, y) = h(x, y) * f(x, y) + η(x, y) 

where h(x, y) is the spatial representation of the degradation 

function and the symbol “*” indicates convolution [2]. 

 

 During image transmission, noise which is usually 

independent of the image signal occurs. Noise may be 

additive, where noise and image signal g are independent. 

f(x, y) = g(x, y) + v(x, y) 

where f(x, y) is the noisy image signal, g(x, y) is the original 

image signal and v(x, y) is the noise signal which is 

independent of g [3].  The additive noise image v models an 

undesirable, unpredictable corruption of g. The process v is 

called a two-dimensional random process or a random field. 

The goal of restoration is to recover an image h that 

resembles g as closely as possible by reducing v. If there is 

an adequate model for the noise, then the problem of finding 

h can be posed as the image estimation problem, where h is 

found as the solution to a statistical optimization problem. 

The detailed statistics of the noise process v may are 

unknown. In such cases, a simple linear filter approach can 

yield acceptable results, if the noise satisfies certain simple 

assumptions such as zero-mean additive white noise model 

[9]. Noise may be impulse noise, which is usually 

characterized by some portion of image pixels that are 

corrupted, leaving the remaining pixels unchanged. The most 

common example of the impulse noise is the salt-and-pepper 

noise removal. 

II. NOISE REMOVAL METHODS 

 Noise reduction is the process of removing noise from a 

signal. Noise reduction techniques are conceptually very 

similar regardless of the signal being processed, however a 

priori knowledge of the characteristics of an expected signal 

can mean the implementations of these techniques vary 

greatly depending on the type of signal.  Although linear 

image enhancement tools are often adequate in many 
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applications, significant advantages in image enhancement 

can be attained if non-linear techniques are applied [3]. Non-

linear methods effectively preserve edges and details of 

images, whereas methods using linear operators tend to blur 

and distort them. Additionally, non-linear image 

enhancement tools are less susceptible to noise. Some 

common image noise removal methods are: 

 

Gaussian filters: One method to remove noise is to use linear 

filters by convolving the original image with a mask. The 

Gaussian mask comprises elements determined by a 

Gaussian function. This brings the value of each pixel into 

closer harmony with the value of its neighbors. Gaussian 

filtering works relatively well, but the blurring of edges can 

cause problems, particularly if the output is being fed into 

edge detection algorithms for computer vision applications. 

 

Averaging: Averaging sets each pixel to the average value of 

itself and its nearby neighbors. Averaging tends to blur an 

image, because pixel intensity values which are significantly 

higher or lower than the surrounding neighbourhood would 

smear across the area. Like the Gaussian filter, averaging is 

an effective noise suppression technique against Gaussian 

noise as the deviations are normally distributed, and have 

intensities relatively close to the original value.  

 

Conservative smoothing:  It is explicitly designed to remove 

isolated pixels of exceptionally low or high pixel intensity 

(e.g. salt and pepper noise) and is, therefore, less effective at 

removing additive noise (e.g. Gaussian noise) from an 

image.  Conservative smoothing operates on the assumption 

that noise has a high spatial frequency and can be attenuated 

by a local operation which makes each pixel's intensity 

roughly consistent with those of its nearest neighbors [5].  

 

 A huge amount of wavelet based methods [6] are available 

to achieve a good noise reduction (for the additive noise 

type), while preserving the significant image details. Due to 

the linearity of the wavelet transform, additive noise in the 

image domain remains additive in the transform domain, as 

well. The wavelet denoising procedure usually consists of 

shrinking the wavelet coefficients, that is, the coefficients 

that contain primarily noise should be reduced to negligible 

values, while the ones containing a significant noise-free 

component should be reduced less. A common shrinkage 

approach is the application of simple thresholding 

nonlinearities to the empirical wavelet coefficients [7], [8]. If 

the coefficient’s magnitude is below the threshold, it is 

reduced to zero; otherwise, it is kept or modified. Shrinkage 

estimators can also result from a Bayesian approach, in 

which a prior distribution of the noise-free data (e.g., 

Laplacian [9], generalized Gaussian [10], [11], [12], [13], 

[14]) is integrated in the denoising scheme. Recently, non-

Gaussian bivariate distributions capturing the inter-scale 

dependency were proposed [15] and corresponding nonlinear 

shrinking functions were derived from these distributions 

using Bayesian estimation theory [16] [17] [18].  

 

 Several fuzzy filters for noise reduction have already been 

developed, e.g., the iterative fuzzy control based filters from 

[19], the GOA filter [20], [21], and so on. Most of these 

state-of-the-art methods are mainly developed for the 

reduction of fat-tailed noise like impulse noise. Nevertheless, 

most of the current fuzzy techniques do not produce 

convincing results for additive noise [22], [23]. Another 

shortcoming of the current methods is that most of these 

filters are especially developed for grayscale images. It is, of 

course, possible to extend these filters to color images by 

applying them on each color component separately, 

independent of the other components. However, this 

introduces many artifacts, especially on edge or texture 

elements.  Some of the existing fuzzy based filters used for 

color image noise reduction are Fuzzy Median Filter, 

Gaussian fuzzy filter with median center and moving average 

center, symmetrical and asymmetrical triangle fuzzy filter 

with moving average center, iterative fuzzy control based 

filter (IFCF), fuzzy random impulse noise reduction method 

and fuzzy bilateral filtering. A new fuzzy method proposed 

by Stefan Schulte et.al, is a simple fuzzy technique [24] for 

filtering color images corrupted with narrow-tailed and 

medium narrow-tailed noise (e.g., Gaussian noise) without 

introducing the above mentioned artifacts. Their proposed 

fuzzy method outperforms the conventional filter as well as 

other fuzzy noise filters. In this paper, we are presenting a 

modified version of the fuzzy approach proposed by Stefan 

Schulte, et.al, [24], which uses a Gaussian combination 

membership function to yield a better result, compared to the 

conventional filters as well as the recently developed 

advanced fuzzy filters. 

III. PROPOSED FUZZY APPROACH 

A digital color image C can be represented in 

different color space such as RGB, HSV, L*a*b etc. In the 

proposed method, RGB space is used as the basic color 

space. Different proportions of red, green and blue light 

gives a wide range of colors. Colors in RGB space are 

represented by a 3-D vector with first element being red, the 

second being green and third being blue, respectively. These 

three primary color components are quantized in the range 0 

to 2
m
-1, where m=8. A color image C can be represented by 

a 2-D array of vectors where (i, j) defines a position in C 

called pixel and Ci,j,1, Ci,j,2, and Ci,j,3, denotes the red, green 

and blue components, respectively. 

A. Fuzzy Sub-Filter I 

 The general idea in this method is to take into 

account the fine details of the image such as edges and color 

component distances, which will be preserved by the filter. 

The goal of the first filter is to distinguish between local 

variations due to image structures such as edges. The goal is 

accomplished by using Euclidean distances between color 

components instead of differences between the components 

as done in most of the existing filters. The proposed method 

uses 2-D distances instead of 3-D distances (distance 

between three color components red, green and blue), that is, 
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the distance between red-green (RG) and red-blue (RB) of 

the neighbourhood centered at (i, j) is used to filter the red 

component [9]. Similarly, the distance between RG and 

green-blue (GB) is used to filter the green component and 

the distance between RB and GB is used to filter the blue 

component, respectively. The method uses three fuzzy rules 

to calculate weights for the Takagi-Sugeno fuzzy model [11]. 

 

 The current image pixel at position (i, j) is processed using 

a window size of (2K+1)×(2K+1) to obtain the modified 

color components. To each of the pixels in the window 

certain weights are then assigned namely Wk,l, where k, l Є 

{-1, 0, 1}.  Wi+k,j+l,1 , Wi+k,j+l,2 , and Wi+k,j+l,3 denotes the 

weights for the red, green and blue component at position (i 

+ k, j + l), respectively. These weights are assigned 

according to the following three fuzzy rules. Let DIST(a, b) 

represents the distance between the parameters a and b, and 

NEIGH(y) represents the neighbourhood of the parameter y. 

In this case, y represents a pixel with the neighbourhood 

given by a 3×3 window. The three fuzzy rules can be 

represented as follows: 

1) IF DIST(RG, NEIGH(RG)) is SMALL AND 

DIST(RB, NEIGH(RB)) is SMALL THEN the 

weight Wk,l,1 is LARGE. 

2) IF DIST(RG, NEIGH(RG)) is SMALL AND 

DIST(GB, NEIGH(GB)) is SMALL THEN the 

weight Wk,l,2 is LARGE. 

3) IF DIST(RB, NEIGH(RB)) is SMALL AND 

DIST(GB, NEIGH(GB)) is SMALL THEN the 

weight Wk,l,3 is LARGE. 

In the fuzzy rules DIST represents the Euclidean distance.  
DIST(RG, NEIGH(RG))=[(Ci+k,j+l,1 - Ci,j,1)

2
 + (Ci+k,j+l,2 - Ci,j,2)

2
]

1/2
 

DIST(RB, NEIGH(RB))=[ (Ci+k,j+l,1 - Ci,j,1)
2
 + (Ci+k,j+l,3 - Ci,j,3)

2
]

1/2
 

DIST(GB, NEIGH(GB))=[ (Ci+k,j+l,2 - Ci,j,2)
2
 + (Ci+k,j+l,3 - Ci,j,3)

2
]

1/2
 

 
 Fuzzy sets are commonly represented by membership 

functions from which the corresponding membership degrees 

are derived.  Membership degrees between zero and one 

indicate the uncertainty that whether the distance is small or 

not. In the proposed approach, the membership function 

SMALL has been modified which incorporates a two-sided 

composite of two different Gaussian curves. The Gaussian 

function depends on two parameters σ and c as given by 

2

2

2

)(

),;( σσ

cx

ecxf

−−

=  

The membership function gauss2mf (supported by 

MATLAB) is a combination of two of these two parameters. 

The first function, specified by σ1 and c1, determines the 

shape of the leftmost curve. The second function specified 

by σ2 and c2 determines the shape of the right-most curve. 

Whenever c1 < c2, the gauss2mf function reaches a 

maximum value of 1. Otherwise, the maximum value is less 

than one. The membership function SMALL is defined as 

µSMALL(x) =  gauss2mf(x, [σx, Cx, σx, 0]) 

where σx is the standard deviation of the distance measure 

and Cx is the mean of the distance measure, respectively. 

 

 In the above fuzzy rules, the intersection of two fuzzy sets 

is involved. The intersection of two fuzzy sets A and B is 

generally specified by a binary mapping T, which aggregates 

two membership functions as  follows:  

µA∩B(y) = T(µA(y), µB(y)), where µA and µB are the 

membership functions for the two fuzzy sets A and B, 

respectively. The fuzzy intersection operator, known as 

triangular norms (T-norms), used in this paper is the 

algebraic product T-norms. For example, the antecedent of 

Fuzzy rule 1 is: 

µSMALL(DIST(RG, NEIGH(RG))) . µSMALL(DIST(RB,    

                  NEIGH(RB))) 

The above obtained value, called the activation degree of the 

fuzzy rule 1, is used to obtain the corresponding weight. So 

the weights Wi+k,j+l,1 , Wi+k,j+l,2 , and Wi+k,j+l,3 are calculated as 

follows: 

Wi+k,j+l,1 = µSMALL(DIST(RG, NEIGH(RG))) .   

          µSMALL(DIST(RB, NEIGH(RB))) 

Wi+k,j+l,2 = µSMALL(DIST(RG, NEIGH(RG))) .   

          µSMALL(DIST(GB, NEIGH(GB))) 

Wi+k,j+l,3 = µSMALL(DIST(RB, NEIGH(RB))) .     

          µSMALL(DIST(GB, NEIGH(GB))) 

The output of the Fuzzy Sub-filter I, denoted as FS1, is then 

given by: 

FS1i,j,1= 

∑ ∑

∑ ∑

+

−=

+

−=
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where FS1i,j,1, FS1i,j,2 and FS1i,j,3 denotes the red, green and 

blue components of the FS1 output image respectively. 

B. Fuzzy Sub-Filter II 

The second sub-filter is used as a complementary 

filter to the first one. The goal of this sub-filter is to improve 

the first method by reducing the noise in the color 

components differences without destroying the fine details of 

the image. In this step, the local differences in the red, green 

and blue environment are calculated separately. These 

differences are then combined to calculate the local 

estimation of the central pixel. In this step also, a window of 

size (2L+1)×(2L+1) is used centered at (i, j) to filter the 

current image pixel at that position. The local differences for 

each element of the window for the three color components 

are calculated as follows: 

DRk,l = FS1i+k,j+l,1 – FS1i,j,1  , DGk,l = FS1i+k,j+l,2 – FS1i,j,2 

DBk,l = FS1i+k,j+l,3 – FS1i,j,3  ,  where k, l Є {-1, 0, +1}.   
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 The correction term ε is calculated as follows: 

εk,l = (1/3).(DRk,l + DGk,l + DBk,l ) 

 for k, l Є {-L,…., 0,…., +L}.   

The output of the Fuzzy sub-filter 2, is then given by 

FS2i,j,1= 

2
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where FS2i,j,1, FS2i,j,2 and FS2i,j,3 denotes the red, green and 

blue components of the output image respectively. 

IV. RESULTS AND DISCUSSION 

The performance of the discussed filter has been evaluated 

and compared with conventional filters dealing with additive 

noise, using MATLAB tool. As a measure of objective 

similarity between a filtered image and the original one, we 

use the peak signal-to-noise ratio (PSNR) in decibels (dB). 

PSNR(img, org)  = 10 log10( S
2
/MSE(img, org) ) 

This similarity measure is based on another measure, namely 

the mean-square error (MSE). 

 MSE(img, org) = 

( ) ( )[ ]

MN

cjiimgcjiorg
c

N

i

M

j

..3

,,,,
3

1 1 1

2
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= = =
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where org is the original color image, img is the filtered 

color image of size N.M, and S is the maximum possible 

intensity value (with m-bit integer values, S will be 2
m
-1). 

The standard color images used in this paper are Baboon, 

Lena and House images of size 256×256. The original 

image, the noisy image (original image corrupted with 

Gaussian noise with a selected σ value ) and restored images 

using mean filter, median filter, fuzzy method of [24] and the 

modified fuzzy method of the above mentioned standard 

color images along with their corresponding PSNR values 

are shown in figures 1, 2 and 3. From experimental results, it 

has been found that our proposed method receives the best 

numerical and visual performance for low levels and higher 

levels of additive noise, by appropriately selecting window 

size for the two fuzzy sub-filters. Numerical results that 

illustrate the denoising capability of the proposed method, 

modified method and conventional methods are pictured in 

Table I. Table I shows the PSNRs for the colored House 

image that were corrupted with Gaussian noise for σ = 5, 10, 

20, 30 and 40.  The window size for different filters is 

appropriately chosen to give better PSNR value. The PSNR 

value of the noisy image and the best performing filter were 

shown bold. 

 

 

   

(a) (b) PSNR = 16.11 (c) PSNR = 19.24 

   

(d) PSNR = 18.90 (e) PSNR =21.61 (f) PSNR = 21.83 

Fig. 1.  (a) Original Baboon image (256×256) (b) Noisy image (Gaussian noise, σ = 40) (c) After applying Mean filter (3×3 window) (d) After applying 

Median filter (5×5 window) (e) After applying Fuzzy filter of [24] with K=3 (7×7 window) and L=2 (5×5 window) (f) After applying Proposed Fuzzy filter 

with K=3 (7×7 window) and L=2 (5×5 window) 
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(a) (b) PSNR = 18.58 (c) PSNR = 24.58 

   

(d) PSNR = 24.61 (e) PSNR =25.61 (f) PSNR = 26.20 

Fig. 2. (a) Original Lena image (256×256) (b) Noisy image (Gaussian noise, σ = 30) (c) After applying Mean filter (3×3 window) (d) After applying Median 

filter (5×5 window) (e) After applying Fuzzy filter of [24] with K=3 (7×7 window) and L=2 (5×5 window) (f) After applying Proposed Fuzzy filter with 

K=3 (7×7 window) and L=2 (5×5 window) 

 

   

(a) (b) PSNR = 22.10 (c) PSNR = 26.57 

   

(d) PSNR = 27.66 (e) PSNR =28.38 (f) PSNR = 29.33 

Fig. 3.  (a) Original House image (256×256) (b) Noisy image (Gaussian noise, σ = 20) (c) After applying Mean filter (3×3 window) (d) After applying 

Median filter (3×3 window) (e) After applying Fuzzy filter of [24] with K=3 (7×7 window) and L=2 (5×5 window) (f) After applying Proposed Fuzzy filter 

with K=3 (7×7 window) and L=2 (5×5 window) 
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TABLE I 

 
COMPARATIVE RESULTS IN PSNR OF DIFFERENT FILTERING METHODS FOR VARIOUS DISTORTIONS OF GAUSSIAN NOISE FOR THE 

(256×256) COLORED HOUSE IMAGE 

 PSNR (dB) 

 σ = 5 σ = 10 σ = 20 σ = 30 σ = 40 

Noisy 34.13 28.12 22.10 18.57 16.08 

Mean 28.05 27.70 26.57 25.13 23.72 

Median 32.31 30.81 27.66 25.02 22.95 

Proposed Fuzzy 

Method 
34.12 31.79 28.38 25.85 23.76 

Modified Fuzzy 

Method 
34.22 32.77 29.33 26.51 24.18 

The main advantages of this new and simple filter are the 

denoising capability and the reconstruction capability of the 

destroyed color component differences. A numerical 

measure, such as the PSNR, and visual observation have 

shown convincing results. Future research will be focused on 

the construction of fuzzy filtering methods for color images 

to suppress multiplicative noise such as speckle noise. 

V.   CONCLUSION 

A fuzzy filter for restoring color images corrupted 

with additive noise is proposed in this paper. The proposed 

filter is efficient and produces better restoration of the color 

images compared to other filters. Numerical measures such 

as PSNR and visual observation have shown convincing 

results. Also the proposed method outperforms most of the 

conventional sharpening filters and other fuzzy filters. 

Further work can be focused on the construction of other 

fuzzy filtering methods for color images to suppress 

multiplicative noise such as speckle noise. 
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